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ABSTRACT With the advances in sonar imaging technology, sonar imagery has increasingly been used for

oceanographic studies in civilian and military applications. High-resolution imaging sonars can be mounted

on various survey platforms, typically autonomous underwater vehicles, which provide enhanced speed and

improved data quality with long-range support. This paper addresses the automatic detection of mine-like

objects using sonar images. The proposed Gabor-based detector is designed as a feature pyramid network

with a small number of trainable weights. Our approach combines both semantically weak and strong

features to handle mine-like objects at multiple scales effectively. For feature extraction, we introduce

a parameterized Gabor layer which improves the generalization capability and computational efficiency.

The steerable Gabor filtering modules are embedded within the cascaded layers to enhance the scale and

orientation decomposition of images. The entire deep Gabor neural network is trained in an end-to-end

manner from input sonar images with annotated mine-like objects. An extensive experimental evaluation

on a real sonar dataset shows that the proposed method achieves competitive performance compared to the

existing approaches.

INDEX TERMS Gabor neural network detector, Gabor layer, side-scan sonar, mine-like objects.

I. INTRODUCTION

Over the past two decades, autonomous underwater vehi-

cles (AUVs) have been increasingly used to survey the

seabed. AUVs provide an effective platform for mounting

high-resolution imaging sonars, e.g. side-scan or synthetic

aperture sonars. Compared to radars and lidars, sonars are

well-suited to the detection of small objects protruding from

the seabed due to their abilities to visualize the dynamic

underwater environments. Sound waves can propagate over

a longer range than those of electromagnetic waves and light

waves, due to their lower attenuation and dispersion in water.

Compared to optical sensors, sonars are a more effective

sensing modality for water-based activities in poor visibility,

e.g. low-light or turbid conditions.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mauro Tucci .

Automatic detection of mine-like objects (MLOs) in sonar

imagery, which is a critical task for a mine clearance sys-

tem, has attracted considerable research interest. As a cost-

effective method in asymmetric warfare, underwater mines

are commonly employed to block shipping lanes and restrict

naval operations. Underwater mines can also cause long-

lasting environmental damage due to the toxic explosive

compounds. Despite its high demand in mine countermea-

sures, developing an automatic system for MLO detection is

challenging for several reasons. First, a sufficient amount of

labelled data is required to train a detection model. However,

in practice, mine samples are extremely limited compared to

other object detection tasks because of the costly and time-

consuming data acquisition. Second, the acoustic features

of echoes vary significantly depending on the range and

aspect angle of sound pulses. As a result, an MLO (including

its shadow) is often imaged with various shapes that cause

difficulties for the detection process. Third, sonar imagery
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FIGURE 1. Some convolutional kernels learned by the first layer of
several well-known CNNs.

inherently includes the reverberation generated when trans-

mitted acoustic beams strike the boundaries (i.e., water sur-

face and seabed). The reverberation causes serious problems,

especially in shallow water, since the clutter can dominate the

background and completely cover the target objects.

Our Gabor-based approach is motivated by the biologi-

cal and computational evidence of the Gabor filtering. It is

widely accepted that the Gabor-like spatial functions are

closely related to the mammalian vision systems, particularly

in the perception of texture [1], [2]. Simple-cell receptive

fields in the primary visual cortex of higher mammals are

sensitive to orientations and spatial frequencies of the visual

signal. Several neurophysiological studies showed that the

simple cells found in the cat’s striate cortex respond pri-

marily to oriented edges and sinusoidal gratings, which can

be approximated by the Gabor functions [3], [4]. Further

studies conducted on macaques [5], [6] and humans [7], [8]

also interpreted the computational models of the primary

visual cortex as a bank of Gabor filters with selective orien-

tation, spatial frequency, phase and bandwidth. Interestingly,

such orientation-sensitive functions can be learned by many

machine learning algorithms when applied to natural images.

Several unsupervised methods, such as spike-and-slab sparse

coding [9] and restricted Boltzmann machines [10], discover

the features with Gabor-like weight patterns. In deep con-

volutional neural networks (CNNs) trained on large image

datasets, many adaptive filters also converge to the Gabor

functions, even from random initialization (see Fig. 1).

In this paper, we propose a Gabor-based neural network

architecture for MLO detection in sonar imagery. Inspired by

the YOLOv3 method [15], our approach adopts the detection

framework with significant modifications in the network

architecture. First, the Gabor filtering is embedded in the

deep neural network for feature extraction and computational

efficiency. As an effective way to control overfitting, the pro-

posed Gabor layer has fewer trainable weights compared to

the standard convolutional layer. The full hierarchical Gabor-

based detector is trained in an end-to-end manner to dis-

cover the MLO features automatically. Second, our compact

architecture is designed as a feature pyramid network (FPN)

[16], where the low-resolution features are combined with

the high-resolution features to compensate the information

loss caused by the pooling effects. Compared to the original

YOLOv3, the proposed Gabor detector enhances the seman-

tic information of the feature pyramid at more scale levels to

handle various MLO shapes (including shadows).

The main contributions of this paper can be highlighted

as follows. First, we propose a new deep Gabor neural net-

work (GNN) for MLO detection in sonar imagery. Second,

we introduce the Gabor layer as a generic feature extractor for

the design of compact neural architectures. Third, we conduct

extensive experiments to evaluate the proposed method using

a real sonar dataset provided by the Defence Science and

Technology Group, Australia.

The remainder of the paper is organized as follows.

Section II introduces the related work on the automatic detec-

tion of MLOs. Section III describes the proposed Gabor-

based detectionmethod. Section IV presents the experimental

results and analysis, and finally, Section V gives the conclud-

ing remarks.

II. RELATED WORK

In this section, we first present a brief background on side-

scan sonar imagery, and then provide a review of MLO

detection methods.

A. SIDE-SCAN SONAR IMAGERY

A side-scan sonar provides high-resolution seabed morphol-

ogy from both sides of anAUV, see Fig. 2. Typically, the sonar

is mounted on a vehicle, which moves along a straight track

at constant speed and altitude. Transducers on either side of

the sonar periodically illuminate the seabed with fan-shaped

beams of high-frequency acoustic signals perpendicular to

the vehicle track. The backscattered intensities (as individual

scan-lines) are then concatenated to form a two-sided sonar

image. Note that such an image is represented in the time

coordinate, instead of the Cartesian coordinate, where the

echo amplitudes are displayed as image pixels. The vertical

axis corresponds to the time when the acoustic pulse is emit-

ted from the transducer, and the horizontal axis corresponds

to the time of flight (i.e., slant range) in the across-track

direction.

The seabed is commonly modeled as a Lambertian surface

[17], which scatters incident energy uniformly in all direc-

tions. In other words, the echo amplitude depends only on

the local angle of incidence δ formed by the incident pulse

and the normal En to the surface. Let p = (Er, α) be a point

VOLUME 8, 2020 94127
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FIGURE 2. Principle of a side-scan sonar mounted on an autonomous
underwater vehicle.

on the seabed ensonified by an anisotropic acoustic signal

of intensity ϕ(p). The backscattered intensity at p can be

computed as

I (p) = κ ϕ(p) µ(p)
Er · En

‖ Er ‖ ‖ En ‖ , (1)

where κ is a normalization constant, and µ(p) is the reflectiv-

ity coefficient of the seabed at p dependent on the sediment

type. An example of sonar image formation is shown in

Fig. 3.

FIGURE 3. Sonar image formation from an object lying on the seabed.

B. TRADITIONAL MINE-LIKE OBJECT

DETECTION METHODS

Over the past two decades, there have been several studies

on automatic detection of MLOs using sonar imagery. This

subsection presents a review of the traditional MLO detection

methods.

Most existing MLO detection methods have employed

feature-based algorithms to identify suspicious pixel regions.

In [19], Sawas and Petillot applied the Haar-like features and

a cascade of boosted classifiers, which were first introduced

by Viola and Jones [31]. In [21], Barngrover et al. also

utilized the Haar-like feature classifier to generate image

patches (around regions of interest), which are then pro-

cessed by subjects using the rapid serial visual presentation

paradigm. Other feature-based methods used the geometric

visual descriptors, such as scale-invariant feature transform

(SIFT) [18], [32], [33] and local binary pattern (LBP) [20],

[34]. In [18], Hollensen et al. adopted the dense SIFT fea-

ture extraction with various window sizes for computing

orientation histograms. In [20], Barngrover et al. combined

the LBP features and the AdaBoost algorithm to create an

optimized cascade of features for classifying image windows.

The existing feature-based methods have a limitation in that

the feature extractors are manually designed to generate a fea-

ture vector from the input image window. However, finding

an appropriate feature extractor to capture salient features of

MLOs requires significant domain expertise.

In recent years, MLO detection methods have used deep

neural networks to process sonar images in their raw

form without manual feature engineering [22]–[24]. In [22],

Gebhardt et al. proposed various CNNs, where a global aver-

age pooling (GAP) layer is employed before each fully-

connected layer to produce a class activation map. In [24],

Denos et al. introduced a four-step pipeline of MLO detec-

tion including synthetic data generation, one-class classi-

fication, background extraction, and binary classification.

The second and fourth steps are performed using an auto-

encoder and a pre-trained network VGG-19, respectively.

In [23], McKay et al. utilized transfer learning with several

pre-trained CNNs for mine feature extraction. The feature

vectors are then used to train a support vector machine (SVM)

on a small sonar dataset. The main limitation of the exist-

ing CNN-based methods is their computational cost. This

is mainly due to the use of sliding windows for locating

MLOs, where separate predictions are computed at every

potential position. Furthermore, the existing methods do not

handle MLOs with various shapes effectively, since the slid-

ing windows (with a fixed aspect ratio) can lead to inaccurate

bounding box detection.

C. GENERIC OBJECT DETECTION METHODS

MLO detection using sonar imagery can be considered as a

subset of object detection. This subsection provides a brief

survey of the generic object detectors in computer vision,

which can be applied for the MLO detection.

With recent advances in deep learning, several techniques

for generic object detection have been proposed, with state-

of-the-art results. Such models can be categorized into two

main types: i) two-stage detectors, and ii) one-stage detectors.

Two-stage detectors, notably the R-CNN and its variations

[25], [26], [30], perform object detection in two stages. In the

first stage, a region proposal generation technique is used

to remove most of the backgrounds. In the second stage,

the remaining regions are categorized into different class

94128 VOLUME 8, 2020
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TABLE 1. Representative methods for MLO detection and generic object detection.

labels. In [25], Girshick et al. first introduced a method,

called R-CNN (Regions with CNN features), where a selec-

tive search algorithm is employed to generate category-

independent region proposals. Each candidate region is then

classified using the AlexNet with the linear SVMs. In [26],

Girshick proposed an improved version, called Fast R-CNN,

where the feature maps are produced once from the entire

image instead of region proposals. Based on the feature maps

and the proposals suggested by the selective search, fixed-

length feature vectors are then extracted for classification

and regression using a region of interest (RoI) pooling layer.

In [30], Ren et al. developed the Faster R-CNN with a

separate fully-convolutional network, called Region Proposal

Network (RPN), to predict candidate regions directly from

the convolutional feature maps.

One-stage detectors, notably YOLO (You Only Look

Once) [15], [28], [29] and SSD (Single Shot multi-box Detec-

tor) [27], predict bounding boxes directly from input images,

without region proposal generation. In [28], Redmond et al.

introduced the first version of YOLO, a real-time object

detector. The main idea is to divide the image into grid cells,

which are responsible for predicting the objects centered in

these cells. For each grid cell, a CNN regressor is employed to

predict several bounding boxes and the corresponding confi-

dence scores. In [29] and [15], Redmond et al. adopted several

powerful techniques to improve the detection performance

of YOLO. In YOLOv2 [29], the fully-connected layers are

removed from the base network Darknet-19, and multiple

anchor boxes are utilized at each grid cell for predicting

bounding boxes (similar to the Faster R-CNN). In YOLOv3

[15], the network Darknet-53 was proposed to make multiple

predictions at different scales. In [27], Liu et al. proposed

an object detector, called SSD, where six additional convo-

lutional layers are appended to the base network VGG-16.

Each additional layer produces feature maps at a scale for

the detection prediction. SSD also adopts anchor boxes at

multiple scales and aspect-ratios to predict objects on multi-

ple feature maps. Essentially, SSD employs lower-resolution

feature maps to detect large objects, and high-resolution

feature maps to detect smaller objects. Table 1 presents a

summary of representative methods for MLO detection and

generic object detection.

III. PROPOSED DETECTION METHOD

This section presents the proposed detection method,

including the deep Gabor neural network architecture

(Section III-A), the proposed Gabor layer for feature extrac-

tion (Section III-B), the YOLOv3-based detection frame-

work (Section III-C), the loss function for network training

(Section III-D), and additional remarks on the conceptual

contributions (Section III-E).

A. NETWORK ARCHITECTURE

The GNN detector utilizes a feature pyramid to make pre-

dictions at three different scales (see Fig. 4). The network

comprises 17 Gabor layers with large kernel sizes in the early

layers (i.e., 15×15 and 7×7 pixels) and smaller kernel sizes

in the succeeding layers (i.e., 3 × 3 and 1 × 1 pixels). Each

Gabor layer is followed by a batch-normalization layer and

a LeakyReLU layer with the exception of the outputs. The

network employs four max-pooling layers of size 2×2 pixels

with stride of 2 for spatial dimensionality reduction.

Note that the high-resolution feature maps in the early

Gabor layers are well-suited to locating small objects, but

they contain semantically weak features. By contrast, the low-

resolution feature maps in the succeeding Gabor layers con-

tain semantically strong features, but the locations of MLOs

are not precise due to the pooling effects. To overcome

this problem, the proposed FPN architecture combines low-

level features with high-level features using a bottom-up

pathway, a top-down pathway, and two skip connections.

This strategy not only enhances the semantic information
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FIGURE 4. The proposed deep Gabor neural network for MLO detection in sonar images.

from both weak and strong features but also handles objects

at multiple scales effectively.

The bottom-up pathway, which is the feed-forward com-

putation of the backbone Gabor network, produces a feature

hierarchy by reducing the spatial dimension gradually. Given

an input sonar image of size 832 × 832 pixels, the first scale

of 16 (i.e., 52×52 grid cells) is obtained at the top of the fea-

ture pyramid to predict large MLOs. The top-down pathway

restores resolution from the semantically stronger (but spa-

tially coarser) features by upsampling. The upsampled feature

maps are then concatenated with those of identical spatial

size from the bottom-up pathway via the skip connections.

As a result, the second and the third scales of 8 and 4 (i.e.,

104 × 104 and 208 × 208 grid cells) are produced to handle

medium and small MLOs, respectively.

B. GABOR LAYER

A 2-D band-pass Gabor filter is an elliptical Gaussian enve-

lope modulated by a complex sinusoidal wave of specific

frequency and orientation. The harmonic component enables

the filter to be sensitive to spatial frequencies, while the Gaus-

sian component constrains the frequency sensitivity to local-

ized regions of the input image. As an edge detector, Gabor

filter responds strongly to patterns matching the orientation

of sinusoidal strips, and suppresses those perpendicular to

the orientation. This subsection introduces our Gabor-based

feature extractor, called Gabor layer, which can be trained in

an end-to-end manner.

Let σx and σy be the standard deviations of elliptical Gaus-

sian envelope, which control the spatial scale of a Gabor filter.

Let φ be the phase offset, which determines how much the

sinusoidal component needs to be shifted with respect to the

origin. A complex Gabor filter plane with real and imaginary

components representing orthogonal directions is defined as

G(x, y) = 1

2π γ σ 2
exp {−

x̃2

γ 2 + ỹ2

2σ 2
} exp {i 2πu0 (x̃ + φ)},

(2)

where σ = σy, and γ = σx/σy is the spatial aspect

ratio which reflects the ellipticity of the envelope. Here,

x̃ = x cos θ + y sin θ and ỹ = −x sin θ + y cos θ denote the

transformed coordinates, where θ specifies the orientation of

the normal to the parallel stripes. In Eq. (2), u0 =
√
u2 + v2 is

the center frequency, where u and v are the spatial frequencies

of the sinusoidal factors.

In practice, instead of specifying the value of σ directly,

the receptive field is determined by the half-response spatial

frequency bandwidth β, which is given by

β = log2

σ
λ

π +
√

ln 2
2

σ
λ

π −
√

ln 2
2

. (3)

Here, λ denotes the wavelength associated with the spa-

tial frequency of the sinusoidal component. From Eq. (3),

the standard deviation σ is related to the wavelength by

σ

λ
= 1

π

√

ln 2

2

2β + 1

2β − 1
. (4)

Note that the spatial frequency bandwidth determines the cut-

off of the filter frequency response as frequency moves away

from the center frequency u0 (i.e., 1/λ). The ratio σ/λ deter-

mines the number of parallel excitatory and inhibitory lobes

observed in the receptive field. In summary, a single filter

plane is controlled by five parameters λ, θ , φ, γ and β, which

are treated as the learnable parameters to be determined by the

training algorithm.

In this paper, we adopt the terminology commonly used in

deep learning literature when describing the network archi-

tecture [13], [28], [35]. Hereafter, a Gabor kernel is a 3D

tensor that comprises several Gabor planes organized as a

filter bank (see Fig. 5) so that the salient MLO features can

be extracted at various orientations, scales and translations.

In a deep hierarchical network, a Gabor layer employs several

parameterized Gabor kernels as steerable feature extractors.

These spatial kernels are then convolved with the input chan-

nels, yielding a Gabor space. We utilize the real impulse

response of the complex-valued kernels for the convolutional
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FIGURE 5. Visualization of three example Gabor kernels with four input
channels used in a single Gabor layer. Here, the real components of the
kernels are used.

computation since they resemble the receptive field found in

the cat’s striate cortex [36]. Mathematically, let Oli be the i-th

feature map in the l-th Gabor layer, and Gli,j be the i-th filter

plane of the j-th Gabor kernel. The j-th output feature map

can be computed as

Ol+1
j = f (

n
∑

i=1

Oli ∗ Gli,j), (5)

where ∗ denotes the two-dimensional convolution operator,

and f represents a non-linear activation function for the

extraction of non-linear features.

C. DETECTION FRAMEWORK

Each grid cell in a certain scale level employs three anchor

boxes (i.e., prior boxes) to predict bounding boxes. During

the training phase, each object is assigned to a grid cell

containing the object’s center and an anchor box associ-

ated with the highest intersection over union (IoU). The

network makes prediction as a logistic regression with six

components: (i) four scores (x, y,w, h) reflecting the off-

set of predicted bounding box; (ii) an objectness score s

representing the IoU between the predicted bounding box

and the ground-truth; and (iii) a conditional class probability

p(class = MLO|object). Here, the coordinates (x, y) are the
object’s center relative to the grid cell, and (w, h) are thewidth

and height relative to the entire sonar image. Collectively,

the prediction at each scale is encoded as a tensor of size

n × n × 3 × 6, where n is the number grid cells used in the

scale level.

Note that our model predicts the relative offsets instead

of the absolute coordinates. Inspired by the YOLOv3 detec-

tion technique [15], [29], we process the relative offsets

to generate the absolute coordinates for the final output.

Briefly, the predicted center coordinates (x, y) and the output

objectness score s are squashed between 0 and 1 using a

sigmoid function. Given the predicted sizes (w, h), the abso-

lute outputs are obtained by computing the exponential then

multiplying by the corresponding sizes of the anchor.

During the test phase, the predicted conditional class prob-

abilities are multiplied by the corresponding objectness score

to produce a class-specific score for each bounding box [29].

In other words, the class-specific score implicitly encodes:

(i) the probability of an MLO occurring in the predicted box,

and (ii) how well the box fits the object. Our method then

removes detections with scores lower than a predefined con-

fidence threshold, and sorts the remaining bounding boxes in

the descending order of the class-specific score. An analysis

of the confidence threshold selection is given in Section IV-D.

Since multiple proposal boxes can be predicted for the same

object, the non-maximum suppression (NMS) algorithm [28]

with a pre-defined IoU threshold is adopted to remove dupli-

cate detections.

D. LOSS FUNCTION

During training, we minimize the YOLOv3-based loss func-

tion which is defined as

L =
n×n
∑

i=1

3
∑

j=1

✶
MLO
ij [l(xi, x̂i) + l(yi, ŷi))]

+
n×n
∑

i=1

3
∑

j=1

✶
MLO
ij [(

√
wi −

√

ŵi)
2 + (

√

hi −
√

ĥi)
2]

+
n×n
∑

i=1

3
∑

j=1

✶
MLO
ij l(si, ŝi)

+0.5

n×n
∑

i=1

3
∑

j=1

✶
noMLO
ij l(si, ŝi)

+
n×n
∑

i=1

✶
MLO
i l(pi, p̂i). (6)

Equation 6 can be explained as follows:
• The loss function L consists of three components:

(i) localization loss, (ii) confidence loss, and (iii) clas-

sification loss.

• The first and second terms denote the localization loss,

which measures the errors in the offsets of the predicted

bounding box. To consider the regression errors with

respect to the bounding box sizes, we apply the square

root operator, which reduces the significance of high

regression errors for large boxes.

• The third and fourth terms denote the confidence loss,

which measures the errors in the objectness score of the

bounding box in both cases, with and without an MLO

detected in the box.

• The fifth term denotes the classification loss measuring

the difference between the actual and predicted class

probabilities if an MLO is present in the grid cell.

• ✶
MLO
ij = 1 if the j-th bounding box in the i-th grid cell

is responsible for detecting an MLO, otherwise 0, and

✶
noMLO
ij is the complement of ✶MLO

ij . The function l is a

binary cross-entropy loss given by

l(a, â) = −a log â− (1 − a) log(1 − â). (7)
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E. REMARKS AND DISCUSSION

Before presenting the experimental results and analysis,

we provide brief remarks on the proposed Gabor layer and

GNN detector to highlight the contributions.

It is worth noting that the number of trainable parame-

ters of a single Gabor kernel is independent of the kernel

size. In designing deep networks, the receptive field (the

kernel size) needs to cover the entire relevant image region.

A sufficiently large receptive field is required to capture the

local context around every single pixel when making the

prediction. Existing attempts to extend the receptive field

have used large convolutional kernels in the early layers

[13], or stacking several layers with small kernels [11], [37],

[38]. However, increasing the receptive field size leads to

a rapid growth in the number of trainable parameters and

computational cost. Given a standard convolutional layer, let

k be the number of kernels of size m × n pixels, and c be

the number of input feature maps. The number of trainable

weights in this convolutional layer is (m × n × c + 1) × k .

By contrast, the proposed Gabor-based approach represents

each filter plane with only five parameters, regardless of the

kernel size. Thus, the number of trainable weights is reduced

to (5 × c+ 1) × k . As a generic feature extractor, the Gabor

kernel enables us to design compact networks with fewer free

parameters compared to the convolutional counterparts.

The GNN detector has several conceptual merits compared

to the relevant approaches of MLO detection. In terms of

network architecture, the proposed method extracts MLO

features at multiple scales, while maintaining a compact

architecture with fewer trainable parameters. Compared to

the tiny YOLOv3 method which decomposes the input image

at two scales of 32 and 16, our network performs the detection

at three scales of 16, 8, and 4. In other words, the proposed

detector employs smaller grid cells at various sizes to han-

dle MLOs effectively. Compared to the full YOLOv3 with

the feature extractor Darknet-53 [15], the proposed GNN

achieves roughly 30 times reduction in the total number of

trainable weights. A small network size enables the entire

GNNmodel to be deployed on various survey platforms (e.g.,

AUVs) as an efficient on-chip architecture.

In terms of detection framework, our approach processes

the entire input sonar image with a single feed-forward prop-

agation through the Gabor network, instead of using the slid-

ing window and region proposal techniques. This improves

the detection speed and the contextual information of the

extracted features. The proposed one-stage method performs

MLO detection as a regression problem, where bounding box

offsets and class probability are obtained directly from image

pixels. In other words, this enables us to maintain a sim-

ple detection pipeline without the softmax and classification

layers.

In terms of feature extraction, the Gabor filtering enhances

not only the scale and orientation decomposition of images

but also the invariant properties of the extracted fea-

tures [39]. Compared to the standard convolutional kernels

with randomly-initialized weights, the Gabor kernels follow

TABLE 2. Summary of sonar data acquisition and experimental setup.

patterns that are steerable to specific frequencies. A bank of

several Gabor filters can effectively extract the directional

texture features (e.g., shadows and strong edges) representing

structural properties of MLOs.

IV. RESULTS AND ANALYSIS

In this section, we first describe the data acquisi-

tion (Section IV-A) and the detection evaluation metrics

(Section IV-B), then investigate the anchor box selec-

tion (Section IV-C) and confidence threshold selection

(Section IV-D). Finally, we compare the proposed method

with six state-of-the-art generic object detectors in computer

vision (Section IV-E) and four relevant representative MLO

detection methods (Section IV-F).

A. SONAR DATA ACQUISITION AND ANNOTATION

The sonar data were provided by the Defence Science and

Technology (DST) Group in a naval mine-shape recov-

ery operation in Australia [40]. A Marine Sonic Tech-

nology (MST) side-scan sonar with dual frequencies was

employed for data acquisition. This sonar equipment has:

(i) a 900 kHz channel with a resolution of 0.2 m and a practi-

cal maximum range of 30 to 40m; and (ii) a 1800 kHz channel

with a resolution of 0.05 to 0.1 m and a maximum range

of 10 to 15 m. In the surveys conducted by the DST Group,

the first channel of 900 kHz was used, and the maximum

range of sonar operation for both port and starboard sides was

set to 30 m. The REMUS 100 AUV by Kongsberg Maritime

was utilized as an unmanned platform for rapidly detecting

MLOs on the seabed. The REMUS 100 AUV is a compact,

lightweight vehicle designed for operation in coastal environ-

ments. It has a maximum depth of 100 m, and an endurance

of up to 12 hours at the standard cruising speed of 1.5 m/s

(i.e., 3 knots) dependent on the sensor configuration. The

MLOs in the acquired sonar images were annotated by the

DST experts. There are 216 MLOs in 190 sonar images of

size 1000 × 1024 pixels.

The original images were resized to 832 × 832 pixels

to satisfy the designed input shape (i.e., multiple of 32)
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FIGURE 6. Data augmentation for training the MLO detectors. Top row: original sonar images with the MLO ground-truth. Bottom row: synthesized sonar
images with the MLO ground-truth. See electronic color images.

before being partitioned randomly into five cross-validation

folds. Thus, each case of cross-validation contains 153 sonar

images for training and 37 images for testing. For each fold,

we applied data augmentation to the training set to synthesize

additional training images as follows. The annotated MLOs

were extracted from the original images and then overlaid on

seabed backgrounds (without MLOs) at random locations.

The overlaying was performed such that the shadow direc-

tion of the MLO matched to the shadow direction in the

background image (i.e., across-track direction). Finally, each

augmented case of cross-validation contains 1683 images

for training and 37 images for testing. A summary of sonar

data acquisition and experimental setup is shown in Table 2.

Figure 6 presents three examples of original sonar images

with MLOs and the corresponding synthesized images for

data augmentation in our dataset.

B. DETECTION EVALUATION METRICS

To measure the detection performance, we adopted the eval-

uation metric of the PASCAL Visual Object Classes (VOC)

Challenge [41], which has beenwidely accepted as the bench-

mark for detection tasks. The principal quantitative metric

is the average precision (AP) using all-point interpolation,

which can be closely estimated as the area under the

precision-recall curve (AUC). Note that, to compute the pre-

cisions and recalls, the detections are converted to classifica-

tions based on a pre-defined threshold of IoU. The predicted

bounding boxes having IoU scores (with the ground-truths)

above the threshold are considered as true positives, and those

with IoU scores below the threshold are considered to be

false positives. If multiple bounding boxes detect the same

MLO, the box with the highest IoU is counted as a correct

detection, and the remaining boxes are interpreted as false

detections.

Let ri ∈ [0, 1] be the i-th recall value, and ρ(ri) be the

measured precision at ri. A version of the precision-recall

curve with precision monotonically decreasing is obtained by

setting ρ(ri) to the maximum precision for any recall r̃ ≥ ri.

The AP (i.e., AUC) interpolated over n unique recall values

can be computed as

AP =
n−1
∑

i=2

(ri − ri−1) ρint (ri), (8)

where ρint (ri) = max
r̃≥ri

ρ(r̃).
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C. ANCHOR BOX SELECTION

Anchor boxes (i.e., prior boxes) affect significantly the effi-

ciency and accuracy of an object detector. Such pre-defined

boxes are commonly used to capture the aspect ratio of

specific object classes and handle multiple objects associ-

ated with the same grid cell. Inspired by YOLOv2 [29], our

approach present the anchor boxes by running k-means clus-

tering on the training MLO bounding boxes. Instead of using

Euclidean distance as in the standard k-means algorithm,

we use the IoU distance metric in clustering, which aims to

avoid the errors caused by the scale of boxes. The IoU metric

is computed as

d(box, centroid) = 1 − IoU(box, centroid). (9)

To investigate the effects of the number of anchor boxes

used for each grid cell, we varied its value from 1 to 15 with

a step of 1. Figure 7 shows the average IoU as a function of

the number of anchors. In practice, the average IoU should

be greater than 0.5, so that anchor boxes overlap well with

bounding boxes in the training data. Increasing the number of

anchors improves the average IoU measure, but using more

anchor boxes may cause overfitting and increase the compu-

tational cost [29]. Note that the number of anchors used in

our case must be a multiple of 3, since the proposed Gabor

detector produces three output scales. Among the evaluated

values, we selected nine candidate anchor boxes with an

average IoU of 0.813 for all subsequent experiments.

FIGURE 7. Relationship between the number of anchors and the average
IoU.

D. CONFIDENCE THRESHOLD SELECTION

During the test phase, the proposed method employs a pre-

defined confidence threshold to discard weak detections. The

higher is the threshold value, the more candidate bounding

boxes are removed from the final detections. To investi-

gate the effects of the confidence threshold on the detection

performance, we varied its value from 0.05 to 0.85 with a

step of 0.05. The AP was measured at IoU = 0.5 as in the

PASCAL VOC metric. Figure 8 shows the AP as a function

of the confidence threshold. The experimental validation indi-

cates that the suitable range for the threshold is [0.05, 0.15],

FIGURE 8. Relationship between the confidence threshold and the
detection accuracy.

where the AP measure remains stable. Based on these results,

we employ the threshold value of 0.15 for the subsequent

experiments.

E. COMPARISON WITH THE STATE-OF-THE-ART

OBJECT DETECTORS

The proposed Gabor detector is compared to six state-of-

the-art generic object detectors: 1) R-CNN [25], 2) Fast

R-CNN [26], 3) Faster R-CNN [30], 4) SSD300 [27],

5) tiny YOLOv3, and 6) full YOLOv3 [15]. All experiments

were conducted on a computer with Intel Xeon Gold 5115

2.40 GHz processor and NVIDIATITANXpGP102 graphics

card.

• For the R-CNN detector and its variants (i.e., Fast

R-CNN, Faster R-CNN), the ResNet-50 [11] was

employed as a backbone network for feature extraction.

A new classification layer, a regression layer, and a

ROI max-pooling layer (applied to the Fast R-CNN and

Faster R-CNN) were then added to the backbone to sup-

port object detection. To generate the region proposals

for the R-CNN and the Fast R-CNN, we employed the

Edge Boxes algorithm [42], which has been shown to be

more computationally efficient than the Selective Search

algorithm. The maximum number of strongest region

proposals used for generating training samples was set to

2,000. The negative and positive ranges, which are used

to determine the negative and positive training samples

if the region proposals overlap with the ground-truths,

were set to [0, 0.3] and [0.3, 1], respectively.

• For the SSD300 detector, we utilized the standard input

shape of 300× 300 pixels. The confidence threshold for

removing the weak detections was set to 0.4.

• For the tiny and full YOLOv3 detectors, we employed

the pre-trained tiny weights and Darknet-53 weights

[15], respectively. The confidence threshold and the IoU

threshold of the NMS algorithm [28] were set to 0.3 and

0.15, respectively.

Table 3 presents the detection performance of the evaluated

methods. In terms of accuracy, it is clear that the proposed
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TABLE 3. Detection performance of the proposed GNN and other object detectors.

FIGURE 9. Precision-recall curves of the GNN and other object detectors
over the five cross-validation folds.

GNN detector outperforms the existing object detectors.

Among the evaluatedmethods, the proposedmethod achieves

the highest AP of 79.93%, while the AP yielded by the

existing methods varies from 9.41% to 72.76%. Compared to

the full YOLOv3 and tiny YOLOv3, the best and second-best

existing detectors, the GNN detector produces an improve-

ment of 7.17% and 9.39%, respectively. In terms of model

size, the proposed compact GNNachieves a significant reduc-

tion compared to other methods. The model size of the

GNN detector is 4.1 times smaller than that of the tiny

YOLOv3 detector.

In terms of detection speed, Table 3 shows that the pro-

posed method is faster than the two-stage detectors (R-CNN,

Fast R-CNN, and Faster R-CNN), and slower than the exist-

ing one-stage detectors (YOLOv3 and SSD300). It can oper-

ate at a speed of 3.01 frames/s, which is 10 times faster than

the R-CNN, and 5 times slower than the full YOLOv3. Note

that this paper focuses on improving the detection accuracy

due to the user demand of a reliable MLO detection algo-

rithm. Although the current detection speed is acceptable to

the users, it would be useful to improve the inference time

by investigating more compact networks and optimizing the

Python implementation of the Gabor layer. Both directions

are feasible, and we leave their detailed explorations for

future studies.

Figure 9 presents the precision-recall curves over the five

cross-validation folds for further insights into the detec-

tion capability of the evaluated object detectors. Clearly,

the precision-recall curve produced by the proposed GNN is

better than the others because it produces a higher precision

at each level of recall. The detection performance of the

GNN is also more stable than those of the existing methods.

Several outputs of the GNN detector are presented in Fig. 10.

The experimental results show that the proposed method can

detectMLOswith various shapes, in different seabed terrains.

On our sonar image dataset, YOLOv3 is found to have

better detection accuracy than Faster R-CNN. On benchmark

datasets such as MS COCO, Faster R-CNN is shown to

have similar detection accuracy as YOLOv3 [15], [26], [30].

A possible explanation for the different findings is the small

number of sonar images available for training. Our sonar

dataset contains 190 sonar images (before data augmenta-

tion) with 216 MLOs, as it costs several thousand dollar to

deploy an underwater mine, record sonar images, and retrieve

the mine. In comparison, the MS COCO dataset for object

detection task contains more than 200,000 images with over

500,000 object instances categorized into 80 classes [43].

Furthermore, Faster R-CNN is a two-stage detector that uses

an additional fully-convolutional network (i.e. the RPN) for

predicting candidate regions, whereasYOLOv3 is a one-stage

detector. It is possible that Faster R-CNN needs more training

images to reach a similar detection performance as YOLOv3.

F. COMPARISON WITH THE RELEVANT MLO

DETECTION METHODS

The proposed GNN detector is compared to four represen-

tative existing methods that were specifically designed for

MLO detection: (1) Haar-like cascade detector [19], (2) LBP

cascade detector [20], (3) the pre-trained VGG-19 with an

SVM classifier [23], and (4) CNNs with GAP layer [22].
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FIGURE 10. Representative visual results produced by the proposed GNN detector. Top row: test sonar images with the MLO ground-truth. Bottom row:
detection results by the GNN. See electronic color images.

• For Method (1) and (2), we found that the number

of cascade stages giving the best performance is from

5 to 7, which agrees with [19]. Note that the more

cascade stages we use, the more image data are required

to train the detector. For the subsequent experiments,

we employed the value of 5 which is well-suited to

our available sonar data. A scaling factor of 1.1, which

determines the amount of scaling applied to the input

image after each increment, was employed to enable

multi-scale detection.

• For Method (3) and (4), we implemented the network

architecture as suggested in [22], [23]. A sliding win-

dow of fixed size 101 × 101 pixels and a sliding step

of 20 pixels was utilized to locate theMLOs. ForMethod

(4), the network consists of 9 convolutional layers and a

GAP layer added after the last convolutional layer. The

input image size of 832 × 832 pixels for these methods

was the same as those of the GNN detector.

Note that the cascade detectors do not produce the con-

fidence scores, which are employed to sort the detections

before calculating the precisions and recalls. The CNN-

based methods merely classify the sliding window without

returning the offsets of bounding boxes. Hence, instead of

using the AP metric to evaluate the detection performance,

we recorded three performance measures: 1) the number of

correct detections (i.e., true positives), 2) the number of incor-

rect detections (i.e., false positives), and 3) the number of

ground-truths not detected (i.e., false negatives). A predicted

sliding window containing an MLO is considered as a correct

detection. When multiple windows cover the same MLO,

the first predicted window is counted as a correct detec-

tion, and the remaining windows are interpreted as incorrect

detections. The scores were accumulated over the five cross-

validation folds.

Table 4 shows the performance of four existing MLO

detection methods. Clearly, the proposed GNN detector out-

performs the existing methods in terms of both the correct

detection rate and the frame rate. The GNN detector achieves

a detection rate of 80.5% (i.e., 174/216), which is 3.8 times

higher than that of the VGG-19 method. The results also

indicate that the GNN detector is more reliable than the exist-

ing methods: it produced the smallest number of incorrect

detections (46) over the five test folds. Compared to the

cascade detectors with a frame rate of roughly 0.05 frames/s,
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TABLE 4. Detection performance of the proposed GNN and relevant MLO detection methods.

the proposed method is 57 times faster. The CNN-based

methods using sliding window are the slowest with the frame

rates between 0.004 to 0.007 frames/s.

V. CONCLUSION

In this paper, a novel Gabor-based deep neural network

architecture is proposed for automatic detection of MLOs

in sonar imagery. The steerable Gabor filtering modules are

embedded within the cascaded layers to enhance the scale

and orientation decomposition of images. The proposedGNN

is designed as a FPN-like architecture with a small number

of trainable weights, which can be trained in an end-to-

end manner to extract the MLO features automatically. The

experimental results on a real sonar dataset, provided by the

DST Group, Australia, indicates that the proposed GNN is

an effective MLO detection method for AUVs in terms of the

accuracy and the model size. Compared to the state-of-the-

art object detectors in computer vision, the proposed GNN

demonstrates a significant improvement in the AP metric

and at least 4 times reduction in the model size. Compared

to the relevant MLO detection methods, our approach not

only achieves a higher detection rate but also improves the

detection speed significantly.

APPENDIX

DERIVATION OF GABOR ERROR GRADIENT

This section presents the derivation of Gabor error gradient,

which is used for end-to-end training of the proposed net-

work.

1) olj(x, y) is the output of neuron (x, y) in the j-th feature

map of the l-th Gabor layer:
olj(x, y) = f (slj(x, y)), (10)

where f denotes an activation function.

2) slj(x, y) is the weighted sum input to neuron (x, y) in

the j-th feature map of the l-th Gabor layer produced by

convolutional computation:

slj(x, y) =
n

∑

i=1

∑

x ′

∑

y′
gli,j(x

′, y′) ol−1
i (x ′, y′). (11)

3) gli,j(x, y) is a real impulse response of the i-th filter plane

in the j-th Gabor kernel. The value of gli,j(x, y) yielded from

the trainable Gabor weights is defined by Eq. (2).

4) Using the chain rule of differentiation, we can express the

partial derivative of the total error with respect to (w.r.t.) the

k-th weight for the i-th filter plane in the j-th Gabor kernel

(i.e., λli,j, θ
l
i,j, φ

l
i,j, γ

l
i,j and β li,j) as

∂E

∂wli,j(k)
= ∂E

∂olj(x, y)

∂olj(x, y)

∂slj(x, y)

∂slj(x, y)

∂gli,j(x, y)

∂gli,j(x, y)

∂wli,j(k)
. (12)

Assuming the rectified linear unit (ReLU) is used as the

activation function, we can rewrite Eq. (12) as

∂E

∂wli,j(k)
= ∂E

∂olj(x, y)

∂slj(x, y)

∂gli,j(x
′, y′)

∂gli,j(x
′, y′)

∂wli,j(k)
. (13)

Substituting the derivative obtained from (11) into (13)

gives

∂E

∂wli,j(k)
= ∂E

∂olj(x, y)
ol−1
i (x ′, y′)

∂gli,j(x
′, y′)

∂wli,j(k)
. (14)

Here, the partial derivatives of the Gabor function with

respect to Gabor parameters γ and φ can be computed

directly as

∂g(x, y)

∂γ
= 1

2πσ 2γ 2
(
x̃2

γ 2σ 2
− 1) exp {−

x̃2

γ 2 + ỹ2

2σ 2
}

× cos{2π
λ
(x̃ + φ)}, (15)

∂g(x, y)

∂φ
= − 1

λγ σ 2
exp {−

x̃2

γ 2 + ỹ2

2σ 2
} sin{2π

λ
(x̃ + φ)}. (16)

For parameter θ , the partial derivative can be obtained using

the chain rule as follows:
∂g(x, y)

∂θ

= ∂g(x, y)

∂ x̃

∂ x̃

∂θ
= − ỹ

2πγσ 2
exp {−

x̃2

γ 2 + ỹ2

2σ 2
}

×[
2π

λ
sin{2π

λ
(x̃ + φ) + x̃

σ 2
(
1

γ 2
− 1) cos{2π

λ
(x̃ + φ)],

(17)
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Similar to (17), the partial derivative of the Gabor function

with respect to parameter λ is given by

∂g(x, y)

∂λ

= ∂g(x, y)

∂σ

∂σ

∂λ

= − 1

γ λσ 2
exp {−

x̃2

γ 2 + ỹ2

2σ 2
}

×[
x̃

λ
sin{2π

λ
(x̃+φ)}+ 1

2π
(

x̃2

γ 2 +ỹ2

σ 2
− 2) cos{2π

λ
(x̃+φ)].

(18)

Using (4) and applying the chain rule, we obtain the partial

derivative of the Gabor function w.r.t. parameter β:

∂g(x, y)

∂β
= ∂g(x, y)

∂σ

∂σ

∂β
= λ

γπ2σ 3

√

ln3 2

2

2β

2β − 1

×(

x̃2

γ 2 +ỹ2

σ 2
− 2) exp {−

x̃2

γ 2 +ỹ2

2σ 2
} cos{2π

λ
(x̃+φ)}.

(19)
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