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Standard GP modelling

Let X € RV*@ and Y € RVXP a set of training input-output matrices,
respectively. We seek to estimate the unobserved latent function f = f(x)
Standard GP responsible for generating Y given X

modelling Vo = f{X”) —|— €y €7 J\."’(O: JSI)’

and f is drawn from a GP f(x) ~ GP(0, k(x,z")), for example
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The GP latent variable model provides an elegant solution by treating X
as latent variables employing a product of D independent GPs as prior

Generative procedure

Ynd = fd(wn) + €nd

where F' = {fd}dD:1 with fnq = fa(xn). Given a finite data set, the GP
process priors take the form

D
P(F|X) = H Nf,0, K,’\.’,’\.’)
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o o
and then obtain the likelihood P(Y1X) = ITazs N (val0, Knn + o21)



Deep Gaussian processes

Deep GP is a graphical model with three kinds of nodes:

The leaf nodes: Y € RV*P (observed)
Deep Gaussian

processes Intermediate latent space: X, € ]RNXQh, h=1...,H—1,
H is the number of hidden layers

Parent latent node: Z = Xy € RV*@= (can be unobserved
and potentially constrained with a prior)
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Two hidden layer hierarchy

Deep Gaussian
processes
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LTng zf.;((z'n) + Er}:—qﬂ q= 13---5 Q Zn € RQZ
where f¥ ~ GP(0,kY (X, X)) and fX ~ GP(0,kX(Z, Z))

Note that each layer adds a significant number of model

parameters X, since the size of each layer has to be a priori
defined



Deep Gaussian
processes

Strategy: They seek to variationally marginalise out the whole
latent space to significantly reduce the number of model
parameters

The first step is to define automatic relevance determination
(ARD) covariance functions for the GPs:
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This function assumes a different weight w, for each latent
dimension, also can be used to “switch off” irrelevant
dimensions by driving their weights to zero



Bayesian training and variational approximation

A Bayesian training requires optimization of

Bayesian
training

log p(Y) = log /X WY |X)p(X|2)p(2)

In this paper, the authors take the general case where
p(Z) = N(Z|0,1I)



Bayesian training and variational approximation

Variational approximation

m They apply Jensen's inequality to find a variational lower bound
Fu < logp(Y)
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m Expand the joint distribution
Y FY FY X, Z) =
p(Y[EY )p(FY [ X)p(X|FY )p(F¥|Z)p(2)

Bayesian
training

m Augment the probability space with K auxiliary inputs X e REx@
and Z € RE*Qz also UY € RE*P and UX € RX*?. Then, the
augmented probability space is:

oY, FY.F¥ X, 2, UY, UY X,Z) =
p(YIFY )p(FYUY, X)p(UY|X)
P(X|FX)p(FX|UX Z)p(UX | X)p(Z) (9)



Bayesian training and variational approximation

m The variational distribution Q is )
Q =p(F”|UY. X)a(U")q(X)
PFX U Z)q(UX)q(Z).

Qz
q(X) = ]'[Mp" 8Y). q(2) = [[ N(uZ.8%)

: where g=1
Bayesian

training m Finally, the lower bound can be written as
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and also as
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Extending the hierarchy
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Variational bound for the most general version
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Experiments: Toy regression problem

m Two layers. The first GP employed a covariance function which was
the sum of a linear and a quadratic exponential kernel

m 10 dimensional samples were generated
m 25 datapoints were randomly selected for the training set and left the
rest for test
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Figure 3: (a) shows the toy data created for the regression
experiment. The top plot shows the (hidden) warping func-
tion and bottom plot shows the final (observed) output. (b)
shows the results obtained over each experiment repetition.
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