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Abstract

In this study, we address the challenge of obtaining a Green’s function operator
for linear partial differential equations (PDEs). The Green’s function is well-
sought after due to its ability to directly map inputs to solutions, bypassing the
need for common numerical methods such as finite difference and finite elements
methods. However, obtaining an explicit form of the Green’s function kernel
for most PDEs has been a challenge due to the Dirac delta function singularity
present. To address this issue, we propose the Deep Generalized Green’s Function
(DGGF) as an alternative, which can be solved for in an efficient and accurate
manner using neural network models. The DGGF provides a more efficient and
precise approach to solving linear PDEs while inheriting the reusability of the
Green’s function, and possessing additional desirable properties such as mesh-free
operation and a small memory footprint. The DGGF is compared against a variety
of state-of-the-art (SOTA) PDE solvers, including direct methods, namely physics-
informed neural networks (PINNs), Green’s function approaches such as networks
for Gaussian approximation of the Dirac delta functions (GADD), and numerical
Green’s functions (NGFs). The performance of all methods is compared on four
representative PDE categories, each with different combinations of dimensionality
and domain shape. The results confirm the advantages of DGGFs, and benefits
of Generalized Greens Functions as an novel alternative approach to solve PDEs
without suffering from singularities.

1 Introduction

Efficiently solving partial differential equations (PDEs) poses a significant challenge in the realm of
scientific computing. These equations are ubiquitous, appearing in a multitude of disciplines ranging
from physics and engineering to social science. However, the majority of PDEs cannot be explicitly
solved, necessitating the deployment of numerical methods such as the finite difference method
(FDM) or the finite element method (FEM). These methods operate by discretizing space and / or
time, thus generating solutions on pre-established grids. The accuracy of these numerical solutions is
contingent upon the preciseness of the discretization. Enhancing the grid density to achieve superior
accuracy often implies a substantial escalation in computational resources, including memory, CPU
time, and effort.
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Figure 1: Schematic showing two types of PDE solvers: Direct Methods solve each PDE problem
individually, and the Green’s function method retrieves a kernel function first and constructs the
solution in convolutional forms.

In order to mitigate these constraints, the development and implementation of alternative, mesh-free
methods for PDEs is highly desirable. Recently, deep neural networks (DNNs) have emerged as
a promising mesh-free solution capable of addressing a wide array of PDEs across various fields
such as science, engineering, and mathematics. The most notable DNN-based PDE solving method
is the physics-informed neural network (PINN) [1]. In this approach, a DNN is used to represent
a solution function which satisfies the PDE at every test point within the domain. Despite their
potential benefits, a significant drawback of these DNN-based strategies lies in their training cost,
which remains invariable for each unique PDE problem since a DNN model must be trained for each
new problem . Furthemore, training a DNN to accurately solve a specific PDE problem can be a
laborious process, dependent on the unique attributes of each problem as dictated by the differential
operator, domain, boundary condition, and input function.

To address the aforementioned limitations of DNN-based PDE solutions, several strategies have
been proposed to reduce their computational costs. Towards this goal, notable examples include the
DeepRitz [2], which tackles the variational form of PDEs, and the Fourier Neural Operator (FNO)
[3], which leverages the Fourier transform methods widely used in many PDE problems. Another
promising yet under-explored technique is the combination of Green’s function methods with neural
networks. Typically the Green’s function is limited to linear PDEs and attempts to solve for a general
integral kernel which is then used to construct a solution by convolving with the system input (or
stimulus). The Green’s function possesses several useful characteristics:

• Property (i): Regardless of the input function or boundary conditions, it transforms the
process of solving the PDE into a convolution computation across the domain utilizing the
Green’s function as the kernel.

• Property (ii): The Green’s function naturally arises in boundary value and initial value PDE
problems, and simplifies the problem by reducing the dimensionality.

Therefore, once a Green’s function is constructed for a particular differential operator it is re-usable,
so that solutions for that operator can be constructed efficiently even if the input function and boundary
conditions vary.
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Despite their remarkable advantages, explicit Green’s functions are only available for a limited number
of scenarios, such as the Helmholtz equation in an unbounded homogeneous domain. In most cases,
either the Green’s function cannot be derived analytically or its resulting form becomes excessively
intricate, thereby diminishing its utility; this has motivated the use of DNNs to approximate Green’s
functions. Training DNNs for this purpose is challenging however, because it requires the derivatives
of the network output to approximate a singularity function [4], namely a Dirac delta function. [5].

Here we propose and demonstrate a generalized Green’s function method and the neural network rep-
resentation, termed as Deep Generalized Green’s functions (DGGF), which addresses the singularity
issue while inheriting all of the benefits of both using mesh-free neural network method and using
the Green’s function method to solve the linear PDE problems including Property (i) and (ii) above.
Using a number of benchmark PDE problems, we demonstrate that the DGGF method provides stable
solutions, exhibits a fast convergence rate, and achieves high accuracy.

Our contributions are summarized below:

• We construct Deep Generalized Green’s Functions (DGGFs) that are applicable to all linear
PDEs, and amenable to stable and efficient numerical computation. We prove that DGGFs
maintain desirable Properties (i) and (ii) of the original Green’s function,

• We demonstrate achieved accuracy in constructing PDE solutions using DGGFs for four
different types of PDEs in various dimensions and for different boundary shapes and
conditions, and

• We experimentally demonstrate that our proposal affords faster neural network training with
superior performance compared to state of the art DNN based Green’s function approaches.

2 Related Work

We formally define a general PDE problem with a partial differential operator L : U → U∗ of order
p > 0 from the solution function space U to its dual input function space U∗ with support in a
compact set D ⊂ Rn. Let U be the Sobolev space of the same order of p. The boundary condition B
specifies the solution function constraints on the domain boundary ∂D. Combining these two factors
leads to,

Lu(r) = f(r), ∀r ∈ D,

Bru(r)|r∈∂D = h(r),
(1)

where the input function f ∈ U∗ : D → R is usually given and the solution function u ∈ U : D → R
is to be solved.

Many established PDE solvers can be chosen to solve the generic problem defined in Eq. 1 based
on the characteristics of the specific problem. Traditional methods include Fourier and Laplace
Transform Methods, FEM and FDM etc. The idea of using a neural network to efficiently solve PDEs,
to the best of our knowledge, dates back to the 1990s [6, 7, 8]. However, the lack of computational
power and auto-differentiation capabilities severely limited the efficacy of neural networks in this
domain. More recently, there has been a resurgence of the application of neural networks in solving
PDEs due to works on physics-informed neural networks (PINNs) [9] in various scientific fields such
as fluid dynamics [10, 11], thermodynamics [12], and electromagnetism [13]. A detailed discussion
of PINNs and their applications can be found in [14]. Several recent studies have proposed PINN
improvements including reweighting loss terms in the objective function [15], new loss terms [16],
and more complicated neural network structures [9]. Different DNN-based PDE solving methods are
listed and compared in the Table 1. Another notable method for solving PDEs is DeepRitz [2], which
solves the variational form of the original strict differential form, resulting in relaxed constraints
and often more robust convergence to the solution function. However, the limitation of applying
this approach to calculating the Green’s function is in their time-consuming process of evaluating a
multidimensional integral at every epoch of the training process.

To the best of our knowledge, there have been a limited number of studies for approximating the
Green’s function with DNNs. A notable approach, referred to as GaussNet and described in [5],
utilizes Gaussians to approximate the Dirac delta function. By employing smooth Gaussians, this
method significantly relaxes the singularity of the Dirac delta function. The use of Gaussian functions
offers a systematic approach to achieve high accuracy by reducing the width of the Gaussian. However,
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this method represents one Green’s function on a single domain with multiple networks, making
it challenging to apply to larger domains. Training may also be complex depending on the desired
accuracy level, and approximation errors may be of concern.

The BI-GreenNet method is another important technique for expressing the non-singular part of
Green’s functions on different domains using DNNs [17]. This method takes advantage of the linearity
of the Green’s function and performs well when the singular part of the Green’s function can be
computed analytically. However, a limitation of this method is the need for an analytic solution for
the singular part.

Various related data-driven approaches [18, 19, 20] learn the Green’s function of an unknown system
by incorporating it into a convolution integral and attempting to construct the solution function. These
methods address a different type of problem, namely inferring the properties of an unknown system,
instead of directly solving the underlying PDE. By utilizing the Green’s function in a convolutional
form, these approaches eliminate the need for evaluating the Dirac delta function. However, they
may require fine sampling of the input function making them potentially challenging to implement in
various scenarios of interest.

Table 1: Properties of different PDE methods

METHOD FIXED GRID RE-USABILITY DATA REQUIREMENT

PINN NO NO NO
DGGF NO YES NO

GAUSSNET NO YES NO
BI-GREENNET NO YES NO

3 Deep generalized Green’s function

3.1 Preliminaries

The Green’s function corresponding to a linear PDE problem described by Equation 1, if it exists, is
defined as the solution for a Dirac delta input function. To be precise, the Green’s function problem is
formulated as, denoted by G : D ×D → R:

LrG(r, ξ) = δ(r − ξ), ∀ r, ξ ∈ D (2)
G(r, ξ) = 0, ∀ ξ ∈ D◦ ∀ r ∈ ∂D (3)

where the subscript on Lr denotes that the differential operator only operates on r and D◦ denotes
the interior of domain D. It should be noted that the Green’s function must satisfy the same type of
boundary condition (Dirichlet, Neumann, or Robin) as that of the original PDE problem and should
be in general zero on the boundary. The Green’s function method then gives the solution to the
problem as,

u(r) =

∫
D

G(r, ξ)f(ξ)dξ +

∫
∂D

h(r, ξ′)
∂rG

∂n
dξ′, (4)

where n is the outward normal of the boundary [21].

3.2 Problem setting

The goal of the Green’s function is to find the operator which maps the input function f to the solution
function u. The formal description of solving the Green’s function is outlined below. Let U be the
Sobolev space of the order p defined on a bounded domain D ⊂ Rn. Let L : U → U∗ be the linear
partial differential operator such that Lu = f, u ∈ U , f ∈ U∗. The corresponding Green’s function
operator G : U∗ → U can be formally written as,

u = (Gf)(r) =
∫
D

G(r, ξ)f(ξ)dξ, (5)

where the kernel G : D ×D → R, is called the Green’s function.
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The singular nature of the Dirac delta function poses challenges. Instead of solving the Green’s
function kernel with the formal definition, in this work, we assume f is twice differentiable and
subsequently we propose a generalized Green’s function operator,

Gt : h → u, where h = ∆f (6)

where the Laplacian operator ∆ is given by∆ :=
∑

i
∂2

∂x2
i

. With this generalized operator, an ordinary
functions can replace the Dirac delta function in the optimization problem, formulated as

min
θ∈Rp

Er,ξ∈D|LG◦
θ(r, ξ)− t(r, ξ)|2, (7)

where t(r, ξ) is used in place of the Dirac delta function. We then derive an explicit form of the
function t(r, ξ) and show that the resulting operator maps to the solution function of the PDE. The
input function t(r, ξ) can be divided into the singular term ts(r, ξ) and the regular term tr(r, ξ).
The singular term depends on the dimension n of the problem while the regular term depends on the
domain boundary condition.

Lemma 3.1 [Decomposition of the alternative input function] Assume that both the differential
operator L is linear and the boundary condition is t = 0. Then,

t = ts + tr (8)

where ts and tr respectively satisfy:

∆ts(r, ξ) = δ(r − ξ), lim
r→∞

ts(r, ξ) = 0, (9)

∆tr(r, ξ) = 0, tr(r, ξ)|∂D = −ts(r, ξ)|∂D. (10)

Equation 3.1 itself forms a Green’s function problem of the Poisson equation subject to the boundary
condition. Next, we replace the Dirac delta function in the definition of Green’s function in Eq. (2)
with t(r, ξ):

LrG
t(r, ξ) = t(r, ξ). (11)

We term the corresponding solution Gt as the generalized Green’s function subject to the input t.

In addition to Eq. 11, we also impose the following two requirements on Gt on the boundary ∂D:

∆rG
t(r, ξ)|∂D = 0, (12)

BGt(r, ξ) = 0. (13)

Definition 3.2 (Generalized Green’s Function) The generalized Green’s Function Gt : D ×D →
R on a compact domain is defined to be the solution to the following two connected PDE problems:

∆t(r, ξ) = δ(r − ξ), (14)

LrG
t(r, ξ) = t(r, ξ), (15)

∆rG
t(r, ξ)|∂D = 0, (16)

BGt(r, ξ) = 0. (17)

We note that the third condition can be used to derive the boundary condition for the alternative
input function t. For instance, if the original problem is the Poisson equation, i.e., L = ∆, the first
condition on Gt directly leads to t(r, ξ) = 0 on the boundary. For other types of operators, the
boundary condition can be derived similarly.

A generic analytic solution to the singular part ts(r, ξ) for various domain dimensions is known with
vanishing boundary condition, i.e., limr→∞ ts(r, ξ) = 0. For 2-dimensional domain, ts(r, ξ) =
ln(|r − ξ|) and for 3-dimensional domain, ts(r, ξ) = 1/|r − ξ|. Since ts(r, ξ) is expressed in the
analytic form, the boundary value for the regular part tr(r, ξ) can be easily calculated on arbitrarily
shaped finite domain by tr(r, ξ) = −ts(r, ξ). Then the problem reduces to solving for tr(r, ξ)
which is a standard boundary value problem in PDE that can be easily solved. Once the format of
t(r, ξ) is fully determined via the procedures above, the Green’s function problem is transformed
to the generalized one with t(r, ξ) as the alternative input function, which is expressed exactly as
normal functions.
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3.3 Model

In this section, we propose a unified paradigm for solving PDEs with neural networks and the
generalized Green’s function. Our method involves three steps which generate one auxiliary neural
network and one primary neural network for the generalized Green’s function. Following the concept
of physics-informed neural network, we represent the solution function with parameterized neural
networks while using the partial differential equations and boundary conditions to define the loss
function which is minimized during training. The three steps are

• Step 1: Solve for the alternative input function t.

• Step 2: Solve the generalized Green’s function Gt.

• Step 3: Construct the solution using the generalized Green’s function neural network.

It should be noted that step 1 and 2 are only executed once for a fixed PDE operator and domain D
but the trained neural network can be reused in step 3. We elaborate on each step in the following
sections.

3.3.1 Solving the alternative input function t.

As stated in the Lemma 3.1, the regular part tr(r, ξ) is the solution to the boundary value problem
defined with Lrtr(r, ξ) = 0, tr(r, ξ) = g(r, ξ) where the boundary values are determined by
the analytic function of ts(r, ξ). Suppose a parameterized neural network t̂r,θ(r, ξ) is used to
approximate tr(r, ξ). For each training iteration, a batch of random interior point pairs of (ri ∈
D◦, ξi ∈ D◦), i = 1, 2, ..., N ′

dm and a batch of random boundary point pairs (rj ∈ ∂D, ξj ∈
D◦), j = 1, 2, ..., N ′

bd are independently sampled using the Latin hypercube sampling method. These
sampled points across the domain or on the boundary are used to evaluate the residual loss or boundary
loss, respectively. The total loss function at each iteration is defined as,

Lθ =
λres

N ′
dm

N ′
dm∑
i

Lres +

N ′
bd∑
j

λbdLbd (18)

=
λres

N ′
dm

Ndm∑
i

|Lt̂θ(ri, ξi)|2 +
λbd

N ′
bd

Nbd∑
j

|t̂r,θ(rj , ξj)− g(rj , ξj)|2 (19)

λres, λdb are the weights to balance the magnitude between the PDE residual loss and the boundary
loss. The partial derivatives in L are all computed using the AutoGrad package in PyTorch. The
stochastic gradient descent (SGD) method is used to minimize the loss and results in an accurate
neural network representation of t̂r,θ(r, ξ).

3.3.2 Solving for the generalized Green’s function Gt.

With the help of the auxiliary neural network model t̂r,θ(r, ξ), the alternative excitation function
t(r, ξ) can be readily evaluated at every point across the domain, i.e. t(r, ξ) = ts(r, ξ) + t̂r,θ(r, ξ).
Now we use the same framework as above to train the generalized Green’s function Ĝt

ϕ. For each
training iteration, a batch of random interior point pairs of ri ∈ D◦, ξi ∈ D, i = 1, 2, ..., Ndm and
a batch of random boundary point pairs (rj ∈ ∂D, ξj ∈ D◦), j = 1, 2, ..., Nbd are independently
sampled using again the Latin hypercube sampling method. For this problem, the residual loss takes
the alternative excitation function t and sets the boundary values are zero, which leads to the definition
of the total loss as,

Lϕ =
λres

Ndm

Ndm∑
i

Lres +
λres

Nbd

Nbd∑
j

λbdLbd (20)

=
λres

Ndm

Ndm∑
i

|LĜt
ϕ(ri, ξi)− (ts + t̂r,θ)(ri, ξi)|2 +

λres

Nbd

Nbd∑
j

|Ĝt
ϕ(rj , ξj)|2. (21)
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Figure 2: Different types of domain boundaries explored in the experiments. The color map indicates
the generalized Green’s function of a given fixed source location for the Poisson equation.

Once the generalized Green’s function network finishes training, it can be used in Eq. (15) to
determine the solution function for any excitation function f with,

u(r0) =
∑
j

wjĜ
t
ϕ(r0, ξj)∆f(ξj). (22)

where ξi,j = 1, 2, ..., n are the quadrature points for fast evaluation of the multi-dimensional
integration, and wj are corresponding quadrature weights. It should be noted that the solution
function values at multiple r0 can be computed in parallel.

4 Numerical experiments

We demonstrate the performance of DGGF in solving PDE problems compared to several recent
state-of-the-art baseline methods for different types of problems. We include different domains,
including a square (SQ), a circle (CR), and two B-spline curve enclosed loops (B1 & B2), and two
3D boundaries including a cube with 1/8 corner cut (CC), and an ellipsoid (EP), along with four
different PDE types, listed in Table 2. The exact domain shapes are illustrated in Fig. 4.

Specifically, we demonstrate that DGGF has higher accuracy compared to GaussNet and constructs
faster results compared to PINN on several classes of widely-studied PDEs. We present results of
different dimensions and boundary shapes in our experiments. For each type of the PDE problems,
we are interested in the performance of DGGF compared to the following baseline models:

• Method (I): Gaussian Approximation of the Dirac delta function (GaussNet),

• Method (II): Physics-informed neural network (PINN),

• Method (III): Numeric Green’s Function (NGF),

Table 2: PDE problems explored in the experiments. Boundary shapes include square (SQ), circular
(CR), two Jordan curves B-spline 1 (B1) and B-spline 2 (B2), corner cut cube (CC), and an ellipsoid
(EP).

CLASS EXPRESSION BOUNDARY SHAPE

POISSON
∑

x,y,z ∂
2
x,y,z SQ, CR, B1, B2, CC, EP

HELMHOLTZ
∑

x,y,z ∂
2
x,y,z + k2 SQ, CR, B1, B2, CC, EP

HEAT
∑

x,y,z ∂
2
x,y,z − ∂t SQ, CR, B1, B2, CC, EP

KLEIN-GORDON
∑

x,y,z ∂
2
x,y,z − ∂2

t − k2 SQ, CR, B1, B2, CC, EP

We use the FEM solver FEniCSx [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32] to obtain the solution
close to the ground truth for all the experiments using very fine meshes.
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4.1 Model training

For our method, the PINN, and the GaussNet, we use the exact same DNN structure and training
procedures throughout for all experiments for fair comparison. The DNN comprises 8 hidden layers
with Rectified Linear Units (ReLU) activation functions, and 100 neurons in each layer. Note that the
GaussNet method prescribes using multiple networks, instead of a single network, to represent the
fast-varying Green’s function on the whole domain. We tested this multi-network approach on simple
2D domain problems with 16 networks and results are included in the Appendix. The complexity of
arbitrary segmentation of irregular domains hinders the implementation of this method on all the cases
explored in this study. The hyperparameters involved in the training of the models are Ndm, Nbd,
N ′

dm, N ′
bd,λres, λbd. Please see Sec. 3.3 for interpretation of these hyperparameters. For simplicity,

we always set λres = 1 and search λbd ∈ [1, 5, 50], Ndm ∈ [50000, 100000, 150000, 200000],
Nbd ∈ [25000, 50000, 100000, 75000, 150000, 200000]. The lists of values for N ′

dm and N ′
bd are

the same as that of Ndm and Nbd. We use the learning rate of 1 × 10−3 with ADAM [33] and
zero regularization. The GaussNet method requires one additional hyperparameter, which is the
width of the Gaussian used to approximate the Dirac delta function. For this, we tested two values
ϵ ∈ {.05, 0.1}, for every problem considered below.

4.2 Results

4.2.1 Accuracy

A comparison of the accuracy between DGGF and baseline methods are present in Figure 4. It can
be observed that the DGGF outperforms both the GaussNet for both choices of the Gaussian width
explored with the single network representation. In particular, the DGGF realizes at least three orders
of magnitude smaller errors than that of the GuassNet, and is comparable to the PINN method. These
results indicate that by transforming the Green’s function to the generalized Green’s function, the
neural network model can learn a better kernel to construct the solution functions. Despite comparable
accuracy, our method is 20,000 times faster than the PINN in the solution function construction step,
with the parallel convolution in our method taking 0.08 s for 2D domains, compared to a 30 min
training time for the PINN method on any single 2D problem.

Figure 3: Results of 2D experiments with different PDEs and boundaries showing the mean L2 norm
error, including the DFFG (our approach shown as the blue colors), Gaussian (0.05 green colors) and
(0.1 shown as the orange colors), PINN (purple), and NGF (red).
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Figure 4: Results of 3D experiments with different PDEs and boundaries showing the mean L2 norm
error, including the DFFG (our approach shown as the blue colors), Gaussian (0.05 green colors) and
(0.1 shown as the orange colors), and PINN (red).

(a) (b)

Figure 5: Stability of DGGF. Here we perform only Step 2 (Gt) in (a) and Step 1 + Step 2 (b). The
variance of accuracies across points in the domain (due to random initialization of neural networks)
is used to measure the stability of DGGF. Shown in (a) and (b) are variances of accuracies for each
point in the 2-d Box domain.

4.3 Ablation Study

4.3.1 Stability

We use 2-d Poisson problem with Box boundary to study the stability of DGGF, i.e., the variance
of error caused by different random initializations of the neural networks. We study two scenarios:
(1) only training the networks in step 2 of DGGF and (2) training networks in both step 1 and
step 2. Specifically, in both scenarios, we use network of 8 layers, all with 100 neurons. We set
Ndm = 100000, Nbd = 300000 and λbd = 5. Then we train 30 neural networks with different
initializations. The variances of their accuracies for estimating Green’s Function at various points in
domain are then computed. As can be seen in Figure 5, the variance of accuracy across the domain
is uniformly small. In particular, the variance of only training the network for Gt is to the order of
10−11, demonstrating the stability of DGGF.
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5 Conclusions

To harness the full potential of Green’s function reusability, we introduce the concept of deep
generalized Green’s function. By circumventing the singularity associated with the Dirac delta
function while preserving theoretical accuracy, our method offers a practical solution. Empirical tests
conducted on a comprehensive selection of partial differential equations (PDEs) have confirmed the
effectiveness of our approach. Notably, DGGF exhibits lower computational resource requirements,
faster convergence, and, crucially, enables efficient reuse for solving PDEs of the same type.
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A Gaussian Approximation with Segmented Domains

In the main text, one neural network Gθ(r, ξ) is used to represent the Green’s function of some PDE
problem for all ξ on the interior domain. In this section, we aim to directly compare the GaussNet
scheme proposed in [5] which uses multiple neural network models, to our method which uses a single
model. In more detail, for the GaussNet method the entire interior domain is segmented into several
subdomains where each is represented by a neural network Gθ,i(r, ξ),∀r ∈ D,∀ξ ∈ Di,

⋃
i Di =

D◦. It should be noted that using multiple networks should decrease the representation error especially
on edge areas of the domain and potentially decrease the training difficulty. However, it cannot solve
the approximation error inherent in the Gaussian approximation itself, which is solely determined
by the Gaussian width. Furthermore, using multiple networks for one single domain will drastically
increase the computational burden for training, as well as the storage requirement for each domain.
Here, we used a Gaussian width of s = 0.02 and 6x6 squares to segment three different domains,
(Square, Annulus, and L-Shape), following the scheme in [5]. We study the Poisson equation subject
to the second order polynomial input functions f(x, y) = a1x

2 + a2xy + a3y
2 + a4x+ a5y + a6

for 10 different random realizations ai ∼ N (0, 2), and for i = 1, ..., 6. The ground truth is computed
using FEM with a dense mesh for these domains.

Table 3: Averaged Numerical Error of Multiple Network Models and DGGF on 2D Domains

METHOD SQUARE ANNULUS L-SHAPE

GAUSSNET 3.37E-2(6X6) 9.97E-2 (6X6) 1.43E-2(6X6)
GAUSSNET W/ SYMMETRY LOSS 2.76E-2(6X6) 7.45E-2 (6X6) 1.06E-2(6X6)

DGGF 1.13E-3 3.47E-3 1.42E-3

The symmetry loss, introduced in [5], is defined as min |Gθ(r, ξ) − Gθ(ξ, r)|. However, this
symmetry property is valid for reciprocal systems and may not hold generally. For this reason, we
did not include this symmetry constraint in the training of DGGFs, which allows our method to
generalize to a wider range of PDE problems. The average run-time for these experiments is given in
Table 4.

Table 4: Training Computational Complexity for The Experiments Presented in Table ?? in GPU
hours

METHOD SQUARE ANNULUS L-SHAPE

GAUSSNET 1.89H X 36 2.48H X 36 3.04H X 27
GAUSSNET W/ SYMMETRY LOSS 1.53H X 36 2.12H X 36 2.34H X 27

DGGF 0.12H + 0.08H 0.42H + 0.46H 0.12H + 0.13H

For GaussNet, the averaged computation time is reported since all the neural networks for subdomains
are trained in parallel. Note that for the L-shaped domain, although it is segmented into 6× 6, this
domain only fills out 27 subdomains. For DGGF, there are two seriel steps of training two neural
networks and the computation time is reported as the sum in the table. Since the GaussNet uses
LBFGS for optimization, it is in general more time-consuming for each epoch compared to ADAM.
In DGGF, the relaxed singularity means the generalized Green’s function vary slower on the domain
than the original Green’s function, making it converge fast with ADAM.

B Deriving the Generalized Green’s Function

In this section, we demonstrate that the generalized Green’s function solved above can also construct
the solution via integral operation with the input function f .

Theorem B.1 (Equivalence between Generalized Green’s Function and Green’s Function) We
have

u(r) =

∫
D

Gt(r, ξ)∆f(ξ)dξ +

∫
∂D

f
∂Gt

∂n
−Gt ∂f

∂n
ds (23)
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This equation can be further simplified if Gt, f or their partial derivatives vanish on the boundary.
In that case, the relationship of the generalized Green’s function and the solution function is simply,

u(r) =

∫
D

Gt(r, ξ)∆f(ξ)dξ (24)

In other words, the solution can be expressed as the integral of the generalized function and the
Laplacian of the input functions.

The problem to be solved is to find the solution function u given the input function f in Eq.(1). We
start with formulating a Green’s identity integral of Gt and Lu with the operator of Laplacian,∫

D

drGt∆(Lu)− (Lu)∆Gt =

∫
∂D

dsGt ∂Lu
∂n

− Lu∂G
t

∂n
(25)

Assume L to be self-adjoint and apply again the Green’s identity on it, we could get∫
D

∆Gt(Lu)− u∆(LGt)dr =

∫
∂D

dsγbd (26)

where interchangeability of L and the Dirac delta function is assumed and the boundary terms
are involved with ∆Gt, u and their partial derivatives on the boundary depending on L. Since we
have specified ∆Gt = 0 on the boundary, the boundary terms in the above equation vanish and∫
Lu∆Gt =

∫
uL∆Gt =

∫
u∆t =

∫
u∆ = u. Therefore, by inserting this equation into Eq.(12),

we have

u(r) =

∫
D

Gt(r, ξ)∆f(ξ)dξ +

∫
∂D

f
∂Gt

∂n
−Gt ∂f

∂n
ds (27)
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