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ABSTRACT Due to their high spatial resolution, thin-section magnetic resonance (MR) images serve as

ideal medical images for brain structure investigation and brain surgery navigation. However, compared

with the clinically widely used thick-section MR images, thin-section MR images are less available due to

the imaging cost. Thin-section MR images of infants are even scarcer but are quite valuable for the study of

human brain development. Therefore, we propose a method for the reconstruction of thin-sectionMR images

from thick-section images. A two-stage reconstruction framework based on generative adversarial networks

(GANs) and a convolutional neural network (CNN) is proposed to reconstruct thin-section MR images from

thick-section images in the axial and sagittal planes. A 3D-Y-Net-GAN is first proposed to fuse MR images

from the axial and sagittal planes and to achieve the first-stage thin-section reconstruction. A 3D-DenseU-

Net followed by a stack of enhanced residual blocks is then proposed to provide further detail recalibrations

and structural corrections in the sagittal plane. In this method, a comprehensive loss function is also proposed

to help the networks capture more structural details. The reconstruction performance of the proposed method

is compared with bicubic interpolation, sparse representation, and 3D-SRU-Net. Cross-validation based on

35 cases and independent testing based on two datasets with totally 114 cases reveal that, compared with the

other three methods, the proposed method provides an average 23.5% improvement in peak signal-to-noise

ratio (PSNR), 90.5% improvement in structural similarity (SSIM), and 21.5% improvement in normalized

mutual information (NMI). The quantitative evaluation and visual inspection demonstrate that our proposed

method outperforms those methods by reconstructing more realistic results with better structural details.

INDEX TERMS Deep learning, infant magnetic resonance (MR) images, super-resolution reconstruction,

thick-section, thin-section.

I. INTRODUCTION

Thin-section headmagnetic resonance (MR) images typically

have a slice thickness of 1 mm and a spacing gap of zero.

The high spatial resolution of thin-section head MR images

is ideal for brain structure analysis, volumetric measure-

ment, and surgery navigation. Thin-section head MR images,

however, are not always available. Clinically routine head

MR images are typically thick-section images with a slice

thickness of 4 mm to 6 mm and a spacing gap of 0.4 mm

The associate editor coordinating the review of this manuscript and
approving it for publication was Mohsin Jamil.

to 1 mm. The higher section thickness leads to a lower spatial

resolution, which limits the usage of thick-sectionMR images

in brain-related research.

Compared with imaging data for adults, brain MR images

of infants are even more valuable because these images

provide great insight into human brain development after

birth. The acquisition of infant brain MR images, however,

is even more difficult since MR imaging, let alone thin-

section imaging, is rarely performed on infants without suffi-

cient reasons. This situation inspired us to develop a method

that can provide a spatial resolution comparable to thin-

section MR images by using available thick-section images.
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A thin-section MR image reconstruction method is thus pro-

posed in this paper.

This reconstruction method can also be used to nor-

malize the image layer spacing. In a multi-center, multi-

device scenario, proposed method can be used to normalize

MR images obtained at different layer spacings to a uni-

form layer spacing, which is very beneficial for data-driven

researches, such as human brain development statistics based

on image big data.

Thin-section MR image reconstruction was considered a

multiplanar MR image registration problem. For example,

Mahmoudzadeh and Kashou [1] applied traditional interpola-

tion algorithms to thick-sectionMR images in all three planes

and combined them with the iterative registration algorithm

optimized automatic image registration (OAIR) [2] with the

guidance of a pixelwise loss function. The reconstruction

results of this algorithm are visually improved but focus only

on adult headMR images with limited consideration of struc-

tural similarity (SSIM) among human brains. Moreover, thin-

section MR image reconstruction can be handled as a frame

interpolation task. As proposed in [3], a decomposition-

reconstruction method based on the rules of organ consis-

tency is adopted to obtain a higher inter-slice resolution.

Thin-section image reconstruction can also be considered a

super-resolution problem. Yang et al. [4] proposed a train-

able method to reconstruct high-resolution images by utiliz-

ing the same sparse representation between low-resolution

image patches and their high-resolution counterparts. With

the development of deep learning (DL) techniques, convolu-

tional neural networks (CNN) and generative adversarial net-

works (GANs) have gained momentum recently, especially

in the image super-resolution field. Accordingly, thin-section

MR image reconstruction, if considered as a nonisotropic

super-resolution problem, will benefit a great deal from the

powerful modeling capacity of deep neural networks. For

example, Heinrich et al. [5] recently applied a 3D-SRU-Net

for isotropic super-resolution from nonisotropic three-

dimensional (3-D) electron microscopy. Our group [6] pro-

posed a residual-network-based 3D-SRGAN to reconstruct

adult thin-sectionMR images from thick-sectionMR images,

however only the reconstruction in the axial planewas consid-

ered. In addition, CNNs and GANs have been widely utilized

to improve the resolution ofMR images [7], [8]. Compared to

traditional algorithms, DL algorithms show superior poten-

tial in thin-section MR image reconstruction by not only

increasing reconstruction performance but also reducing the

reconstruction time to seconds.

In this paper, the task is to combine the multiplanar feature

fusion and 3-D nonisotropic super-resolution problems. Our

proposed framework is inspired by several state-of-the-art

DL architectures. First, U-Net [9], as it performs well in the

biomedical segmentation field, distinguishes itself in feature

fusion problems through multiscale convolution and upscal-

ing. Super-resolution generative adversarial neural networks

(SRGANs) [10] are empirically proven to have remarkable

performance in the super-resolution field, as they extract both

low- and high-frequency information from images. In addi-

tion, enhanced deep residual networks (EDSR) [11], a new

residual architecture that won first prize in the NTIRE 2017,

provide an efficient approach to recovering high-resolution

images. Inspired by the above state-of-the-art models, we pro-

pose a two-stage reconstruction framework to apply the map-

ping from thick-section MR images in the axial and sagittal

planes to their axial thin-section counterparts. Specifically,

the first stage is a least-squares GAN (LSGAN) [12] with

a newly proposed 3D-Y-Net generator, which is designed to

fuse axial and sagittal thick-sectionMR images andmap them

onto the thin-section image space. The second stage is a cas-

cade connection of 3D-DenseU-Net and enhanced residual

blocks, designed to increase statistical metrics and eliminate

artifacts via further detail refinement. A 3-D gradient cor-

rection loss and a self-adaptive Charbonnier loss are pro-

posed to concentrate the generator’s optimization attention

and capture high-frequency differential information. We then

evaluate the performance of the proposed two-stage frame-

work by comparing the reconstruction results with the ground

truth, showing that our proposed method is more effective

than three representative methods, comprising bicubic inter-

polation [13], sparse representation [4], and 3D-SRU-Net [5].

We also undertake two experiments to further validate the

contribution of multiplanar image fusion and our proposed

comprehensive loss function. Finally, the conclusion summa-

rizes the paper.

II. PROPOSED METHOD

A. OVERVIEW

CNNs have outperformed many traditional algorithms in the

image super-resolution field. Via hierarchical spatial convo-

lution and optional nonlinearity, CNNs can learn the prior

knowledge from low-level and high-level features extracted

from images and accordingly recover super-resolved images

through upsampling operations such as fractionally-strided

convolution [14] and sub-pixel convolution [15]. Recently,

with an increasing number of state-of-the-art CNN mod-

els, e.g., EDSR, SRCNN [16], and VDSR [17], GANs are

becoming gradually integrated with these popular CNNmod-

els in order to preserve high-frequency information. Under

the supervision of the discriminator, the generator is driven

to maximize the distribution similarity between the gener-

ated data and the real data, thus generating results that are

more realistic. However, recently proposed super-resolution

models mainly seek to upscale both dimensions of two-

dimensional (2-D) images by the same factor [7], [15], [18],

[19], [20], [21]. Even if several models are extended to han-

dle 3-D images [5], [6], low-resolution images in multiple

planes barely make a collaborative contribution in a single

framework. In this study, we propose a two-stage recon-

struction framework based on axial and sagittal thick-section

MR images to reconstruct corresponding axial thin-section

MR images with an upscaling factor of 8, as shown in Fig. 1.

In our framework, multiplanar thick-section MR images

are fully fused by our proposed 3D-Y-Net-GAN and
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FIGURE 1. The proposed two-stage framework for thin-section MR image reconstruction. The first stage is 3D-Y-Net-GAN, and the second stage is
3D-DenseU-Net. TPMs represent tissue probability maps, which will be discussed in later sections.

FIGURE 2. (a) 15 slices of normalized axial thick-section MR images, (b) 120 slices of normalized axial thin-section MR images, (c) 120 slices of
normalized sagittal thick-section MR images. x, y, and z represent three axes in the coordinate system we use to describe the volumes. L, W, and H
represent image sizes of MR images along x, y, and z axes, respectively. The yellow and blue lines illustrate their relative spatial locations. px is short
for pixel.

3D-DenseU-Net to recover thin-section images collabora-

tively. In the following sections, we demonstrate the details

of the proposed two-stage reconstruction framework and our

proposed comprehensive loss function. To better demonstrate

the task, relative spatial locations of thick-section and thin-

section MR images are shown in Fig. 2.

B. NETWORK ARCHITECTURE

In this section, we introduce our proposed two-stage recon-

struction framework. The first stage is a 3D-Y-Net-GAN

consisting of a 3D-Y-Net generator and a conditional dis-

criminator, which produces primary thin-section MR images

for subsequent detail correction. The second stage is

a 3D-DenseU-Net followed by a stack of enhanced residual

blocks for final detail recalibration. The inputs are regis-

tered axial thick-section MR images, denoted as IA with size

L×W× H, and registered sagittal thick-section MR images,

denoted as I
S with size L×W×rH where r represents the

upscaling factor along the z-axis. The outputs are thin-section

MR images, denoted as I
R with size L×W×rH. Note that

L, W, and H represent spatial sizes along x, y, and z axes

respectively.

1) 3D-Y-NET-GAN

As the first stage of the whole framework, a 3D-Y-Net-GAN

is proposed to take IA and I
S as inputs and reconstruct thin-

section MR images with an upscaling factor of r, denoted

as I
Y . The generator consists of three branches: 1) feature

extraction (FE), 2) feature fusion (FF), and 3) reconstruction.

The detailed network structure of the generator is illustrated

in Fig. 3(a). In our case, r is set to 8, and we adopt a

patch-based training strategy to reduce computational cost.

Specifically, at the first stage, the size of the patches for IA is

32 × 32 ×15 and the size of the patches for I
S and I

Y
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FIGURE 3. (a) Shows the network structure of 3D-Y-Net, e.g., (32,32,15,64) represents 64-channel feature maps with a spatial size
of 32×32×15, e.g., k3s [1,2,1] represents a convolution kernel size of 3×3×3 with strides of [1,2,1]. Unless specified, kernel sizes, strides, and
feature map shapes are identical between axial and sagittal branches, thus most parameters are only shown in either branch. Dropout 0.3
represents the dropout operation with a drop rate of 0.3. Red frameworks represent patches for training; (b) shows the structure of the
reconstruction branches. Path represents the upscaling process, e.g., Path 1-4 means upsampling images with sizes of L × W × H to images
with sizes of L × W ×4H. The intersection of two arrows represents channel concatenation before convolution.

is 32 × 32 × 120. Note that, for inference, instead of image

patches, full-size MR images are used as inputs.

a: FEATURE EXTRACTION BRANCHES

For the axial FE branch, 3-D convolutional layers are adopted

to extract features from input images, and maxpooling layers

with unbalanced strides of [1, 2, 1] or [2, 1, 1] are adopted

to generate differently sized feature maps at different levels.

Notably, maxpooling layers can ignore certain minute struc-

tural discrepancies, such that the negative impact induced

by misalignment after registration would be mitigated to

some degree. To clarify, the 3-D convolutional layer is
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FIGURE 4. Network structure of the conditional discriminator. Note that the slope of the negative part of the Leaky ReLU is set to 0.2. I GT is the real
sample, I Y is the fake sample, I A and I S are inputs of the generator. k represents the kernel size, and f represents the number of filters. All the
dropout rates are set to 0.3.

Convolution + Batch Normalization + Swish. Specifically,

Swish [22] is a new activation function that overcomes the

dead-neuron problems caused by ReLU. In our framework,

we set the untrainable parameter in Swish to be 1. The outputs

of the axial FE branch are feature maps in three scales:

F
A
1 (L×W× H), FA2 (L×W/2 ×H), and FA3 (L/2 ×W/2 ×H).

The sagittal FE branch is generally of the same structure as

the axial FE branch, which generates similar outputs FS1 (L×

W × H), FS2 (L×W/2×H), and F
S
3 (L/2×W/2×H). However,

given the size discrepancy between I
A and I

S , an extra pre-

processing module consisting of 3 convolutional layers with

strides of [1, 1, 2] is appended to its entry.

b: FEATURE FUSION BRANCHES

The FF branch is a topological inversion of FE branches.

At each level, the FF branch upsamples multiscale feature

maps through sub-pixel convolution. Concretely, sub-pixel

convolution [15] is a normal convolution followed by a

pixel shuffler, which is an efficient substitution for transpose

convolution. The means by which FE and FF branches are

connected at three levels is a design inspired by the U-Net

structure, which fully fuses multiscale features, guarantees

the structural alignment, and avoids the gradient-vanishing

problem.

c: RECONSTRUCTION BRANCHES

The detailed network structure of the reconstruction branch

is shown in Fig. 3(b). This branch is specially designed for a

large upscaling factor of 8. Instead of a sequential connection

of 3 upsampling layers with an upscaling factor of 2, which

might stretch the images and generate severe artifacts for

lack of adequate information forwarding or feature reuse,

we adopt a multipath upscaling strategy to mitigate such

artifacts. Specifically, the outputs of Path 2-4 and Path 1-4

are concatenated as the inputs of Path 4-8; the outputs of

Path 4-8 and Path 2-8 are concatenated as the inputs of

the final convolution. We use I
Y to represent the output

of the reconstruction branch, which is also the final output

of the 3D-Y-Net generator.

d: DISCRIMINATOR

Given that the unsupervised GAN model is adopted here to

solve a supervised regression problem, the original discrim-

inator that gives high scores to realistic samples is not the-

oretically applicable for this supervised regression problem

because our generator does not sample prior vectors from

random noise. Instead, our discriminator is designed to be of

a conditional structure [23], [24]. Specifically, the discrimi-

nator can recognize the input of the generator such that it can

classify a reconstruction mapping from thick-section images

to thin-section images as ‘‘real’’ or ‘‘fake.’’ The detailed

network structure is shown in Fig. 4. This structure takes IA,

I
S , and I

Y as fake inputs and I
A, IS , and I

GT (ground-truth

images) as real inputs and outputs a score tensor for later

computation of loss functions.

2) 3D-DENSEU-NET

As the second stage of the whole framework, a 3D-Dense

U-Net followed by a stack of 2 enhanced residual blocks is

proposed for detail recalibration, whose network structures

are shown in Fig. 5. The key point of detail recalibration

lies in information reuse. To reuse axial thick-section images,

we simply insert IA into I
Y according to their corresponding

spatial positions, which is denoted as IYA. Through this way,

axial thick-section images can be easily used to correct axial

images. When reusing sagittal thick-section images, slice

insertion is not applied. The main reason is that we would like

to reuse all slices in IS . But if IS and sagittal-slice-inserted IY

are both used as inputs of the second stage network, more

information of sagittal slices than that of axial slices will be

introduced into 3D-DenseU-Net, which could decrease the

image quality in the axial plane. Based on the above consider-

ation, We set IY , IS , and IYA as inputs of the 3D-DenseU-Net

and let IR denote the final output thin-section MR images.

Notably, the dense architecture we adopt allows the output

of the previous convolutional layers to be passed down to

several convolutional layers, which, according to [21], [25],

can fully leverage low-level and high-level features.
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FIGURE 5. Network structure of the second stage. (a) is 3D-DenseU-Net; (b) is the enhanced residual block. Red framework represents patches for
training. ×0.5 represents value decay by a factor of 0.5.

Additionally, to prevent blurriness and structural distor-

tion caused by top-level and bottom-level skip connections,

we apply value decay before channelwise concatenation to

balance feature maps at different levels. Moreover, the tail

enhanced residual blocks are also designed for similar con-

sideration, since shallow features passing through the top-

level skip connection could corrupt the final outputs. Without

traditional batch normalization layers, enhanced residual

blocks are also preferred as they cut down GPU RAM usage,

thus allowing larger batch size in training phase.

Given limited GPU capacity, there is a trade-off between

convergence rate and receptive field. Specifically, relatively

larger patch size leads to larger receptive field, thus more

useful information can be seen by convolution kernels. But

it also reduces the maximum batch size we could use, which

could harm the convergence rate especially when batch

size is already small. After hyperparameter search, we train

3D-DenseU-Net based on randomly sampled patches with

size of 48× 48× 48 to strike a balance between convergence

and receptive field.

It is worth noting that 3D-DenseU-Net and

3D-Y-Net-GAN are trained separately instead of end-to-end.

Two major reasons can account for this. First, separate

training could guarantee the functionality of initial recon-

struction as designed for 3D-Y-Net-GAN, and also decouple

the functionality of two stages. Second, end-to-end training

of two 3-D DL models are currently not feasible on our

GPU resources if using acceptable batch size.

3) LOSS FUNCTION

To train the 3D-Y-Net-GAN to learn the mapping from I
A and

I
S to IY , we need to search the set of network parameters θG

and obtain the optimal parameters θ̂G that minimize the gen-

erator’s loss function LG, which is described as in (1), where

G is taken as the generator and I
GT is taken as the ground

truth.

θ̂G = argmin
θG

LG

(

G
(

I
A, IS

)

, IGT
)

(1)

To find a loss function that evaluates the difference

between the generated images and the ground-truth images,

we design a loss function that consists of a self-adaptive Char-

bonnier loss, a 3-D gradient correction loss, an adversarial

loss, and an l2 weight regularization term:

LG = LG
SC + λ1L

G
GC + λ2L

G
AD + λ3L

G
WR (2)

where λ1, λ2, and λ3 represent the respective terms’

weights. The above four components will be further dis-

cussed in the following paragraphs. Given the second stage

3D-DenseU-Net is not based on adversarial learning, we train

it with the same loss function LG as used for 3D-Y-Net-GAN

except that λ2 is set to 0.

a: SELF-ADAPTIVE CHARBONNIER LOSS

In supervised regression problems, the ℓ1 and ℓ2 norms

are widely used because pixelwise restriction is practi-

cally important to guarantee the basic SSIM. However, the

ℓ2 norm often leads to overly smooth results, and the ℓ1 norm

penalizes the deviation of the prediction from the ground

truth indiscriminately. In one study [20], a Charbonnier loss,

a differentiable variant of the ℓ1 norm, showed better per-

formance and higher robustness than an ℓ1 and ℓ2 norm.

In another study [5], a cubic-weighted mean square error

(MSE) loss was introduced to emphasize the performance

in ‘‘difficult’’ areas, which represent areas with relatively

large pixelwise differences between generated images and

ground truth. However, the difference between the ground

truth and upsampled images through bicubic interpolation

will not always be a good indicator of the actual difficult areas

along the training process and is even worse when facing a

large upscaling factor. Therefore, we propose the use of the

dynamic coefficients calculated by the difference between

the current generated images and the ground truth to weigh

the robust Charbonnier loss:

LGSC =
1

rLWH

L,W ,rH
∑

x,y,z=1,1,1

√

(

IGTx,y,z − IYx,y,z

)2
+ ε

·







1

2
+

(

I
GT
x,y,z − I

Y
x,y,z

)2

2max
(

(

IGT − IY
)2

)






(3)
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where ε is a small value, which is set to 10−6, (·)2 performs

element-wise square if input is a tensor, and max(·) function

calculates the global maximum element of a tensor, which

outputs a scalar value.

b: 3-D GRADIENT CORRECTION LOSS

A Charbonnier loss merely addresses the pixelwise differ-

ence, which may lead to inadequate attention to the second-

order differential information. This being the case, we adopt a

3-D gradient correction loss to explicitly exert a second-order

constraint between adjacent pixels along the x,y, and z-axes,

which can help our model generate sharper edges:

LGGC = E

[

(

∇xI
GT
x,y,z − ∇xI

Y
x,y,z

)2
]

+E

[

(

∇yI
GT
x,y,z − ∇yI

Y
x,y,z

)2
]

+E

[

(

∇zI
GT
x,y,z − ∇zI

Y
x,y,z

)2
]

(4)

c: ADVERSARIAL LOSS

To make the generated images more realistic, we utilize a

conditional discriminator to supervise the learning process of

the generator. Taking into account robustness and implemen-

tation efficiency, we use the LSGAN loss as the adversarial

loss. For the conditional discriminator, its loss function is

defined as follows:

LD=
1

2
E

[

(

D
(

I
GT , IA, IS

)

−1
)2

+
(

D
(

I
Y , IA, IS

)

−0
)2

]

(5)

where D represents the discriminator and E represents the

mathematical expectation, which practically calculates the

mean value of the output tensor. To make it clear, the discrim-

inator tries to make the score of ground truth close to 1 and

that of fake inputs close to 0.

The generator tries to fool the conditional discriminator

by increasing the score of the fake samples. Accordingly,

the adversarial loss for the generator is shown below:

LGAD = E

[

(

D
(

I
Y , IA, IS

)

− 1
)2

]

(6)

Notably, the balance between the generator and the dis-

criminator is crucial when training GANs, which means we

need to strike a balance between the adversarial loss and the

Charbonnier loss. Therefore, we consider this adversarial loss

an auxiliary term in the generator’s loss function and set a

small value for its weight λ2. The hyperparameter setting of

λ1, λ2, and λ3 will be further discussed in the Experimental

Results section.

d: ℓ2 WEIGHT REGULARIZATION LOSS

Theoretically, parameters with smaller norms lead to lower

model complexity, which is indicative of a decreased likeli-

hood of encountering the overfitting problem. Thus, we adopt

an ℓ2 weight regularization loss to mitigate overfitting prob-

lem in this study:

LGWR =
∑

‖WG‖22 (7)

where WG represents all the kernel weights of the generator,

and ‖•‖2 represents the ℓ2 norm.

III. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of multiplanar MR image

fusion, we conduct an ablation experiment among 3 cases:

1) our full framework with axial and sagittal images as inputs

(Ours Full), 2) a partial version of our method with only

axial images as input (Ours Partial Axial), and 3) a partial

version of our method with only sagittal images as input

(Ours Partial Sagittal). Specifically, for Ours Partial Axial and

Ours Partial Sagittal, we modify the 3D-Y-Net generator to

have two FE or FF branches and discard the input IS or IYA,

respectively, at the second stage. After the above network

modifications, we have two partial versions of our proposed

framework, which only leverage thick-section MR images in

a single plane.

To validate our proposed comprehensive loss function,

we conduct another ablation experiment among four cases:

1) ℓ1norm+LGC+LAD+LWR, 2)LSC+LGC+LWR, 3)LSC+

LAD + LWR, and4)LSC + LGC + LAD + LWR.

To evaluate our proposed reconstruction method, three rep-

resentative methods and our proposed first-stage network are

used for comparison: 1) traditional bicubic interpolation [13],

2) sparse representation (SR) [4], 3) 3D-SRU-Net [5], and our

proposed first stage 3D-Y-Net-GAN. Each of those compari-

son methods will be detailed below.

Traditional bicubic interpolation [13] is an untrainable

algorithm that predicts a certain pixel with adjacent 16 pixels.

SR [4] is a trainable method that seeks a SR for each patch

of the low-resolution image and then uses the coefficients

of this representation to generate its high-resolution coun-

terpart. Specifically, we train the coupled dictionaries based

on the 2-D slices in the sagittal plane. As described in the

introduction, 3D-SRU-Net has been proposed for isotropic

super-resolution reconstruction from nonisotropic 3-D elec-

tron microscopy. In [5], low-resolution and high-resolution

images are jointly leveraged when training this variant of the

original U-Net to predict high-resolution images from their

blurred counterparts. In our paper, we increase the depth of

its network and append 3 convolutional layers with strides

of [2,1,1] to its entry, similar to that in our second-stage

framework, such that its upscaling factor is extended to 8 and

can take the same inputs as our proposed first-stage networks.

We also show the reconstruction results of our proposed

first stage network 3D-Y-Net-GAN in order to validate the

effectiveness of the second stage network.

For quantitative evaluation, we adopt metrics, including

peak signal-to-noise ratio (PSNR), SSIM, and normalized

mutual information (NMI), for image quality assessment.

Note that we clip the pixels that are out of the valid dynamic

range [−1,1] and cast the generated MR images and the
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TABLE 1. Imaging parameters of our dataset.

ground truth to an 8-bit grayscale. PSNR is defined as

follows:

PSNR=20 · log10













MAXI
√

1
rLWH

∑

x,y,z

(

IRx,y,z − IGTx,y,z

)2













(8)

where MAXI represents the maximum pixel value, which

is 255 in this case; and r represents the upscaling factor,

which is 8 in this case. L, W, and H represent the spa-

tial size of the generated MR images, which are 144, 184,

and 120, respectively, in this case. SSIM measures the struc-

tural similarity between two images by calculating their

cross-correlation, which is defined as follows:

SSIM =
(2µaµb + c1)(2σab + c2)

(µ2
a + µ2

b + c1)(σ 2
a + σ 2

b + c2)
(9)

where µa and µb represent the respective mean values of two

images; σ 2
a and σ 2

b represent the respective variances; σab
represents the covariance of the two images; and c1 =(k1L)

2,

c2 =(k2L)
2 are two constants that prevent the dominator from

being 0, where k1 and k2 are typically set to be 0.01 and 0.03,

respectively; and L represents the dynamic range of the pixel

values, which is set to be 255 in our case. NMI measures the

mutual dependence between two variables, which is defined

as follows:


























H (X) = −
∑

xi∈X

p (xi) log p (xi)

H (X ,Y ) = −
∑

yj∈Y

∑

xi∈X

p
(

xi, yj
)

log p
(

xi, yj
)

NMI (X ,Y ) = 2
H (X) + H (Y ) − H (X ,Y )

H (X) + H (Y )

(10)

where H(X) is the entropy of variable X, H(X,Y) is the joint

entropy of X and Y,p(xi) is the marginal probability distri-

bution function of xi, and p(xi, yi) is the joint probability

distribution function of xi and yi. Higher PSNR, SSIM, and

NMI mean that the generated MR images are much closer to

the ground truth.

A. DATA AND PREPROCESSING

We validate our two-stage framework on the reconstruction

of thin-section infant head MR images. Thick-section and

thin-section MR images of 154 infants aged 2 to 5 years old

were collected from the Children’s Hospital of Fudan Uni-

versity, Shanghai, China. For each individual infant, we col-

lected axial thick-section, sagittal thick-section, and axial

thin-section MR images with the specific imaging param-

eters listed in Table 1. We randomly selected 40 samples

for the cross-validation dataset, another 65 samples as the

independent testing dataset 1, and the rest 49 samples as

the independent testing dataset 2. Note that the collection

time interval of two independent testing sets is half a year.

We applied spatial normalization, grayscale normalization,

and histogram matching to our raw MR image data for data

preprocessing. We use preprocessed thick-section images as

inputs of our model, and preprocessed thin-section images as

the ground truth during the training phase.

Given different imaging parameters (e.g. field of view)

and various intensities between thin-section and thick-section

MR images, we observed spatial misalignment and intensity

imbalance in raw image-domain MRI data, for which raw

MR images in DICOM format can not be directly used in

our experiments. Thus we preprocess all raw MR images

as followings. For registration, we apply unified spatial

normalization to all the MR images using MATLAB tools

SPM12 [26], to mitigate spatial misalignment between thin-

section and thick-section MR images. We firstly transform

MR images from Digital Imaging and Communications in

Medicine (DICOM) format to Neuroimaging Informatics

Technology Initiative (NIfTI) format. Secondly, we segment

the infant brain atlas [27] to generate the full version of tissue

probability maps (TPMs) which contain probability maps

of various tissues in the image data, including gray matter

(GM), white matter (WM), cerebrospinal fluid (CSF), skull,

scalp, and air mask. Thirdly, SPM12 estimates nonlinear

deformation field that best aligns the generated TPMs to

the individual’s MR images. Then, MR images are warped

according to their own estimated deformation field. Finally,

we obtain I
A of size 144 × 184 × 15, IS and I

GT of size

144 × 184 × 120. For detailed configuration of registra-

tion, we set voxel size of thin-section images to 1 × 1 ×

1 mm 3, axial thick-section images to 1 × 1 × 8 mm 3,

and sagittal thick-section images to 1×1 × 1 mm 3. Besides,

we use ICBM Asian brain template in affine regularization

and adopt appropriate bounding box such that registered MR

images have the exact spatial size as illustrated in Fig. 2.

Other configurations are kept default. After registration, pos-

sible misalignment due to various spatial positions and head

shapes is minimized. Note that the field of view of sagittal
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TABLE 2. Quantitative evaluation of thin-section MR image reconstruction methods using different input data: PSNR, SSIM, and NMI.

thick-section MR images is smaller than that of thin-section

images, thus there are uncovered head areas at each side in IS ,

as shown in Fig. 2(c). To avoid the structural incompleteness

of IS , we upsample corresponding areas in IA, and simply use

them to fill the uncovered areas in I
S . Since SPM12 can not

guarantee successful registration on all samples, we actually

found 5 poorly-registered samples in the cross-validation

dataset, which were accordingly excluded from it. Thus,

35 samples comprise the actual cross-validation dataset for

all experiments.

Also, given that registered MR images have a 16-bit

grayscale with various intensities among different subjects,

we normalize intensities of all MR images into [−1,1], using

simple linear transformation. Then, we apply a histogram-

matching algorithm to all MR images with a fixed sample

as reference to eliminate histogram imbalance.

In order to enlarge our training dataset and mitigate the

overfitting problem for the data-driven DL model, we adopt

data augmentation by applying radial transformation [28] and

mirror reflection to our training dataset.

B. EXPERIMENTAL SETTINGS

We adopt 5-fold cross-validation on the cross-validation

dataset to evaluate our framework. For fold s, we divide the

cross-validation dataset of 35 samples randomly into 2 parts,

with 7 samples as the validation data and the other 28 as

the training data. For data augmentation, we apply radial

transformation and mirror reflection to the training data, such

that it is enlarged to 336 samples at the first stage and 56 sam-

ples at the second stage. All of the validation procedures are

applied to 5 iterations. To further validate the generalization

of our proposed model, we select a certain model with the

best performance in the cross-validation and evaluate it on

independent testing dataset 1 of 65 samples, and independent

testing dataset 2 of 49 samples, whose collection time interval

is half a year.

For 3D-Y-Net-GAN, we randomly sample 12 patches per

volume with a size of 32×32×15 for IA and 32×32×120 for

I
S and I

GT . The mini-batch size and epoch are set

to 16 and 200, respectively. For the generator, we use the

Adam optimizer [29] with the momentum parameter β1 =

0.9 and adopt a stepwise, exponential-decay learning rate

schedule with initial value = 5 ×10−4, decay step = 252,

and decay rate = 0.989. We use the same optimizer and

learning rate schedule for the discriminator. We initialize the

generator and the discriminator with an He normal initial-

izer [30]. We set λ1, λ2, and λ3 in LG to be 0.2, 0.02, and 0.1,

respectively.

For 3D-DenseU-Net, we randomly sample 80 patches per

volume with a size of 48 × 48 × 48. The mini-batch size and

epoch are set to 12 and 300, respectively. We use the Adam

optimizer with β1 = 0.9 and adopt a stepwise, exponential-

decay learning rate schedule with initial value = 5 × 10 −4,

decay step= 373, and decay rate=0.989.We initialize it with

the He normal initializer and set λ1 and λ3 in its loss function

to 1 and 0.001, respectively. Note that not like training, infer-

ence is not patch-based. On the contrary, it is based on whole

MR images. Therefore, no special post-processing is needed

in our method.

For the SR [4] method, we set appropriate parameters

for coupled dictionary training. Concretely, we set dictio-

nary size = 512, patch number = 100,000, patch size =

13 ×13, sparsity regularization = 0.15, and overlap = 12.

Notably, for bicubic interpolation and SR methods,

we only utilize axial thick-section MR images given their

limitations.

For 3D-SRU-Net, we choose appropriate hyper-parameters

to guarantee its best performance while maintaining good

comparability. Concretely, we consider the patch size of

32× 32× 15 for IA and 32×32× 120 for IS and IGT . We set

the mini-batch size and epoch to 32 and 300, respectively.

We adopt the Adam optimizer with a parameter of β1 = 0.9,

initial learning rate = 5 × 10 −4, and the bicubic-weighted

MSE loss function as adopted in [5].

The SR method was implemented in MATLAB2017a.

The training process took approximately 10 hours, while

the reconstruction process took approximately 2 hours

per sample. All the DL methods were implemented with

Python3.6.2 and TensorFlow1.3, running on a NVIDIA Titan

Xp GPU with 12 GB of RAM. Our 3D-Y-Net-GAN took

approximately 20 hours for training, 3D-DenseU-Net took

approximately 20 hours for training, and 3D-SRU-Net

took approximately 11 hours for training.

C. ABLATION EXPERIMENT ON INPUT DATA

In this section, we design an experiment on the three afore-

mentioned cases to demonstrate the impact of different

input data. The reconstruction results of the three cases
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FIGURE 6. Visual comparison to show the contribution of different input data.

are visualized in Fig. 6. We can see that reconstructed thin-

section MR images based on images in the axial and sagittal

planes have more structural details and less distortion com-

pared to images generated from single-plane thick-section

images. This is because multiplanar thick-sectionMR images

could be fused and thus contribute collaboratively to the

reconstruction task. Their quantitative evaluation is sum-

marized in Table 2, which shows that the reconstruction

method with multiplanar MR image fusion can generate

thin-section images of higher similarity with ground-truth

images.

D. ABLATION EXPERIMENT ON LOSS FUNCTION

In this section, to validate the contribution of each term in our

proposed comprehensive loss function, we set three compar-

ison experiments to show the effectiveness of self-adaptive
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FIGURE 7. Visual comparison to show the effectiveness of our proposed comprehensive loss function.

Charbonnier loss, gradient correction loss, and adversarial

loss. Note that this ablation experiment is based on our

proposed 3D-Y-Net-GAN, and we do not conduct 5-fold

cross-validation here. Their reconstruction results are shown

as Fig. 7. From the visualization comparison, we can see

that the ℓ1 norm generates blurry images compared to self-

adaptive Charbonnier loss. The results based on a loss func-

tion without gradient correction loss show less sharp edges

compared to our proposed loss function. A loss function

without adversarial loss generates less realistic images than

our proposed loss function. The quantitative

evaluation shown in Table 3 further validates the contribu-

tion of our proposed loss function.

E. COMPARISON WITH OTHER METHODS

In this section, we design a comparison experiment to evalu-

ate our proposed method by comparing it with three exist-

ing methods, traditional bicubic interpolation [13], sparse
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FIGURE 8. Visual comparison among four reconstruction methods. Color bars illustrate the intensity range of residual images. The first, fourth,
seventh rows illustrate the axial, sagittal, and coronal views of the reconstructed thin-section MR images by using four different methods,
respectively. The second, fifth, and eighth rows illustrate the local enlarged views. The third, sixth, and ninth rows illustrate the error maps.
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TABLE 3. Quantitative evaluation of thin-section MR image reconstruction methods using different loss functions: PSNR, SSIM, and NMI.

TABLE 4. Quantitative evaluation of thin-section MR image reconstruction methods: PSNR, SSIM, NMI, and MAE.

representation [4], and 3D-SRU-Net [5]. In addition, we also

illustrated the result of the first-stage 3D-Y-Net-GAN, to

validate the effectiveness of the second-stage network.

The reconstruction results of a certain slice in the center of the

sampling intervals are visualized in Fig. 8. Compared to the

other three methods, our proposed reconstruction framework

generates the most realistic MR images, which is closer to the

ground truth on the rightmost column of Fig. 8.

The traditional bicubic interpolation method shows blurry

reconstructed results and suffers from severe detail distortion

as well as artifacts, partly due to its limited receptive fields,

untrainable structure, and lack of sagittal information.

The sparse representation method generates smoother

results with relatively better tissue coherency than bicubic

interpolation but still outputs poor results in the sagittal and

coronal planes for its 2-D receptive field and limited model-

ing capacity.

While 3D-SRU-Net reconstructed thin-section MR images

with less artifacts, it provided worse results than our

proposed framework. Two factors can account for its

worse performance. First, given its single-stage architecture,

3D-SRU-Net suffers from inevitable insufficiency in model-

ing capacity and thus cannot provide a balance among fea-

ture fusion, upsampling, and detail preservation, which leads

to a poor performance in the sagittal plane reconstruction.

Second, an upscaling Path 1-8 based on shallow fea-

tures passes through the top-level skip connection. Potential

downsides of this design are that features with severe artifacts

caused by fractionally-strided convolutionwith a small kernel

size and a very large upscaling factor is directly passed to last

several layers through the top-level connection, which harms

the reconstruction results.

In the close-up views, we note that our framework recon-

structs realistic images that are spatially closer to the ground

truth after the first-stage reconstruction and recovers more

tissue details in sagittal and coronal planes after the detail

recalibration of the second stage, which reflects the effective-

ness of our proposed two-stage reconstruction framework.

The overall experimental results are summarized in Table 4,

in which we compare the mean values, standard deviations,

and median values of the above metrics. We show the exper-

imental results on three different datasets to illustrate the

generalizability and robustness of our proposed method.

Our method outperforms existing methods on all three

datasets, with higher PSNR, SSIM, NMI, and mean abso-

lute error (MAE). Specifically, in contrast to the untrain-

able bicubic interpolation method, our method can learn

from training samples to generate images with better tissue

coherency. Compared to the SR method, our method can

utilize 3-D receptive fields and greater modeling capacity

to recover more realistic thin-section images. Also, notice

that SR method has worse statistical results on the indepen-

dent testing dataset 2 than on independent testing dataset 1,

which shows that our model has better robustness than SR
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method when dealing with different datasets. Compared to

3D-SRU-Net, our full framework can better learn mapping

from the thick-section MR images to corresponding thin-

sectionMR images, which means dealing with feature fusion,

upsampling, and detail recalibration separately and succes-

sively will assign a clear task to the neural networks given

their limited modeling capacity. This improvement in the

final results further confirms the superiority of our proposed

method. Note that our model not only shows better per-

formance on cross-validation dataset, but also shows better

reconstruction quality on two more testing datasets. Also,

since the number of testing data samples in our experiments is

around 4 times as many as the training data samples we used,

our proposed reconstruction framework shows good general-

izability and robustness to be applied to larger database.

IV. CONCLUSION

We proposed a two-stage reconstruction framework to recon-

struct thin-section infant head MR images from thick-

section images in the axial and sagittal planes. Our proposed

3D-Y-Net-GAN, trained on paired patches of thick-

section MR images, reconstructed preliminary thin-section

MR images for subsequent refinement. Then, based on the

output of the first stage and original thick-section images,

our proposed 3D-DenseU-Net was trained for further detail

refinement and performance improvement. Moreover, we

proposed a comprehensive loss function composed of a self-

adaptive Charbonnier loss, a 3-D gradient correction loss, an

adversarial loss, and an ℓ2 weight regularization loss for more

effective and more realistic reconstruction.

Two ablation experiments on different input data and

our proposed loss function have been conducted. The

visualization and quantitative evaluation demonstrated that

our proposed multiplanar image fusion and comprehensive

loss function could contribute to performance improvement

in reconstruction. A comparison experiment with three exist-

ing methods was conducted based on a cross-validation

dataset and two independent testing datasets. The quantitative

evaluation revealed that our proposedmethod is able to recon-

struct thin-section MR images with higher PSNR, SSIM, and

NMI compared to the other three methods, including tradi-

tional bicubic interpolation [13], sparse representation [4],

and 3D-SRU-Net [5]. Note that we show mean absolute error

to demonstrate that our reconstruction results have lower

residues by average, where we use 8-bit grayscale for eval-

uation. Even though MAE of Ours Full is a little bit worse

than that of our first stage network on independent testing

dataset 2, our full model still shows overall better reconstruc-

tion details because its loss function focuses on penalizing

outlier pixel predictions to generate more realistic images.

In addition, we illustrated visualized results generated from

the above four methods to bolster the superiority of our

method’s performance compared to other methods. Although

the objective of our proposed method is the reconstruction

of thin-section infant head MR images from thick-section

images in axial and sagittal planes, it can be easily extended

to other application contexts, such as three-plane reconstruc-

tion or adult head MR image reconstruction. Furthermore,

this reconstruction method can also be used to normalize

image layer spacing, to benefit data-driven researches based

on image big data.

Data preprocessing is an important factor to guarantee

the applicability of our proposed reconstruction framework.

We apply unified spatial normalization, histogram matching,

and grayscale normalization to all MR images to mitigate

the impacts caused by their various intensities and contrast

ranges. We also adopt data augmentation to enlarge our train-

ing dataset. In future work, we will generalize our reconstruc-

tion method and perform validation on more data of different

categories.
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