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Abstract

Detecting differentially expressed genes is important for characterizing subpopulations of cells.
However, in scRNA-seq data, nuisance variation due to technical factors like sequencing depth
and RNA capture efficiency obscures the underlying biological signal. First, we show that deep
generative models, which combined Bayesian statistics and deep neural networks, better esti-
mate the log-fold-change in gene expression levels between subpopulations of cells. Second, we
use Bayesian decision theory to detect differentially expressed genes while controlling the false
discovery rate. Our experiments on simulated and real datasets show that our approach out-
performs state-of-the-art DE frameworks. Finally, we introduce a technique for improving the
posterior approximation, and show that it also improves differential expression performance.

1 Introduction

Detecting differential gene expression (DE) is important for characterizing subpopulations of
cells profiled by single-cell RNA sequencing (scRNA-seq) [1]. Technical factors like sequencing
depth and RNA capture efficiency obscure the underlying biological signal in scRNA-seq mea-
surements, making DE difficult [2]. Many methods have been developed to specifically handle
the complexities of scRNA-seq [3, 4, 5], each with distinct data-generating distributions and hy-
pothesis formulations, but they do not consistently outperform DESeq2 [6] and edgeR [7], which
were designed for bulk expression data [8]. This might be attributable to the lack of flexibility
of the underlying statistical models (generalized linear models fit to each gene separately, with
limited information shared between cells).

Conversely, a new class of methods uses deep neural networks as nonlinear functions to
model conditional distributions. In scVI [9] for example, the mean expression of each gene is a
nonlinear function of a cell-specific latent variable that represents biological state. Hypothesis
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testing in scVI consists of posterior sampling and Bayes factor computation. As parameters are
shared between all cells, this approach is agnostic to the partition of the data. It is particularly
convenient since it avoids fitting a different model for each test (e.g., given two clusters to
compare) and allows a better quantification of gene expression levels uncertainty. However, the
scVI hypothesis formulation might lead to detection of biologically irrelevant genes, without
further thresholding on the effect size (namely, log fold change, LFC). Also, the mean-field
approximate posterior that it used to fit the model may poorly represent the true posterior,
limiting the model’s accuracy.

Our main contribution is to employ deep generative models for LFC estimation and differen-
tial expression by extending the scVI framework in order to address the limitations of existing
methods. We use Bayesian decision theory [10] to explicitly control for effect-size via LFC (Sec-
tion 2). Our experiments on simulated and real datasets show that our approach outperforms
state-of-the-art DE frameworks (Section 3). Finally, we show that an alternative posterior ap-
proximation scheme that may better capture uncertainty further improves differential expression
performance. These results suggest that deep generative models (DGM) are valuable tools for
uncertainty quantification in gene expression data.

2 Methods

2.1 Background

A scRNA-seq experiment produces observations xng, which represent in a cell n the number
of mRNA transcripts mapping to gene g. In scVI, a cell’s gene expression is generated in the
following way. First, a low-dimensional latent variable zn representing a cell’s biological state
is sampled for a standard multivariate normal distribution. This sample of zn is mapped by
a neural network to another latent variable hng, representing the underlying expression level
for gene g. Next, a scalar latent variable ln representing the cell’s sequencing depth and size
is sampled from a log normal distribution. The observation model for xng is a zero-inflated
negative binomial distribution, where the mean of the negative binomial component is equal to
the product hngln. We assume that latent parameters of zn can be mapped to a cell type or cell
state via a deterministic mapping (e.g., a clustering algorithm).

While we focus on the scVI model in this work, our framework for differential expression can
be applied to any generative model parametrized by θ of the form

pθ(xn, hn, zn) = pθ(zn)
∏

g

[pθ(xng|hng)pθ(hng|zn)] .

2.2 Effect-size control in differential expression

Given two cells a and b we represent their difference in expressing a gene g using a latent variable
r
g
a,b = f(hag, hbg), where the function f is designed to capture some biologically meaningful
change in magnitude between its inputs. We define f to be the LFC, log

2
hag − log

2
hbg, which

is a popular measure of effect-size for expression measurements.
Let Mg

1
(resp. Mg

0
) be the model for which gene g is (resp. is not) differentially expressed.

It is expected that biologically meaningful shifts in gene expression occurs when the LFC is (in
absolute value) higher than a threshold δ, defined by the practitioner [6]. We consequently rely
on random variables rga,b to define formally differential expression by

Mg
1
:
∣

∣

∣
r
g
a,b

∣

∣

∣
> δ and Mg

0
:
∣

∣

∣
r
g
a,b

∣

∣

∣
≤ δ.

By design, this differential expression formulation filters out gene that might be significantly DE
for δ′ < δ (i.e., of low magnitude) but are likely not to be interesting in practice.

Let K0 be the cost of a false negative and K1 the cost of a false positive. If pgθ := pθ(M
g
1
|

xa, xb) is the posterior probability of gene g being DE at a sufficient LFC, Bayesian decision
theory [10] shows that the optimal decision rule consists of calling genes which satisfy

p
g
θ ≥ α :=

K1

K1 +K0

. (1)

Another potentially interesting design would be to control the false discovery rate, as in [11]. In
this manuscript, however, we focus on estimating p

g
θ .
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2.3 Log-fold change estimation

The posterior LFC distribution can be obtained via marginalization of latent variables:

pθ

(

r
g
a,b | xa, xb

)

=

∫∫

pθ

(

r
g
a,b | za, zb

)

dpθ(za|xa)dpθ(zb|xb). (2)

Consequently, pgθ can be approximated using Monte Carlo given access to the posterior distribu-
tion pθ(zn | xn). This definition can be generalized to arbitrary pairs of cell sets A = (a1, . . . , an)
and B = (b1, . . . , bm) via the following distribution:

∫∫

pθ

(

r
g
ai,bj

| xai
, xbj

)

dp(i)dp(j), (3)

where i ∼ U(a1, . . . , am) and j ∼ U(b1, . . . , bm). This is tantamount to sampling from the aggre-
gate posteriors 1

n

∑

i pθ(zai
| xaig) and

1

m

∑

j pθ(zbj | xbig) instead of the individual posteriors in
Equation 2. When A and B correspond to two groups of cells of distinct types, the aggregated
LFC defined in Equation 3 converges to a oracle cell-type-specific LFC with enough samples
(not shown in this manuscript). The aggregation noted in Equation 3 might be suboptimal in
the presence of outliers or cell type mislabeling, though we leave the treatment of such cases as
future work.

2.4 Variational approximation

We fit pθ and learn an approximate posterior distribution qφ(zn | xn) using the AEVB frame-
work [12]. The variational posterior qφ(zn | xn) can be used as a proxy for the real posterior
pθ(zn | xn) in Equation 2. The quality of the variational distribution qφ can play an important
role for this estimation. In vanilla scVI [9] and in AEVB [12], the Gaussian mean and diagonal
covariance of the variational distribution is parameterized via encoder networks (referred to as
naive mean-field, MF). However, a mean-field factorization of the variational distribution for
zn is known to underestimate the posterior variance [13]. Such behavior is expected to affect
the coverage of LFC estimates as well as the downstream decision rule for differential expres-
sion. To underscore this, we will compare MF against inverse autoregressive flows (IAF) [14],
which provides richer posterior approximations, and therefore learns better model with improved
uncertainty quantification.

3 Results

We are interested in two tasks: LFC estimation (with analysis of the mean predictions as well
as uncertainties) and differential expression detection (i.e., estimating pθ). For both tasks, we
apply our framework using scVI with two choices of variational approximations to the posterior:
MF and the more expressive IAF.

Furthermore, we compare these models to MAST [3], DESeq2 [6] and edgeR [7] using the
implementation of [15], which correct p-values for multiple hypothesis testing using false discovery
rate control (at significance threshold 0.05). In DESeq2, a Wald test based on shrunken LFC
estimates is used for differential expression. Similarly to our approach, DESeq2 formulates
composite null hypothesis in which the LFC absolute value is below a certain threshold δ. We
use δ = 0.5 for both DESeq2 and our method.

In the tables, starred values represent significantly better results compared to DESeq2, edgeR
and MAST at level 0.05. Bold values denote significantly better results among our methods (MF
and IAF).

3.1 Datasets

We assess performance on both synthetic and real datasets. The first synthetic dataset (PL)
consists of 8,000 cells of two cell-types, with cells in each type generated from a Poisson log-
normal distribution. Ground-truth LFCs between the two cell-types are computed as the average
log-ratios of generated Poisson rates. We use a dense covariance matrix to model gene-gene
interactions for the log-normal distribution. The DE genes in this synthetic dataset are those
for which the true LFC magnitude is above 0.5.
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We also employ SymSim [16] to study the robustness of predictions to scRNA-seq technical
noise on a dataset of 10,000 cells and 1,000 genes corresponding to two batches (UMI and
non-UMI) of five cell types. SymSim does not provide exact normalized LFCs that we can
take as ground truth, but they can be approximated from the kinetic parameters given by the
simulator [16].

Finally, we consider a peripheral blood mono-nuclear cells (PBMC) dataset composed of
12,039 cells and 3,346 genes from two batches, as described in [9]. Additional bulk data allows
to provide inter cell-types microarray LFC estimates that we will consider to be ground-truth.

3.2 LFC estimation

In this section, we consider the LFC estimation task and show that our pipeline has competitive
performance in both real and synthetic datasets.

We first compare scVI LFC mean estimates on the PL synthetic dataset to the other methods
as a function of the query size, which corresponds to the number of cells of each cell-type taken
as input for LFC estimation by the different algorithms. The bigger the query size, the closer
we can expect the predicted LFC to match the ground-truth. scVI provides significantly better
estimates (Table 1), especially for small query sizes.

LFC MSE

Query size 10 50 100

DESeq2 0.151 0.068 0.053
EdgeR 0.170 0.072 0.052
MAST 0.156 0.075 0.063
MF 0.029∗ 0.022∗ 0.018∗

IAF 0.025
∗

0.017
∗

0.016
∗

Table 1: LFC mean squared error for different population sizes. Each algorithm’s predictions are
run for ten different cells-samplings and for five weight initializations for scVI-based methods.

Such behavior is expected as scVI fits a single model for the entire dataset while the other
methods are fit only on the cells being compared. When the query size is small, other techniques
show instability and important errors that scVI does not suffer from. Note that IAF predictions
outperform MF, suggesting that it allows to fit a better generative model.

As our LFC inference protocol is Bayesian, the study of the LFC posterior distributions can
provide helpful uncertainty information about the log-fold changes estimates. Figure 1 suggests
that DGMs can successfully estimate LFC on scRNA-seq data and that credible intervals can give
valuable insight into the estimations. That being said, the models uncertainty estimates differ
slightly as IAF credible intervals are often shorter than MF. Hence, The question that arises
consists in determining which variational distribution models uncertainty the most faithfully. To
further investigate this point, we compare MF and IAF calibration errors as defined in [17]. Let
p1, . . . pm be given confidence levels. Let p̂j be the fraction of genes for which the real LFC in
contained is the pj-credible intervals of some model. The calibration error 1

m

∑

(pj − p̂j)
2 will

reflect the quality of the estimated uncertainty of the model. We compute the calibration errors
of posterior LFCs of the different models for 20 random subsets of cells for confidence levels
{10%, 20%, 30%, 40%}. IAF and MF mean calibration errors respectively are 0.0019 and 0.0031
(Mann-Whitney U-test p-value < 0.05). This improved modelling of uncertainty show that LFCs
credible intervals are better estimated by more complex variational distributions.

The results above do not assure that our LFC estimation is robust to scRNA-seq inherent
biases, which can be found inn real datasets. Even though ground-truth LFC values are usually
intractable on real data, LFCs estimates from scRNA-seq real datasets can be compared to ref-
erence LFC estimates computed on bulk data [18, 19], which suffers less from technical artifacts.
scVI estimates are closer to the reference than the other algorithms by a large margin (Table 2),
with best result achieved by IAF. Similarly, scVI best estimated the LFC for a second pair of
cell-types (CD4 and CD8 cells, results not shown). This suggests that the observation model of
scVI yields a reasonable choice of technical-noise free gene expression level hng. Additionally,
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Figure 1: Estimated LFC against ground-truth values of the PL dataset. Points and bars
respectively represent medians and 95%-credible intervals.

we verified (as in [8]) that our LFC estimates between subsets of cells of the same type were low
(results not shown).

DESeq2 MAST edgeR MF IAF
r2 0.25 0.253 0.154 0.433∗ 0.443

∗

Table 2: r2 coefficients of the linear regression of microarray LFCs on estimated LFCs between
B cells and dendritic cells of the PBMC dataset.

3.3 Detection of differentially expressed genes

This section investigates the properties and use-cases of the differential expression probabilities
p
g
θ computed using MF and IAF compared to the p-values provided by competing algorithms.
We first benchmark the different algorithms on the PL dataset for which differentially ex-

pressed genes are known. In the precision-recall (PR) curves of Figure 2, MF and IAF clearly
outperform other algorithms in terms of average precision and overall classification performance.
Furthermore, our approach offers the best PR tradeoffs.

However, those results do not assure the relevance of our protocol to detect DE genes. The
two color areas on the figure correspond to the decision rule characteristics of both posteriors.
IAF decision rule looks better calibrated than MF, as it provides slightly better recalls, and
higher, more stable precisions (statistically significant). By better modelling uncertainty, IAF is
hence able to detect more DE genes.

Differential expression techniques often require additional filtering steps after a significance
test to detect differentially expressed genes of biological interest. Our DE definition takes both
significance and effect size considerations into account, allowing to detect pertinent genes. Table 3
displays the ratio of predicted DE genes that have low ground- truth LFC (thus representing cases
of likely little biological interest). DESeq2, followed by IAF and MF offer the best performance.
The gap between DESeq2 and our approach can be explained by the fact that DESeq2 has a very
conservative decision rule, and that it also formulates a composite null hypothesis. This table
also shows that a complex variational distribution can help detect more DE genes of interest.
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Figure 2: PR curves on the PL dataset for queries of size 100. Prediction scores are based on
Equation 1 for IAF and MF and on significance values for other algorithms. The rectangles
correspond to the 95%-confidence regions (across samplings and weight initializations) of the
scVI decision rules (α = 0.5) characteristics.

DESeq2 MAST edgeR MF IAF
3.10−4 0.206 0.042 0.013 0.008

Table 3: Mean ratio of predicted DE genes whose LFC magnitude is lower than δ on the PL
dataset.

The quality of the differential expression probabilities p
g
θ can also be assessed via SymSim,

a more challenging simulation framework that explicitly models the scRNA-seq gene counts
measurement process. While it is not straightforward to obtain a list of differentially expressed
genes from this simulation, the LFCs can be estimated from the simulation’s model and be used as
a measure of the degree of differential expression. We thus consider the genes ranking task instead
of differential expression predictions to benchmark the different algorithms differential expression
scores. We rank genes based on estimated DE probability for scVI-based protocols and p-values
for the other algorithms. Our protocol provides significantly more informative ranking scores
than other techniques on a challenging synthetic dataset (Table 4). More expressive posteriors
like IAF provide more accurate rankings than mean-field. This suggests that normalizing flows
helps learning a more robust and accurate generative model pθ.

DESeq2 MAST edgeR MF IAF
0.428 0.568 0.032 0.669∗ 0.681

∗

Table 4: Means of Spearman correlation between DE scores and estimated LFC amplitude across
experiments on Symsim.

The quality of our differential expression detection can also be assessed on real data. More
precisely, the properties of DE predictions on the PBMC dataset are presented in Figure 3. We
observe that IAF predictions match most of its competitors, but also include more genes hinting
that it might offer better recall on real data.

In addition, proper uncertainty quantification of IAF for DE prediction can be observed on
real data. We study the number of genes incorrectly detected as DE on the PBMC dataset
by taking pairs of 100 samples from the B cell population, repeated 10 times. Based on the
described pipeline, IAF has only one false positive on average.

We presented a framework tailored for deep generative models for differential expression.
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Figure 3: Venn diagrams of predicted DE genes (IAF, MAST, edgeR) on PBMC

Thanks to its data-adaptive nature and non-linearity assumptions, it successfully manages to
provide reliable, informative LFC estimates, in addition to pertinent DE gene candidates for
scRNA-seq data. Notably, such a framework is flexible and can be extended to other types of
hypotheses such as differential variance analysis [20, 21].

Code availability

The implementation to reproduce the experiments of this paper is available at https://github.
com/PierreBoyeau/lfc_estimation. The reference implementation of scVI is available at
https://github.com/YosefLab/scVI.
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