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Abstract

Multi-fidelity methods are prominently used

when cheaply-obtained, but possibly biased

and noisy, observations must be effectively

combined with limited or expensive true data

in order to construct reliable models. This

arises in both fundamental machine learning

procedures such as Bayesian optimization, as

well as more practical science and engineering

applications. In this paper we develop a novel

multi-fidelity model which treats layers of a

deep Gaussian process as fidelity levels, and

uses a variational inference scheme to prop-

agate uncertainty across them. This allows

for capturing nonlinear correlations between

fidelities with lower risk of overfitting than ex-

isting methods exploiting compositional struc-

ture, which are conversely burdened by struc-

tural assumptions and constraints. We show

that the proposed approach makes substantial

improvements in quantifying and propagating

uncertainty in multi-fidelity set-ups, which in

turn improves their effectiveness in decision

making pipelines.

1 Introduction

A common issue encountered in active learning proce-

dures such as Bayesian optimization (Shahriari et al.,

2016) and experimental design (Morris, 2004) is the dif-

ficulty or cost to acquire sufficient data. Constructing

a reliable model of the underlying system when only

few observations are available is challenging, making

it common practice to develop simulators from which

data can more easily be obtained. Practical examples

include computational fluid dynamics for vehicular en-

gineering (Koziel & Leifsson, 2013), weather simula-

tors for climate modeling (Majda & Gershgorin, 2010),

and emulators for reinforcement learning (Cutler et al.,

2014).

Multi-fidelity models (Kennedy & O’Hagan, 2000; Pe-

herstorfer et al., 2018) are designed to fuse limited

true observations (high-fidelity) with cheaply-obtained

lower granularity approximations (low-fidelity). How-

ever, naı̈vely combining data from multiple information

sources could result in a model giving predictions which

do not accurately reflect the true underlying system. In

absence of well-defined information regarding the reli-

ability of each fidelity and the relationships between fi-

delities, Bayesian inference captures the principle of Oc-

cam’s razor through explicitly encoding our uncertainty

about these factors (MacKay, 2003). This implicit regu-

larization is pertinent to settings with limited data where

overfitting is otherwise likely to occur.

In the spirit of Bayesian modeling, Gaussian pro-

cesses (GPs; Rasmussen & Williams, 2006) are well

suited to multi-fidelity problems due their ability to en-

code prior beliefs about how fidelities are related, yield-

ing predictions accompanied by uncertainty estimates.

GPs formed the basis of seminal autoregressive models

(henceforth AR1) investigated by Kennedy & O’Hagan

(2000) and Le Gratiet & Garnier (2014), and were shown

to be effective given a linear mapping between fidelities,

i.e. the high-fidelity function ft can be modeled as:

ft(x) = ρtft−1 (x) + δt (x) , (1)

where ρt is a constant scaling the contribution of sam-

ples ft−1 drawn from the GP modeling the data at the

preceding fidelity, and δt(x) models the bias between fi-

delities. However, such models are insufficient when the

relationship between fidelities is nonlinear, i.e. there is

now a space-dependent nonlinear transformation ρt that

relates one fidelity to the next as:

ft(x) = ρt (ft−1 (x) , x) + δt (x) . (2)
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Figure 1: Limitations addressed and resolved jointly by our proposed MF-DGP architecture. Blue and red markers

denote low and high-fidelity observations respectively. Shaded regions indicate the 95% confidence interval.

The additive structure and independence assumption be-

tween the GPs for modeling ρt (ft−1 (x) , x) and δt (x)
permits us to combine these as a single GP that takes

as inputs both x and f∗
t−1(x), where the latter denotes

a sample from the posterior of the GP modeling the pre-

ceding fidelity evaluated at x. This results in a composi-

tion of GPs that can be compactly expressed as ft(x) =
gt
(
f∗
t−1 (x) , x

)
. As highlighted by Perdikaris et al.

(2017) and exemplified in Figure 1, the AR1 model can-

not capture nonlinear correlations between fidelities.

Problem Statement

Deep Gaussian processes (DGPs; Damianou &

Lawrence, 2013) are a natural candidate for handling

nonlinearities between fidelities by way of function

composition, allowing for uncertainty propagation in

a nested structure of GPs where each GP models the

transition from one fidelity to the next. However, DGPs

are cumbersome to develop and approximations are nec-

essary for enabling tractable inference. In spite of being

motivated by the structure of DGPs, the nonlinear multi-

fidelity model (NARGP) proposed by Perdikaris et al.

(2017) amounts to a disjointed architecture whereby

each GP is fitted in an isolated hierarchical manner, thus

preventing GPs at lower fidelities from being updated

once they have already been fit. This deconstruction

into independent models which are optimized sequen-

tially violates our aforementioned preference of using

Occam’s razor as a means of controlling the model’s

complexity, making it more susceptible to overfitting.

Consider the example given in Figure 1. In the tail-end

of the function, there are no high-fidelity observations

available and only low-fidelity points to fall back on. In

this case, we would expect the model to return higher

uncertainty to reflect the lack of data available, but in-

stead, NARGP predicts an incorrect result with high con-

fidence. Closer inspection of the optimal hyperparame-

ters obtained after training the model confirms our intu-

ition regarding overfitting, since kernel parameters settle

at values which are orders of magnitude larger than the

range in which they are expected to lie. This is partic-

ularly problematic when the model is intended for use

in a computational pipeline or active learning procedure,

where uncertainty calibration is imperative.

In this work, we propose the first complete interpretation

of multi-fidelity modeling using DGPs, which we refer to

as MF-DGP. In particular, we construct a multi-fidelity

DGP model which can be trained end-to-end, overcom-

ing the constraints that hinder existing attempts at us-

ing DGP structure for this purpose. Having a DGP model

that communicates uncertainty estimates between all fi-

delities at training time also allows us to properly as-

sess the suitability of DGPs over standard GPs in the

multi-fidelity setting. Returning to the example given

in Figure 1, we see that our model fits the true function

properly while also returning sensibly conservative un-

certainty estimates. Moreover, our model also inherits

the compositional structure of NARGP, thus alleviating a

crucial limitation of the AR1 model. The model’s formu-

lation leverages the sparse DGP approximation proposed

by Salimbeni & Deisenroth (2017) for tractability.

Our principal contributions are listed below:

• We identify potential issues with existing ap-

proaches for compositional multi-fidelity modeling,

emphasising their tendency to overfit;

• We develop a novel multi-fidelity model which en-

ables end-to-end training with well-calibrated un-

certainty quantification. This includes a detailed

analysis of the nuances involved in its construction;

• We provide a thorough experimental evaluation of

our model by way of comparisons with other tech-

niques, application to a large-scale real-world prob-

lem, and showcase the use of MF-DGP for experi-

mental design using a determinantal point process;

• The model implementation has been integrated in

Emukit1, an open-source package for carrying out

emulation and decision making in a design loop.

1https://github.com/amzn/emukit

https://github.com/amzn/emukit


The paper is organized as follows. In the next section,

we review the literature on multi-fidelity modeling with

GPs and clarify how our contributions fit within this land-

scape. Subsequently, in Section 3 we introduce DGPs

and illustrate how these can be interpreted in the multi-

fidelity setting. A detailed description and discussion of

our model, MF-DGP, follows in Section 4, and its perfor-

mance is evaluated in Section 5, where we also compare

our results against a selection of alternatives. An outlook

on extensions and future work concludes the paper.

2 Related Work

Multi-fidelity models came to prominence in the foun-

dational work by Kennedy & O’Hagan (2000), where a

GP having a kernel suited for multi-fidelity observations

was used to model linear correlations between data at T
ordered fidelity levels. However, the flexibility of this

approach was burdened by the cubic computational com-

plexity associated with GP inference. This led Le Gratiet

& Garnier (2014) to propose a recursive multi-fidelity

model whereby the observations for each fidelity are

modeled using independent GPs. Aside from reducing

the computational complexity from O((
∑T

t=1 Nt)
3) to

O(
∑T

t=1 N
3
t ), where Nt denotes the number of observa-

tions with fidelity level t, the posterior obtained from this

model was also shown to be identical to that of the orig-

inal model under the assumptions of noiseless observa-

tions and nested inputs, i.e. points observed with fidelity

level t are also observed at all lower fidelities.

The similarity between nested GP models for multi-

fidelity and traditional deep GPs was first noted

by Perdikaris et al. (2017) in their formulation of the

NARGP model, where the parallels to DGP inference are

derived from propagating uncertain outputs from one GP

to the next. Nonetheless, the design and implementa-

tion of our MF-DGP model is markedly different, and this

has notable implications on both the model architecture

as well as its predictive performance. Whereas NARGP

amounts to a set of disjointed GPs trained sequentially in

isolation, here we present a single DGP for jointly mod-

eling data from all fidelities; NARGP disregards the nu-

ances of such models in its formulation.

Conversely, the ‘deep multi-fidelity GP’ model (DEEP-

MF) presented by Raissi & Karniadakis (2016) extends

the original multi-fidelity model by learning a deter-

ministic transformation applied to the inputs (using a

deep neural network). However, the resulting model

bears more resemblance to a manifold GP (Calandra

et al., 2016), which amounts to standard GP inference

on warped inputs and does not involve actual process

composition. The autoregressive nature of DGPs is also

briefly mentioned in Requeima et al. (2019).

Several other extensions to traditional multi-fidelity ap-

proaches have been developed, singularly addressing is-

sues such as scalability (Zaytsev & Burnaev, 2017),

mismatched training and target distributions (Liu et al.,

2018), incorporating gradient information (Ulaganathan

et al., 2016), and non-hierarchical ordering of fideli-

ties (Lam et al., 2015; Poloczek et al., 2017). Tangen-

tially, multi-fidelity methods tailored to Bayesian opti-

mization and bandit algorithms have also recently been

investigated by Sen et al. (2018) and Kandasamy et al.

(2016) among others.

3 Deep Gaussian Processes

Consider a supervised learning problem in which we are

interested in learning the mapping between a set of N
input vectors X = [x1, . . . ,xN ]⊤, where xi ∈ R

Din ,

and corresponding univariate labels y = [y1, . . . , yN ]⊤,

with yi ∈ R. Gaussian processes (GPs; Rasmussen &

Williams, 2006) rely on Bayesian inference for learning

a mapping such that the distribution over any finite sub-

set of input points is a multivariate Gaussian. More for-

mally, observations are assumed to be noisy realisations

of function values f = [f1, . . . , fN ]⊤ drawn from a GP

with some likelihood p(y|f). The key characteristics of

the functions that can be drawn from the GP are deter-

mined by a set of covariance parameters defining the GP

prior. A popular choice of covariance is the exponenti-

ated quadratic (or RBF) function:

k(xi,xj |θ) = σ2 exp

[
−1

2
(xi − xj)

⊤Λ−1(xi − xj)

]
,

(3)

where the parameter set θ comprises the marginal vari-

ance of the GP, σ2, and Λ = diag(l21, . . . , l
2
Din

), with

each ld interpreted as a lengthscale parameter. The pos-

terior distribution of a GP denotes a Gaussian distribu-

tion over candidate functions characterized by a posterior

mean and covariance.

Inspired by the widespread success of deep learning in

neural network architectures, deep Gaussian processes

(DGPs; Damianou & Lawrence, 2013) are constructed by

nesting GP models such that the output of one GP is prop-

agated as input to the next. Their application to the multi-

fidelity setting is particularly appealing because if we as-

sume that each layer corresponds to a fidelity level, then

the latent functions at the intermediate layers are given a

meaningful interpretation which is not always available

in standard DGP models.

However, in spite of their theoretic appeal, inference us-

ing DGP models is notoriously difficult since the inte-
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Figure 2: Left: MF-DGP architecture with three fidelity levels. Observed data and latent variables are color-coded

in order to indicate the associated fidelity level. The latent variables at each layer denote samples drawn from a GP.

For example, the evaluation of MF-DGP at layer ‘1’ for the inputs observed with fidelity ‘3’ is denoted as f31 . Right:

Predictions using the same MF-DGP model, whereby the original input x⋆ is input at every fidelity level along with the

evaluation up to the previous level. The output y⋆t denotes the model’s prediction for fidelity t.

grals involved in computing the marginal likelihood and

making predictions are generally intractable (Damianou,

2015). The first attempt at using DGP structure in a multi-

fidelity setting (Perdikaris et al., 2017) relied on struc-

tural assumptions on the data to circumvent these diffi-

culties. However, the model’s capacity and flexibility are

heavily impaired by such simplifications.

Recent advances in the DGP literature (Cutajar et al.,

2017; Salimbeni & Deisenroth, 2017) have leveraged tra-

ditional GP approximations to construct scalable DGP

models which are easier to specify and train. While

both of the aforementioned DGP approximations can be

adapted for multi-fidelity data, we peruse the model pre-

sented by Salimbeni & Deisenroth (2017) to avoid the

constraints imposed on selecting kernel functions in Cu-

tajar et al. (2017).

4 Multi-fidelity DGP (MF-DGP)

Extending the concepts introduced in the previous sec-

tion, we now describe the architecture of our proposed

MF-DGP model along with the nuances of its design. In

the spirit of continuity, we intentionally mirror the nota-

tion of Salimbeni & Deisenroth (2017) to preserve focus

on the components enabling multi-fidelity modeling.

4.1 Model Specification

Let us assume a dataset D having observations at T fi-

delities, where Xt and yt denote the inputs and corre-

sponding outputs observed with fidelity level t:

D =
{(

X1, y1
)
, . . . ,

(
Xt, yt

)
, . . . ,

(
XT , yT

)}
.

Intuitively, and for enhanced interpretability, we assume

that each layer of our MF-DGP model corresponds to the

process modeling the observations available at fidelity

level t, and that the bias or deviation from the true func-

tion decreases from one level to the next. We use the

notation f tl to denote the evaluation at layer l for inputs

observed with fidelity t; for example, the evaluation of

the process at layer ‘1’ for the inputs observed with fi-

delity ‘3’ is denoted as f31 . A conceptual illustration of

the proposed MF-DGP architecture is given in Figure 2

(left) for a dataset with three fidelities. Note that the GP

at each layer is conditioned on the data belonging to that

level, as well as the evaluation of that same input data

at the preceding fidelity. This gives an alternate perspec-

tive to the notion of feeding forward the original inputs

at each layer, as originally suggested in Duvenaud et al.

(2014) for avoiding pathologies in deep architectures.

Layer-wise Sparse Approximation

At each layer we rely on the sparse variational approxi-

mation of a GP for inference, whereby a set of inducing

points u is introduced such that the augmented joint pos-

terior p (f ,u) yields a true bound on the marginal likeli-

hood of the exact GP. This is achieved by introducing:

q
(
f tl |ul

)
= p

(
f tl |ul; {f tl−1,Xt},Zl−1

)
q (ul) , (4)

where Zl−1 denotes the inducing inputs for layer l, ul

their corresponding function evaluation, and q (ul) =
N (ul|µµµl,ΣΣΣl) is the variational approximation of the in-

ducing points. The mean and variance defining this vari-

ational approximation, i.e. µµµl and ΣΣΣl, are optimized dur-

ing training. Furthermore, if ul is marginalized out from

Equation 4, the resulting variational posterior is once

again Gaussian and fully defined by its mean, m̃l, and

variance, S̃l:



q
(
f tl |µµµl,ΣΣΣl; {f tl−1,Xt},Zl−1

)
= N

(
f tl | m̃t

l , S̃
t
l

)
,

(5)

which can be derived analytically.

The marginalization property which is key to simplify-

ing inference is also preserved in the multi-fidelity set-

ting. In particular, this entails that within each layer the

marginals depend exclusively on the corresponding in-

puts, yielding the following posterior for the ith input ob-

served with highest fidelity:

q
(
f i,T
L

)
=

∫ L∏

l=1

[
q
(
f i,T
l |µµµl,ΣΣΣl;

{
f i,T
l−1, xi,T

}
,Zl−1

)]

df i,T
1 . . . df i,T

L−1. (6)

Note that at all layers, ul will have dimensionality Ml ×
Dout, where Ml is the number of inducing points at layer

l and Dout is the output dimensionality of the observa-

tions. On the other hand, Zl−1 will have dimensionality

Ml ×Din at the first layer, but Ml × (Din +Dout) at all

subsequent ones. This happens because the intermediate

layers’ inputs contain both the location of the data point

in the original input space as well as its evaluation up to

the previous layer/fidelity. The likelihood noise at lower

fidelity levels is encoded as additive noise in the kernel

function of the GP at that layer.

Evidence Lower Bound

We can formulate the variational lower bound on the

marginal likelihood as follows:

LMF-DGP =

T∑

t=1

Nt∑

i=1

Eq(fi,t
t )

[
log p

(
yi,t|f i,t

t

)]

+

L∑

l=1

DKL [q (ul) || p (ul;Zl−1)] , (7)

where we assume that the likelihood is factorized across

fidelities and observations (allowing us to express the log

likelihood as a double summation), and DKL denotes the

Kullback-Leibler divergence. This lower bound is the

multi-fidelity objective function for our model, and a full

derivation can be found in the supplementary material.

4.2 Multi-fidelity Predictions

Model predictions with different fidelities are also ob-

tained recursively by propagating the input through the

model up to the chosen fidelity. At all intermediate lay-

ers, the output from the preceding layer ‘t-1’ (also cor-

responding to the prediction with fidelity ‘t-1’) is aug-

mented with the original input, as will be made evident

by the choice of kernel explained in the next section. The

output of a test point x⋆ can then be predicted with fi-

delity level t as follows:

q (f⋆
t ) ≈

1

S

S∑

s=1

q
(
fs,⋆
t |µµµt,ΣΣΣt; {fs,⋆

t−1, x⋆},Zt−1

)
, (8)

where S denotes the number of Monte Carlo samples and

t replaces l as the layer indicator (assuming one layer per

fidelity). This procedure is illustrated in Figure 2 (right).

4.3 Multi-fidelity Covariance

The multi-fidelity kernel function for every GP at

an intermediate layer is inspired by that proposed in

Perdikaris et al. (2017), since it captures both the poten-

tially nonlinear mapping between outputs as well as the

correlation in the original input space:

kl = kρl
(
xi, xj ;θθθρl

)
kf−1
l

(
f∗
l−1(x

i), f∗
l−1(x

j);θθθf−1
l

)

+ kδl
(
xi, xj ;θθθδl

)
, (9)

where kf−1
l denotes the covariance between outputs ob-

tained from the preceding fidelity level, kρl is a space-

dependent scaling factor, and kδl captures the bias at that

fidelity level. At the first layer this reduces to:

k1 = kδ1
(
xi, xj ;θθθδ1

)
. (10)

Perdikaris et al. (2017) assumed that each individual

component of the composite kernel function is an RBF

kernel as defined in Equation 3; however, this may not

be appropriate when the mapping between fidelities is

linear. To this end, we propose to enhance the covari-

ance function given in Equation 9 with a linear kernel

such that the composite intermediate layer covariance be-

comes:

kl = kρl
(
xi, xj ;θθθρl

) [
σ2
l f

∗
l−1(x

i)⊤f∗
l−1(x

j)

+ kf−1
l

(
f∗
l−1(x

i), f∗
l−1(x

j);θθθf−1
l

)]

+ kδl
(
xi, xj ;θθθδl

)
. (11)

A similar discussion on designing more tailored kernels

for autoregressive problems was recently also put for-

ward by Liu et al. (2018) and Requeima et al. (2019).

4.4 Treatment of Inducing Inputs

One of the less straightforward aspects of this model con-

cerns the selection and optimization of inducing inputs at



layers 2 to L. Recall that the first layer only takes input

points lying in the standard input space of the function;

in this case, the role of inducing inputs is straightforward

as in other sparse GP approximations. However, the tran-

sition to higher layers is not as clear.

At these layers, the input to the intermediate GP is the

combination of points in the original input space as well

as the corresponding function evaluation returned from

the previous layer. However, freely optimizing inducing

points at these layers is no longer appropriate since the

output from the previous layer is intrinsically linked to

the input point with which it is associated. We currently

circumvent this issue by selecting the inducing points

from the available observations at the previous fidelity

layer and fix them during optimization. Devising more

principled approaches for constraining the optimization

of inducing points is a challenging direction for future

work.

4.5 Stochastic Variational Inference

The use of stochastic variational inference (SVI) tech-

niques (Hoffman et al., 2013; Hensman et al., 2013)

for optimizing kernel parameters and inducing inputs re-

quires careful design for ensuring the model consistently

converges to an optimal solution. Following similar ap-

proaches adopted in models relying on SVI, we devise a

two-step optimization procedure for training the model.

Initially, we fix the variance of the variational parameters

to low values in order to enforce stability in the optimiza-

tion procedure during the early iterations. We also fix

the noise variance at all layers for the same purpose. The

former mitigates the risk of remaining stuck at the vari-

ational prior, while the latter trick is helpful for prevent-

ing the noise variance from becoming excessively large.

After a pre-established number of steps, the aforemen-

tioned parameters are then freed and trained jointly with

the rest. Further details on the set-up used for the exper-

imental evaluation are given in Section 5.

Adapting the training procedure for MF-DGP to work

with mini-batches is straightforward as it simply involves

rescaling the model fit component appearing in Equa-

tion 7. The only caveat is in finding an adequate bal-

ance between observations having different fidelities in

the composition of each mini-batch. Assuming limited

high-fidelity observations, one can include these at every

training step while sub-sampling the data observed with

lower fidelity.

4.6 Complexity

If we assume that the only observations available belong

to the highest fidelity level, the computational complex-

ity of the model is O
(
SNM2 (Dout,1 + · · ·+Dout,L)

)
,

which reduces to O
(
SNM2L

)
in the case of hav-

ing a single output dimension. However, since we ex-

pect the majority of observations to be at lower-fidelity

layers, training MF-DGP will be faster than a regular

DGP. Our implementation of MF-DGP builds upon the

GPflow (Matthews et al., 2017) code provided for the

model presented by Salimbeni & Deisenroth (2017), ex-

ploiting automatic differentiation for optimization.

4.7 Comparison to NARGP and DEEP-MF

Reframing the discussion in Section 2 in view of the pre-

sented contributions, MF-DGP primarily distinguishes it-

self from NARGP in how intermediate GPs are linked. As-

suming nested input structures and no observation noise

at lower fidelities, Perdikaris et al. (2017) show that the

optimized posterior over the model parameters at level

t is optimal even if the GPs are trained sequentially in

isolation (this is in sharp contrast to the visualization of

our model given in Figure 2, where fidelity levels are no

longer disjointed). While such constraints enable simpler

and faster training, they are overly restrictive in practice

since such guarantees are difficult to enforce when sourc-

ing multi-fidelity data. Our model lifts these constraints

by introducing a singular objective (Equation 7) with re-

spect to which the inducing points and kernel parameters

at all layers are jointly optimized. This poses alternative

modeling challenges which we address by leveraging ad-

vances in the specification of DGPs. While signposted as

a useful extension in earlier work, practical use of SVI

for multi-fidelity modeling is also novel to this paper.

The DEEP-MF model (Raissi & Karniadakis, 2016) bears

less resemblance to our model. Its name is derived from

a deep deterministic transformation that is applied to the

inputs, but the multi-fidelity component of the model is

identical to AR1. Incorporating similar input transforma-

tions in our model would be straightforward, but we do

not explore this option further here.

5 Experiments

In the preceding sections, we developed a multi-fidelity

model that can be trained end-to-end across fidelities.

Through a series of experiments, we validate that beyond

its theoretic appeal, the proposed MF-DGP model also

works well in practice. We begin with a visual illustra-

tion of the superior uncertainty quantification returned by

the model, and corroborate these findings by comparing

it against competing techniques on a suite of established

multi-fidelity problems with varying fidelity levels. This

is followed by an experiment involving a large-scale real-

world dataset for which nearly a million observations are



LINEAR-A LINEAR-B

x

f
(x

)

x

f
(x

)

NONLINEAR-A NONLINEAR-B

x

f
(x

)

x

f
(x

)
high-fidelity low-fidelity

Figure 3: Synthetic examples. Top: Linear mapping be-

tween fidelities. Bottom: Nonlinear mapping.

available. An experimental design set-up showcasing the

benefits of using MF-DGP in conjunction with determi-

nantal point processes concludes this section.

5.1 Synthetic Examples

One of the primary motivations for undertaking this

work was to develop a fully-fledged multi-fidelity model

which avoids the overfitting issues encountered in exist-

ing models. We commence this section by considering

experimental set-ups where the available data is gener-

ally insufficient to yield confident predictions, and higher

uncertainty is prized. In particular, we consider four syn-

thetic examples (plotted in Figure 3) - two where the cor-

relation between fidelities is linear, and two where this is

nonlinear.2 We train MF-DGP using the two-step proce-

dure described in Section 4.5, whereby the noise variance

and variational parameters are fixed for the first 5,000

training steps, before being trained jointly with the rest

for another 15,000 steps. For increased stability, the vari-

ational distributions at lower fidelities are initially fixed

to the known training targets; these are then freed and op-

timization is continued. The Adam optimizer (Kingma

& Ba, 2015) is used with learning rate set to 0.003 and

0.001 for the first and second training phases respec-

tively. Training generally converges in fewer iterations,

but we keep this configuration for conformity.

In Figure 4, we compare our model to AR1, NARGP, and

DEEP-MF on multi-fidelity scenarios where the alloca-

tion of high-fidelity data is either limited or constrained

to one area of the input domain. In all examples, our

model yields appropriately conservative estimates in re-

gions where insufficient observations are available. The

improved uncertainty quantification can be validated vi-

sually for these one-dimensional examples, but this is

also corroborated by the superior mean negative log like-

lihood (MNLL) reported for MF-DGP on the test data.

2Illustrations are given in the supplement.

5.2 Benchmark Comparison

Beyond the synthetically-constructed examples consid-

ered thus far, we verify the suitability of using MF-DGP

over existing methods by benchmarking their perfor-

mance on a selection of well-known multi-fidelity prob-

lems (full specification in the supplementary material).

Five randomly-generated datasets are prepared for each

example function, following the allocation of points to

different fidelities listed in Table 1. The results denote

the R-squared (R2), root mean squared error (RMSE),

and MNLL obtained using each model over a fixed test

set of 1,000 points covering the entire input domain. The

obtained results give credence to our intuition that MF-

DGP balances issues in alternative modeling approaches,

which are singularly tailored for linear and nonlinear fi-

delity correlations respectively. Notably, for the 3-level

Branin function having nonlinear correlations between

fidelities, the AR1 model is incapable of properly model-

ing the high-fidelity data, whereas MF-DGP significantly

outperforms NARGP on all metrics.

5.3 Large-scale Real-world Experiment

We now proceed to demonstrate the effectiveness of MF-

DGP on a real-world dataset which also shows how mini-

batch-based training with SVI is essential for modeling

large datasets beyond the scale to which multi-fidelity

methods are usually applied. In particular, we fit MF-

DGP to data describing the infection rate of Plasmodium

falciparum (a known cause of malaria) among children in

Africa3, illustrated in Figure 5 (left). For our evaluation,

we treat data from 2005 as being low-fidelity and more

recent data from 2015 as high-fidelity; this permits us to

exploit ample historical data to build an accurate model

of the current infection rate for which fewer observations

are given. As the targets lie on the interval [0, 1], we

transform these using a logit function before fitting the

model.

We train the model with 800,000 low-fidelity data-points

and 1,000 high-fidelity observations, where each mini-

batch consists of 1,000 low-fidelity and all 1,000 high-

fidelity points. Optimization is carried out using Adam

for 30,000 iterations, while 1,000 inducing points are

used at each layer. Upon training, the model was eval-

uated on a test set comprising of 10,000 high-fidelity

points. The results obtained by MF-DGP on this data are

visualized in Figure 5 (center), with an RMSE of 0.063.

In contrast, an exact GP trained only on high-fidelity ob-

servations scores an inferior RMSE of 0.096.

3Extracted from maps provided by The Malaria Atlas
Project, https://map.ox.ac.uk.

https://map.ox.ac.uk
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Figure 4: Cross-comparison across methods and synthetic examples for challenging multi-fidelity scenarios. MF-DGP

yields conservative uncertainty estimates where few high-fidelity observations are available.

Table 1: Model Comparison on Multi-fidelity Benchmark Examples.

FIDELITY AR1 NARGP MF-DGP

BENCHMARK Din ALLOCATION R
2

RMSE MNLL R
2

RMSE MNLL R
2

RMSE MNLL

CURRIN 2 12-5 0.913 0.677 20.105 0.903 0.740 20.817 0.935 0.601 0.763

PARK 4 30-5 0.985 0.575 465.377 0.954 0.928 743.119 0.985 0.565 1.383

BOREHOLE 8 60-5 1.000 0.005 -3.946 0.973 0.063 -1.054 0.999 0.015 -2.031

BRANIN 2 80-30-10 0.891 0.044 -1.740 0.929 0.053 -1.223 0.965 0.030 -2.572

HARTMANN-3D 3 80-40-20 0.998 0.043 0.440 0.305 0.755 0.637 0.994 0.075 -0.731

5.4 Experimental Design with MF-DGP

Lastly, we demonstrate how the posterior distribution as-

sociated with our MF-DGP model can be used for the

purpose of experimental design. In particular, we val-

idate how this can be exploited in order to make deci-

sions on where to obtain new observations of infection

rates such that the overall quality of predictions returned

by the model is improved. We are generally interested

in observing these new points with high-fidelity at loca-

tions where either uncertainty is large (leading to a more

diverse set of locations) or where we expect there to be

a substantial infection rate (denoted by lighter shading

on the map). This balances the exploration-exploitation

trade-off that is commonly targeted by such schemes.

A determinantal point process (DPP; Macchi, 1975)

is well-suited for addressing the aforementioned cri-

teria; the kernel function of a DPP is chosen to be

µ(x)k(x,x′)µ(x′), where k(·, ·) and µ(·) denote the

posterior covariance and mean functions of the MF-DGP

model. The covariance term encourages points to be se-

lected at a set of diverse locations where the model un-

certainty is high, whereas the mean term gives greater

weight to input locations where the infection rate is ex-

pected to be high. In order to sample from the DPP, we

first evaluate the mean and covariance of the trained MF-

DGP at a randomly-selected set of 2,500 input locations.

By setting the cardinality k = 50, a k-DPP (Kulesza

& Taskar, 2011) is then used to sample 50 high-fidelity

points from this subset, which are then interpreted as

the locations at which true infection rates should be ac-

quired. Extending the experiment presented in the pre-

vious section, the sampled points are illustrated by white

markers in Figure 5 (right). Recalling the criteria high-

lighted at the beginning of this section, the plot clearly

indicates that the points selected by this procedure are



TRUE HIGH-FIDELITY PREDICTED HIGH-FIDELITY DPP SAMPLES

Figure 5: Real-world experiment indicating the infection rate of Plasmodium falciparum among African children.

Lighter-shaded regions denote higher infection rates in that area of the continent. Left: True infection rates recorded

for the year 2015. Center: MF-DGP predictions given low-fidelity data from 2005 and limited high-fidelity training

points (marked in red) from 2015. Right: White squares show the samples drawn from a DPP using the posterior

covariance of the MF-DGP model as its kernel.

adequately dispersed across the map, with increased con-

centration in areas where infection rates are predicted to

be high. This validates the suitability of our multi-fidelity

model in a pipelined decision-making scheme.

6 Conclusion

Reliable decision making under uncertainty is a core re-

quirement in multi-fidelity scenarios where unbiased ob-

servations are scarce or difficult to obtain. In this paper,

we proposed the first complete specification of a multi-

fidelity model as a DGP that is capable of capturing non-

linear relationships between fidelities with reduced over-

fitting. By providing end-to-end training across all fi-

delity levels, MF-DGP consistently yields superior quan-

tification and propagation of uncertainty that is crucial

in active learning and iterative methods such as experi-

mental design. The application of state-of-the-art DGPs

to an unconventional setting is also essential for broad-

ening their appeal to a wider community of researchers

and practitioners alike.

Effectively optimizing the inducing variables at each

layer while remaining faithful to the implicit multi-

fidelity constraints is a challenging problem which war-

rants further investigation, and is key to extending the

learning capacity of MF-DGP. On another note, in con-

trast to the standard AR1 model, the compositional struc-

ture of MF-DGP hinders the specification of analytic ex-

pressions for the acquisition functions prevalent in proce-

dures such as Bayesian optimization or quadrature. Be-

yond the multi-fidelity setting explored here, the latter

requirement accentuates ongoing effort to develop active

learning schemes that are better-suited for deep models.
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A Further Model Details

For completeness, in the following appendix we extend the model description given in Section 4 of the main paper. In

particular, we detail the variational approximation for the model and derive the evidence lower bound that serves the

role of our model’s multi-fidelity objective function with respect to which parameters are optimized. As in the main

text, we intentionally remain faithful to the general notation and structure of Salimbeni & Deisenroth (2017) in order

to place emphasis on the multi-fidelity extension being proposed in this work as opposed to the DGP approximation

upon which it is based.

A.1 Approximating the Marginal Likelihood of MF-DGP

Assume that each layer, l, of our MF-DGP model corresponds to a realisation of the process modeled with fidelity t.
For a dataset with T fidelities, the marginal likelihood of our MF-DGP model is then given by:

LMF-DGP = Eq({{f tl }t
l=1

}T
t=1

,{ul}L
l=1)

[
log

(
p
(
{yt, {f tl }tl=1}Tt=1, {ul}Ll=1

)

q
(
{{f tl }tl=1}Tt=1, {ul}Ll=1

)
)]

. (12)

We have that:

p
(
{yt, {f tl }tl=1}Tt=1, {ul}Ll=1

)
=

T∏

t=1

Nt∏

i=1

p
(
yi,t|f i,t

t

) t∏

l=1

p
(
f tl |ul; {f tl−1,Xt},Zl−1

)
×

L∏

l=1

p (ul;Zl−1) , (13)

where Nt denotes the number of data points observed with fidelity level t. Similarly the denominator in the expectation

can be expanded as:

q
(
{{f tl }tl=1}Tt=1, {ul}Ll=1

)
=

T∏

t=1

t∏

l=1

p
(
f tl |ul; {f tl−1,Xt},Zl−1

)
×

L∏

l=1

q (ul) . (14)

By inserting Equations (13) and (14) in (12), and canceling out equivalent terms in the numerator and denominator,

we obtain the following variational lower bound on the marginal likelihood of our multi-fidelity model:



LMF-DGP =

∫∫
q
(
{{f tl }tl=1}Tt=1, {ul}Ll=1

)
log



∏T

t=1

∏Nt

i=1 p
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yi,t|f i,t

t

)
×∏L

l=1 p (ul;Zl−1)
∏L

l=1 q (ul)
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=

∫∫
q
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log
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t
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+
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log
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log
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p
(
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log
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d{ul}Ll=1
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∫
q
(
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log

(
Nt∏
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(
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t
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+
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l=1

DKL [q (ul) || p (ul;Zl−1)]
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Eq(fi,t
t )

[
log p

(
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t
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+
L∑
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DKL [q (ul) || p (ul;Zl−1)] . (15)

If both the true distribution and the variational approximation are assumed to be Gaussian, the DKL term can conve-

niently be evaluated analytically.

A.2 Reparameterization Trick

As with other DGP models (Dai et al., 2016; Cutajar et al., 2017) trained using stochastic variational inference (see

Section 4.5), the reparameterization trick (Kingma & Welling, 2014) is then used to recursively draw samples from

the variational posterior:

f̂ i,t
l = m̃l

({
f̂ i,t
l−1, xi,t

})
+

εi,tl ⊙
√
S̃l

({
f̂ i,t
l−1, xi,t

}
,
{
f̂ i,t
l−1, xi,t

})
, (16)

where εi,tl ∼ N (0, IDout
).

B Additional Detail on Experiments

This appendix contains further information on the experimental evaluation provided in Section 5 of the main paper

which was excluded due to space constraints.



Table 2: Detail of synthetically-constructed functions used in experimental evaluation.

EXAMPLE FIDELITY FUNCTION

LINEAR-A LOW yl (x) =
1
2yh (x) + 10

(
x− 1

2

)
+ 5

HIGH yh (x) = (6x− 2)
2
sin (12x− 4)

LINEAR-B LOW yl (x) = 2yh (x) +
(
x3 − 1

2

)
sin
(
3x− 1

2

)
+ 4 cos (2x)

HIGH yh(x) = 5x2 sin(12x)

NONLINEAR-A LOW yl (x) = sin (8πx)

HIGH yh (x) =
(
x−

√
2
)
(yl (x))

2

NONLINEAR-B LOW yl (x) = cos (15x)

HIGH yh (x) = xeyl(2x−.2) − 1

B.1 Mapping Between Fidelities for Synthetic Examples

In the first experiment presented in Section 5, we evaluated the performance of our model on four example functions,

two having a linear mapping between fidelities and another two with nonlinear mappings; their precise definition is

given in Table 2. The relationships between fidelities for these example functions are illustrated in Figure 6, where the

bottom row shows the mapping from low-fidelity observations to their high-fidelity counterparts. It is difficult to infer

much useful information about the problem from simply observing these plots; however, the additional complexity of

the two nonlinear examples is indicative of where the standard AR1 model can be expected to perform badly.
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(b) Nonlinear mapping.

Figure 6: Top: Synthetic multi-fidelity functions used for model comparison. Bottom: Mapping between low and

high-fidelity observations for same functions.

In our evaluation, we observed that all methods worked best when the output values for all fidelities were scaled down,

particularly for ensuring convergence in the optimization procedure. To this end, in the experiments we scale down the

original functions by a constant scaling factor while still preserving the relationship between fidelities in their original

formulation.

B.2 Specification of Benchmark Problems

In Section 5.2 of the main paper, we evaluated the performance of our model on a set of five benchmark problems that

are widely used in the literature for evaluating the effectiveness of multi-fidelity methods. The specification of each



problem is given below:

• CURRIN

The CURRIN function is a two-dimensional problem that is commonly featured in works related to simulating

computer experiments, with input domain x ∈ [0, 1]
2
. The high-fidelity variation of this function is given by:

yh (x) =

[
1− exp

(
− 1

2x2

)]
2300x3

1 + 1900x2
1 + 2092x1 + 60

100x3
1 + 500x2

1 + 4x1 + 20
,

whereas the low-fidelity alternative is given by:

yl (x) =
1

4
[yh (x1 + 0.05, x2 + 0.05) + yh (x1 + 0.05,max (0, x2 − 0.05))]+

1

4
[yh (x1 − 0.05, x2 + 0.05) + yh (x1 − 0.05,max (0, x2 − 0.05))] ;

• PARK

The PARK function is a four-dimensional problem where all inputs lie in the range [0, 1]. High-fidelity observa-

tions are evaluated as:

yh (x) =
x1

2

[√
1 + (x2 + x2

3)
x4

x2
1

− 1

]
+ (x1 + 3x4) exp [1 + sin (x3)] ,

while low-fidelity observations are obtained using:

yl (x) =

[
1 +

sin (x1)

10

]
yh (x)− 2x1 + x2

2 + x2
3 + 0.5;

• BOREHOLE

The BOREHOLE example is a two-level physical model that simulates water flow through a borehole, and depends

on eight input parameters. The input domain is constrained to lie in the following regions: x1 ∈ [0.05, 0.15], x2 ∈
[100, 50000], x3 ∈ [63070, 115600], x4 ∈ [990, 1110], x5 ∈ [63.1, 115], x6 ∈ [700, 820], x7 ∈ [1120, 1680],
x8 ∈ [9855, 12045]. The high-fidelity simulation for this model is given by:

yh (x) =
2πx3 (x4 − x6)

log (x2/x1)
(
1 + 2x7x3

log(x2/x1)x2

1
x8

)
+ x3

x5

,

while the low-fidelity variant is evaluated as:

yl (x) =
5x3 (x4 − x6)

log (x2/x1)
(
1.5 + 2x7x3

log(x2/x1)x2

1
x8

)
+ x3

x5

;

• BRANIN

The three-level BRANIN function is taken from the specification given in Perdikaris et al. (2017), where the

two-dimensional input lies in the range [−5, 10]× [0, 15]. The three tiers are given by:



yh (x) =

(−1.275x2
1

π2
+

5x1

π
+ x2 − 6

)2

+

(
10− 5

4π

)
cos (x1) + 10,

ym (x) = 10
√
yh (x− 2) + 2 (x1 − 0.5)− 3 (3x2 − 1)− 1, and

yl (x) = ym (1.2 (x+ 2))− 3x2 + 1;

• HARTMANN-3D

Finally, the three-level HARTMANN-3D example follows the specification provided in Kandasamy et al. (2016),

whereby the three-dimensional input lies in the domain [0, 1]
3
. The evaluation of observations with fidelity t is

given by:

yt (x) =
4∑

i=1

αi exp


−

3∑

j=1

Aij (xj − Pij)
2


 ,

where

A =




3 10 30
0.1 10 35
3 10 30
0.1 10 35


 and P =




0.3689 0.1170 0.2673
0.4699 0.4387 0.7470
0.1091 0.8732 0.5547
0.0381 0.5743 0.8828


 .

The vector ααα is initially set to [1.0, 1.2, 3.0, 3.2]
⊤

and is updated to αααt = ααα+ (3− t)δδδ for lower fidelities, where

δδδ = [0.01,−0.01,−0.1, 0.1]
⊤

.

B.3 Configuration of Competing Models

In this final section, we elaborate on the configuration and optimization strategies used for the competing techniques

in Section 5 of the paper.

• AR1 (Kennedy & O’Hagan, 2000)

The AR1 model is implemented as per the original specification presented by Kennedy & O’Hagan (2000). We

opt for this formulation instead of the procedure detailed in Le Gratiet & Garnier (2014) since the latter is more

cumbersome to adapt to non-nested input structures, whereas this constraint does not apply to the former. We

assign independent noise parameters to each fidelity, which are jointly optimized with the kernel hyperparameters

and scaling factors in a single call to the optimization procedure.

• NARGP (Perdikaris et al., 2017)

For the NARGP model, we adopt the same optimization strategy considered by Perdikaris et al. (2017) in their

evaluation. In particular, individual GPs are used for modeling the data at each fidelity level, and these are

optimized sequentially in isolation. We optimize the kernel parameters for the GPs at each layer using a two-step

procedure which was applied in the original implementation provided by the authors - the optimization is first

carried out with fixed noise variance, after which this parameter is also freed and all parameters are adapted

jointly.

• DEEP-MF (Raissi & Karniadakis, 2016)

One of the challenges associated with the DEEP-MF model is in selecting an appropriate deterministic nonlinear

transformation to be applied to the input data. Given that there is no straightforward approach for deciding how

to configure this component of the model, in our evaluation we use the two-layer neural network with sigmoid

activation functions reported in the original presentation of the model given by Raissi & Karniadakis (2016). The

process noise is shared between fidelities. No pre-existing code was found for this model.
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