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Abstract

Deep learning is a hierarchical inference method formed by subsequent multiple layers of learning able to more efficiently

describe complex relationships. In this work, deep Gaussian mixture models (DGMM) are introduced and discussed. A

DGMM is a network of multiple layers of latent variables, where, at each layer, the variables follow a mixture of Gaussian

distributions. Thus, the deep mixture model consists of a set of nested mixtures of linear models, which globally provide a

nonlinear model able to describe the data in a very flexible way. In order to avoid overparameterized solutions, dimension

reduction by factor models can be applied at each layer of the architecture, thus resulting in deep mixtures of factor analyzers.

Keywords Unsupervised classification · Mixtures of factor analyzers · Stochastic EM algorithm

1 Introduction

In the recent years, there has been an increasing interest

on deep learning for supervised classification (LeCun et al.

2015). It is very difficult to give an exact definition of what it

is due to its wide applicability in different contexts and for-

mulations, but it can be thought of as a set of algorithms able

to gradually learn a huge number of parameters in an architec-

ture composed by multiple nonlinear transformations, called

multilayer structure. Deep neural networks have achieved

great success in supervised classification, and an important

example of it is given by the so-called Facebook’s Deep-

Face software: a deep learning facial recognition system that

employs a nine-layer neural network with over 120 million

connection weights. It can identify human faces in digital

images with an accuracy of 97.35%, at the same level as the

human visual capability (Taigman et al. 2014). Deep learn-

ing architectures are now widely used for speech recognition,

object detection, pattern recognition, image processing and

many other supervised classification tasks; for a comprehen-
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sive historical survey and its applications, see Schmidhuber

(2015) and the references therein.

Despite the success of deep models for supervised tasks,

there has been limited research in the machine learning and

statistics community on deep methods for clustering. In this

paper, we will present and discuss deep Gaussian mixtures

for clustering purposes, a powerful generalization of classical

Gaussian mixtures to multiple layers. Identifiability of the

model is discussed, and an innovative stochastic estimation

algorithm is proposed for parameter estimation. Despite the

fact that in recent years research on mixture models has been

intense and prolific in many directions, we will show how

deep mixtures can be very useful for clustering in complex

problems.

The paper is organized as follows. In the next section, clas-

sical Gaussian mixture models will be reviewed. In Sect. 3,

deep Gaussian mixtures are defined and their main proba-

bilistic properties presented. Identifiability is also discussed.

In Sect. 4, dimensionally reduced deep mixtures are pre-

sented. Section 5 is devoted to the estimation algorithm for

fitting the model. Experimental results on simulated and real

data are presented in Sect. 6. We conclude this paper with

some final remarks (Sect. 7).

2 Gaussianmixture models

Finite mixture models (McLachlan and Peel 2000) have

gained growing popularity in the last decades as a tool for
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model-based clustering (Fraley and Raftery 2002). They are

now widely used in several areas such as pattern recognition,

data mining, image analysis, machine learning and many

problems involving clustering and classification methods.

Let yi be a p-dimensional random vector containing p

quantitative variables of interest for the statistical unit i th,

with i = 1, . . . , n. Then, yi is distributed as a Gaussian mix-

ture model (GMM) with k components if

f (yi ; θ) =

k
∑

j=1

π jφ
(p)(yi ;µ j , Σ j ),

where the π j are positive weights subject to
∑k

j=1 π j = 1

and the µ j , Σ j are the parameters of the Gaussian compo-

nents. Note an interesting property that will be very useful

in defining our proposal: A Gaussian mixture model has a

related factor analytic representation via a linear model with

a certain prior probability as

yi = µ j + Λ j zi + ui with prob. π j ,

where zi is a p-dimensional latent variable with a multivari-

ate standard Gaussian distribution and ui is an independent

vector of random errors with ui ∼ N (0, Ψ j ), where the Ψ j

are diagonal matrices. The component-covariance matrices

can then be decomposed as Σ j = Λ jΛ
⊤
j + Ψ j .

3 Deepmixture models

Deep learning is a hierarchical inference method orga-

nized in a multilayered architecture, where the subsequent

multiple layers of learning are able to efficiently describe

complex relationships. In the similar perspective of deep

neural networks, we define a deep Gaussian mixture model

(DGMM) as a network of multiple layers of latent variables.

At each layer, the variables follow a mixture of Gaussian

distributions. Thus, the deep mixture model consists of a

set of nested mixtures of linear models that globally pro-

vide a nonlinear model able to describe the data in a very

flexible way.

3.1 Definition

Suppose there are h layers. Given the set of observed data

y with dimension n × p at each layer, a linear model to

describe the data with a certain prior probability is formulated

as follows:

(1) yi = η(1)
s1

+ Λ(1)
s1

z
(1)
i + u

(1)
i with prob.

π (1)
s1

, s1 = 1, . . . , k1,

Fig. 1 Structure of a DGMM with h = 3 and number of layer compo-

nents k1 = 3, k2 = 3 and k3 = 2

(2) z
(1)
i = η(2)

s2
+ Λ(2)

s2
z
(2)
i + u

(2)
i with prob.

π (2)
s2

, s2 = 1, . . . , k2,

. . . (1)

(h) z
(h−1)
i = η(h)

sh
+ Λ(h)

sh
z
(h)
i + u

(h)
i with prob.

π (h)
sh

, t = 1, . . . , kh ,

where z
(h)
i ∼ N (0, Ip) (i = 1, . . . , n) and u

(1)
i , . . . , u

(h)
i

are specific random errors that follow a Gaussian dis-

tribution with zero expectation and covariance matrices

Ψ
(1)
s1

, . . . , Ψ
(h)
sh

, respectively, η
(1)
s1

, . . . , η
(h)
sh

are vectors of

length p, Λ
(1)
s1

, . . . , Λ
(h)
sh

are square matrices of dimension

p. The specific random variables u are assumed to be inde-

pendent of the latent variables z. From this representation, it

follows that at each layer the conditional distribution of the

response variables given the regression latent variables is a

(multivariate) mixture of Gaussian distributions.

To illustrate the DGMM, consider h = 3 and let the num-

ber of layer components be k1 = 3, k2 = 3 and k3 = 2.

The structure is shown in Fig. 1. Thus, at the first layer we

have that the conditional distribution of the observed data

given z(1) is a mixture with three components and so on.

More precisely, by considering the data as the zero layer,

y = z(0), all the conditional distributions follow a first order

Markov property that is f (z(l)|z(l+1), z(l+2), . . . , z(h);Θ) =

f (z(l)|z(l+1);Θ) for l = 0, . . . , h−1. At each layer, we have

f (z(l)|z(l+1);Θ) =

kl+1
∑

i=1

π
(l+1)
i N (η

(l+1)
i

+Λ
(l+1)
i z(l+1), Ψ

(l+1)
i ). (2)

Moreover, with the DGMM with k1 = 3, k2 = 3 and k3 = 2

will have a ‘global’ number of M = 8 sub-components (M =
∑h

l=1 πl ), but final k = 18 possible paths for the statistical

units (k =
∏h

l=1 πl ) that share and combine the parameters

of the M sub-components. Thanks to this tying, the number

of parameters to be estimated is proportional to the number
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of sub-components, thus reducing the computational cost to

learning directly a model with k = 18 components.

Let Ω be the set of all possible paths through the network.

The generic path s = (s1, . . . , sh) has a probability πs of

being sampled, with

∑

s∈Ω

πs =
∑

s1,...,sh

π(s1,...,sh) = 1.

The DGMM can be written as

f (y;Θ) =
∑

s∈Ω

πs N (y;µs , Σ s), (3)

where

µs = η(1)
s1

+ Λ(1)
s1

(

η(2)
s2

+ Λ(2)
s2

(

. . .

(

η(h−1)
sh−1

+ Λ(h−1)
sh−1

η
(h)
h

)))

= η(1)
s1

+

h
∑

l=2

(

l−1
∏

m=1

Λ(m)
sm

)

η(l)
sl

and

Σ s = Ψ (1)
s1

+ Λ(1)
s1

(

Λ(2)
s2

(

. . .

(

Λ(h)
sh

Λ(h)⊤
sh

+Ψ (h)
sh

)

. . .

)

Λ(2)⊤
s2

)

Λ(1)⊤
s1

= Ψ (1)
s1

+

h
∑

l=2

(

l−1
∏

m=1

Λ(m)
sm

)

Ψ (l)
sl

(

l−1
∏

m=1

Λ(m)
sm

)⊤

.

Thus, globally the deep mixture can be viewed as a mixture

model with k components and a fewer number of parameters

shared through the path. In a DGMM, not only the conditional

distributions, but also the marginal distributions of the latent

variables z(l) are Gaussian mixtures. This can be established

by integrating out the bottom latent variables, so that at each

layer

f (z(l);Θ) =
∑

s̃=(sl+1,...,sh)

πs̃ N (z(l); µ̃
(l+1)

s̃
, Σ̃

(l+1)

s̃ ), (4)

where µ̃
(l+1)

s̃
= η

(l+1)
sl+1

+Λ
(l+1)
sl+1

(η
(l+2)
sl+2

+Λ
(l+2)
sl+2

( . . . (η
(h−1)
sh−1

+

Λ
(h−1)
sh−1

η
(h)
h ))) and Σ̃

(l+1)

s̃ = Ψ
(l+1)
sl+1

+ Λ
(l+1)
sl+1

(Λ
(l+2)
sl+2

( . . . (Λ
(h)
sh

Λ
(h)⊤
sh

+ Ψ
(h)
sh

) . . . )Λ
(l+2)⊤
sl+2

)Λ
(l+1)⊤
sl+1

.

A deep mixture model for modeling natural images has

been proposed by van den Oord and Schrauwen (2014). How-

ever, this model suffers from serious identifiability issues as

discussed in the next section.

3.2 Model-based clustering and identifiability

As previously observed in a DGMM, the total number of

components (potentially identifying the groups) is given by

the total number possible paths, k. In case the true number

of groups, say k∗, is known, one could limit the estima-

tion problem by considering only the models with k1 = k∗

(k1 < k) and perform clustering through the conditional

distribution f (y|z(1);Θ). This has the merit to have a nice

interpretation: The remaining components of the bottom lay-

ers act as density approximations to the global non-Gaussian

components. In this perspective, the model represents an

automatic tool for merging mixture components (Hennig

2010; Baudry et al. 2010; Melnykov 2016) and the deep mix-

tures can be viewed as a special mixture of mixtures model

(Li 2005).

However, in the general situation without further restric-

tions, the DGMM defined in the previous session suffers from

serious identifiability issues related to the number of com-

ponents at the different layers and the possible equivalent

paths they could form. For instance, if h = 2, a DGMM

with k1 = 2, k2 = 3 components may be indistinguishable

from a DGMM with k1 = 3, k2 = 2 components, both giv-

ing a total number of possible k = 6 ( = k1 · k2) paths.

Notice that even if k∗ is known and we fix k1 = k∗, there is

still non-identifiability for models with more than two lay-

ers.

Moreover, in all cases, there is a serious second identifia-

bility issue related to parameter estimation.

In order to address the first issue, the we introduce an

important assumption on the model dimensionality: The

latent variables at the different layers have progressively

decreasing dimension, r1, r2, . . . , rh , where p > r1 >

r2 > · · · , > rh ≥ 1. As a consequence, the param-

eters at the different levels will inherit different dimen-

sionality as well. This constraint has also the merit to

avoid overparameterized models, especially when p is

high.

The second identifiability issue arises from the pres-

ence of latent variables, and it is similar in its nature to

the identifiability issue that affects factor models. In par-

ticular, given an invertible matrix A of dimension r ×

r , with r < p, the factor model y = η + Λz + u,

with u ∼ N (0, Ψ ), and the transformed factor model

y = η + ΛAA−1z + u are indistinguishable, where A

is an orthogonal matrix and the factors have zero mean

and identity covariance matrix. Thus, there are r(r − 1)/2

fewer free parameters. This ambiguity can be avoided by

imposing the constraint that Λ⊤Ψ −1Λ is diagonal with ele-

ments in decreasing order (see, for instance, Mardia et al.

1976).

Moving along the same lines, in the DGMM, at each layer

from 1 to h−1, we assume that the conditional distribution of

the latent variables f (z(l)|z(l+1);Θ) has zero mean and iden-

tity covariance matrix and the same diagonality constraint on

the parameters at each level.
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4 Deep dimensionally reduced Gaussian
mixture models

Starting from the model (1), dimension reduction is obtained

by considering layers that are sequentially described by

latent variables with a progressively decreasing dimension,

r1, r2, . . . , rh , where p > r1 > r2 > . . . , > rh ≥ 1. The

dimension of the parameters in (1) changes accordingly.

Consider as an illustrative example a two-layer deep

model (h = 2). In this case, the dimensionally reduced

DGMM consists of the system of equations:

(1) yi = η(1)
s1

+ Λ(1)
s1

z
(1)
i + u

(1)
i with prob.

π (1)
s1

, j = 1, . . . , k1,

(2) z
(1)
i = η(2)

s2
+ Λ(2)

s2
z
(2)
i + u

(2)
i with prob.

π (2)
s2

, i = 1, . . . , k2,

where z
(2)
i ∼ N (0, Ir2), Λ

(1)
s1

is a (factor loading) matrix of

dimension p × r1, Λ
(2)
s2

has dimension r1 × r2 and Ψ
(1)
s1

and

Ψ
(2)
s2

are squared matrices of dimension p × p and r1 × r1,

respectively. The two latent variables have dimension r1 and

r2, respectively, with p > r1 > r2 ≥ 1.

The model generalizes and encompasses several model-

based clustering methods. Gaussian mixtures are trivially

obtained in absence of any layer and dimension reduction.

Mixtures of factor analyzers (McLachlan et al. 2003) may

be considered as a one-layer deep model, where Ψ
(1)
s1

are

diagonal and z
(1)
i ∼ N (0, Ir1). When h = 2 with k1 = 1,

Ψ (1) is diagonal, and Λ
(2)
s2

= {0}, the deep dimensionally

reduced mixture coincides with mixtures of factor analyzers

with common factor loadings (Baek et al. 2010) and het-

eroscedastic factor mixture analysis (Montanari and Viroli

2010). The so-called mixtures of factor mixture analyzers

introduced by Viroli (2010) are a two-layer deep mixture with

k1 > 1, Ψ
(1)
s1

diagonal and Λ
(2)
s2

= {0}. Under the constraints

that h = 2, Ψ
(1)
s1

and Ψ
(2)
s2

are diagonal, the model is a deep

mixture of factor analyzers (Tang et al. 2012). In this work,

the authors propose to learn one layer at a time. After estimat-

ing the parameters at each layer, samples from the posterior

distributions for that layer are used as data for learning the

next step in a greedy layer-wise learning algorithm. Despite

its computational efficiency, this multistage estimation pro-

cess suffers from the uncertainty in the sampling of the latent

variable generated values. A bias introduced at a layer will

affect all the remaining ones and the problem grows with

h, with the number of components and under unbalanced

possible paths. In the next section, we will present a unified

estimation algorithm for learning all the model parameters

simultaneously.

5 Fitting deep Gaussianmixture models

Because of the hierarchical formulation of a deep mixture

model, the EM algorithm represents the natural method for

parameter estimation. The algorithm alternates between two

steps, and it consists of maximizing (M-step) and calculating

the conditional expectation (E-step) of the complete-data log-

likelihood function given the observed data, evaluated at a

given set of parameters, say Θ ′:

Ez(1),...,z(h),s|y;Θ ′

[

log Lc(Θ)
]

. (5)

This implies that we need to compute the posterior distri-

butions of the latent variables given the data in the E-step of

the algorithm. In contrast to the classical GMM, where this

computation involves only the allocation latent variable s for

each mixture component, in a deep mixture model the deriva-

tion of bivariate (or multivariate) posteriors is required, thus

making the estimation algorithm very slow and not applica-

ble to large data.

To further clarify this, consider the expansion of the con-

ditional expectation in (5) as sum of specific terms. For a

model with h = 2 layers, it takes the following form

Ez,s|y;Θ ′

[

log Lc(Θ)
]

=
∑

s∈Ω

∫

f
(

z(1), s|y;Θ ′
)

log f
(

y|z(1), s;Θ
)

dz(1)

+
∑

s∈Ω

∫ ∫

f
(

z(1), z(2), s|y;Θ ′
)

× log f
(

z(1)|z(2), s;Θ
)

dz(1)dz(2)

+

∫

f
(

z(2)|y;Θ ′
)

log f
(

z(2)
)

dz(2)

+
∑

s∈Ω

f
(

s|y;Θ ′
)

log f (s;Θ). (6)

A proper way to overcome these computational difficulties

is to adopt a stochastic version of the EM algorithm (SEM)

(Celeux and Diebolt 1985) or its Monte Carlo alternative

(MCEM) (Wei and Tanner 1990). The principle underlying

the handling of the latent variables is to draw observations

(SEM) or samples of observations (MCEM) from the condi-

tional density of the latent variables given the observed data,

in order to simplify the computation of the E-step.

The strategy adopted is to draw pseudorandom observa-

tions at each layer of the network through the conditional

density f (z(l)|z(l−1), s;Θ ′), starting from l = 1 to l = h,

by considering as fixed, the variables at the upper level of

the model for the current fit of parameters, where at the first

layer z(0) = y.
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The conditional density f (z(l)|z(l−1), s;Θ ′) can be

expressed as

f
(

z(l)|z(l−1), s;Θ ′
)

=
f
(

z(l−1)|z(l), s;Θ ′
)

f
(

z(l)|s
)

f
(

z(l−1)|s;Θ ′
) , (7)

where the denominator does not depend on z(l) and acts as

a normalization constant, and the two terms in the numera-

tor, conditionally on s, are Gaussian distributed according to

Eqs. (4) and (2):

f
(

z(l−1)|z(l), s;Θ ′
)

= N
(

η
(l)
sl

+ Λ
(l)
sl

z(l), Ψ
(l)
sl

)

,

f
(

z(l)|s;Θ ′
)

= N
(

µ̃(l+1)
sl

, Σ̃
(l+1)

sl

)

.

By substituting them in (7), after some simple algebra, it

is possible to show that

f
(

z(l)|z(l−1), s
)

= N
(

ρsl

(

z(l−1)
)

, ξ sl

)

, (8)

where

ρsl

(

z(l−1)
)

= ξ sl

(

(

Λ(l)
sl

)⊤ (

Ψ (l)
sl

)−1 (

z(l−1) − η(l)
sl

)

+
(

Σ̃
(l+1)

sl

)−1

µ̃(l+1)
sl

)

and

ξ sl
=

(

(

Σ̃
(l+1)

sl

)−1

+
(

Λ(l)
sl

)⊤ (

Ψ (l)
sl

)−1
Λ(l)

sl

)−1

.

This is the core of the stochastic perturbation of the EM

algorithm. Due to the sequential hierarchical structure of the

random variable generation, the E and M steps of the algo-

rithm can be computed for each layer. Considering the sample

of n observations, at the layer l = 1, . . . , h, we maximize

Ez(l),s|z(l−1);θ ′

[

n
∑

i=1

log f (z
(l−1)
i |z

(l)
i , s;Θ)

]

=

n
∑

i=1

∫

f (z
(l)
i , s|z

(l−1)
i ;Θ ′) log f (z

(l−1)
i |z

(l)
i , s;Θ)dzi

(9)

with respect to Λ
(l)
sl

, Ψ
(l)
sl

, and η
(l)
sl

. By considering f (z(l−1)|

z(l), s) = N (η
(l)
sl

+Λsl
(l)z(l), Ψ

(l)
sl

), we can compute the score

of (9) to derive the estimates for the new parameters given

the provisional ones. Therefore, the complete stochastic EM

algorithm can be schematized as follows. For l = 1, . . . , h:

– S-STEP (z
(l−1)
i is known)

Generate M replicates z
(l)
i ,m from f (z

(l)
i |z

(l−1)
i , s;Θ ′).

– E-STEP - Approximate:

E[z
(l)
i |z

(l−1)
i , s;Θ ′] ∼=

∑M
m=1 z

(l)
i ,m

M

and

E[z
(l)
i z

(l)⊤
i |z

(l−1)
i , s;Θ ′] ∼=

∑M
m=1 z

(l)
i ,mz

(l)⊤
i ,m

M
.

– M-STEP - Compute:

Λ̂(l)
sl

=

∑n
i=1 p

(

s|z
(l−1)
i

) (

z
(l−1)
i − η

(l)
sl

)

E[z
(l)⊤
i |z

(l−1)
i , s]E[z

(l)
i z

(l)⊤
i |z

(l−1)
i , s]−1

∑n
i=1 p

(

s|z
(l−1)
i
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=
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)
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]
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(l−1)
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,

η̂(l)
sl

=

∑n
i=1 p

(

s|z
(l−1)
i

) [

z
(l−1)
i − Λsl

E
[

z
(l)⊤
i |z

(l−1)
i , s

]]

∑n
i=1 p(s|z

(l−1)
i )

,

π̂ (l)
s =

n
∑

i=1

f
(

sl |yi

)

,

where f
(

sl |yi

)

is the posterior probability of the allocation

variable given the observed data that can be computed via

Bayes’ formula.
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6 Simulated and real application

6.1 Smiley data

In this simulation experiment, we have generated n = 1000

observations from four classes in three-dimensional space.

The first two variables are relevant for clustering and have

been generated by using the R package mlbench. They are

structured into two Gaussian eyes, a triangular nose and a

parabolic mouth, as shown in Fig. 2. We have taken the stan-

dard deviation for eyes and mouth equal to 0.45 and 0.35,

respectively. The third variable is a noise variable, indepen-

dently generated from a Gaussian distribution with standard

deviation 0.5.

Data have been independently generated 100 times. On

each replicate, we applied DGMM with two layers with r1 =

2, r2 = 1, k1 = 4 and k2 ranging from 1 to 5. We fitted the

models ten times in a multistart procedure, and we selected

the best fit according to BIC.

We compared the DGMM results with several clus-

tering methods by fixing the number of groups equal to

the true k = 4 for all strategies. We fitted a Gaussian

mixture model (GMM) by using the R package Mclust

(Scrucca et al. 2016), skew-normal and skew-t mixture

models (SNmm and STmm) by using the R package

EMMIXskew (Wang et al. 2009), k-means, partition around

medoids (PAM), and hierarchical clustering by Ward’s

method (Hclust). Clustering performance is measured by

the Adjusted Rand Index (ARI) and the misclassification

rate. The average of the two indicators across the 100

replicates together with their standard errors is reported in

Table 1.

Figure 3 shows the box plots of the Adjusted Rand Indices

and misclassification rates (m.r.’s) across the 100 repli-

cates. The results indicate that DGMM achieves the best

classification performance compared to the other methods

(Table 2).

Table 1 Results on Smiley datasets: Average of Adjusted Rand Index

and misclassification rates across the 100 replicated. Standard errors

are reported in brackets

Method ARI m.r.

k-means 0.661 (0.003) 0.134 (0.001)

PAM 0.667 (0.004) 0.132 (0.001)

Hclust 0.672 (0.013) 0.141 (0.006)

GMM 0.653 (0.008) 0.178 (0.006)

SNmm 0.535 (0.006) 0.251 (0.006)

STmm 0.566 (0.006) 0.236 (0.004)

DGMM 0.788 (0.005) 0.087 (0.002)

6.2 Real data

In this section, we shall apply the deep mixture model to

some benchmark data used by the clustering and classifica-

tion community. We shall consider:

– Wine Data This dataset comes from a study (Forina et al.

1986) on 27 chemical and physical properties of three

types of wine from the Piedmont region of Italy: Barolo

(59), Grignolino (71) and Barbera (48). The clusters are

well separated, and most clustering methods give high

clustering performance on these data.

– Olive Data The dataset contains the percentage compo-

sition of eight fatty acids found by lipid fraction of 572

Italian olive oils (Forina and Tiscornia 1982). The data

come from three regions: Southern Italy (323), Sardinia

(98) and Northern Italy (151), and the aim is to distinguish

between them. Also in this case, the clustering is not a

very difficult task even if the clusters are not balanced.

– Ecoli Data Data consist of n = 336 proteins classi-

fied into their various cellular localization sites based

on their amino acid sequences. There are p = 7 vari-

ables and k = 8 really unbalanced groups that make

the clustering task rather difficult: cp cytoplasm (143),

Fig. 2 Smiley Data
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Fig. 3 Smiley data: box plots of the Adjusted Rand Indices and misclassification rates across the 100 replicates

Table 2 Results on real data:

Adjusted Rand Index (ARI) and

misclassification rates (m.r.)

Dataset Wine Olive Ecoli Vehicle Satellite

ARI m.r. ARI m.r. ARI m.r. ARI m.r. ARI m.r.

k-means 0.930 0.022 0.448 0.234 0.548 0.298 0.071 0.629 0.529 0.277

PAM 0.863 0.045 0.725 0.107 0.507 0.330 0.073 0.619 0.531 0.292

Hclust 0.865 0.045 0.493 0.215 0.518 0.330 0.092 0.623 0.446 0.337

GMM 0.917 0.028 0.535 0.195 0.395 0.414 0.089 0.621 0.461 0.374

SNmm 0.964 0.011 0.816 0.168 – – 0.125 0.566 0.440 0.390

STmm 0.085 0.511 0.811 0.171 – – 0.171 0.587 0.463 0.390

FMA 0.361 0.303 0.706 0.213 0.222 0.586 0.093 0.595 0.367 0.426

MFA 0.983 0.006 0.914 0.052 0.525 0.330 0.090 0.626 0.589 0.243

DGMM 0.983 0.006 0.997 0.002 0.749 0.187 0.191 0.481 0.604 0.249

inner membrane without signal sequence (77), periplasm

(52), inner membrane, uncleavable signal sequence (35),

outer membrane (20), outer membrane lipoprotein (5),

inner membrane lipoprotein (2), inner membrane, cleav-

able signal sequence (2). These data are available from

the UCI machine learning repository.

– Vehicle Data The dataset contains k = 4 types of vehi-

cles: a double decker bus (218), Cheverolet van (199),

Saab 9000 (217) and an Opel Manta 400 (212). The aim
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is to cluster them on the basis of their silhouette repre-

sented from many different angles for a total of p = 18

variables. This is a difficult classification task. In partic-

ular, the bus, the van and the cars are distinguishable, but

it is very difficult to distinguish between the cars. The

data are taken from the R library mlbench.

– Satellite Data The data derive from multispectral, scan-

ner images purchased from NASA by the Australian

Centre for Remote Sensing. They consist of four digital

images of the same scene in different spectral bands struc-

tured into 3×3 square neighborhood of pixels. Therefore,

there are p = 36 variables. The number of images is

n = 6435 coming from k = 6 groups of images: red

soil (1533), cotton crop (703), gray soil (1358), damp

gray soil (626), soil with vegetation stubble (707) and

very damp gray soil (1508). This is notoriously a difficult

clustering task not only because there are six unbalanced

classes, but also because classical methods may suffer

from the dimensionality p = 36. The data are available

from the UCI machine learning repository.

On these data we compared the DGMM model with

Gaussian mixture models (GMM), skew-normal and skew-t

mixture models (SNmm and STmm), k-means and the par-

tition around medoids (PAM), hierarchical clustering with

Ward distance (Hclust), factor mixture analysis (FMA) and

mixture of factor analyzers (MFA). For all methods, we

assumed the number of groups to be known. This assump-

tion is made in order to compare the respective clustering

performances. Note that in the case of an unknown num-

ber of groups, model selection for the DGMM can be done

similarly to all the other mixture-based approaches by using

information criteria. Therefore, we considered the DGMM

with h = 2 and h = 3 layers, a number of sub-components in

the hidden layers ranging from 1 to 5 (while k1 = k∗) and all

possible models with different dimensionality for the latent

variables under the constraint p > r1 > · · · > rh ≥ 1.

Moreover, we considered ten different starting points for

all possible models. For the GMM, we considered all the

possible submodels according to the family based on the

covariance decomposition implemented inmclust. Finally,

we fitted FMA and MFA by using the R package MFMA avail-

able from the first author’s webpage with different starting

points and different number of latent variables ranging from

1 to the maximum admissible number.

In all cases, we selected the best model according to BIC.

For the smaller dataset (Wine, Olive, Ecoli, Vehicle), the

best DGMM suggested by BIC was the model with h = 2

layers, while h = 3 layers were suggested for the Satellite

data. The Wine data are quite simple to classify. Most methods

performed quite well. The best DGMM model was obtained

with r1 = 3, r2 = 2 and k1 = 3, k2 = 1. The Olive data

are not very well distinguished by classical methods such

as k-means and hierarchical clustering, while model-based

clustering strategies produce better performance. Here deep

learning with r1 = 5, r2 = 1 and k1 = 3 k2 = 1 suggested

by BIC gives excellent results with only one misclassified

unit.

The challenging aspect of a cluster analysis on Ecoli data

is the high number of (unbalanced) classes. On these data,

SNmm and STmm did not reach convergence due to their

being unable to handle satisfactorily the presence of two

variables that each took on only two distinct values. The

best clustering method also in this case is given by the deep

mixture with r1 = 2, r2 = 1 and k1 = 8, k2 = 1.

Deep mixtures performed better than the other methods

also for the difficult task to distinguish between silhouettes

of vehicles with progressively dimension reduction of r1 =

7, r2 = 1 and components k1 = 4, k2 = 3.

Finally, for the Satellite data a DGMM with h = 3 layers

and r1 = 13, r2 = 2, r1 = 1 and k1 = 6, k2 = 2, k1 = 1 is

preferred in terms of BIC. Results here are comparable with

MFA with four factors; it is having slightly higher ARI, but

with less corrected classified units in the total.

7 Final remarks

In this work, a deep Gaussian mixture model (DGMM) for

unsupervised classification has been investigated. The model

is a very general framework that encompasses classical mix-

tures, mixtures of mixtures models and mixture of factor

analyzers as particular cases. Since DGMM is a general-

ization of classical model-based clustering strategies, it is

guaranteed to work as well as these methods. We demonstrate

the greater flexibility of DGMM with its higher complexity;

for this reason, it is particularly suitable for data with large

sample size.

We illustrated the model on simulated and real data. From

the experimental study, we conducted the method works effi-

ciently and it gives a good clustering performance with h = 2

and h = 3 layers where, as suggested, model choice can be

undertaken according to information criteria.
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