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Abstract

The functions of proteins and RNAs are defined by the collective interactions of many residues, 

and yet most statistical models of biological sequences consider sites nearly independently. Recent 

approaches have demonstrated benefits of including interactions to capture pairwise covariation, 

but leave higher-order dependencies out of reach. Here we show how it is possible to capture 

higher-order, context-dependent constraints in biological sequences via latent variable models with 

nonlinear dependencies. We found that DeepSequence (https://github.com/debbiemarkslab/

DeepSequence), a probabilistic model for sequence families, predicted the effects of mutations 

across a variety of deep mutational scanning experiments substantially better than existing 

methods based on the same evolutionary data. The model, learned in an unsupervised manner 

solely on the basis of sequence information, is grounded with biologically motivated priors, 

reveals the latent organization of sequence families, and can be used to explore new parts of 

sequence space.

Amajor unanswered question in biological research, clinical medicine, and biotechnology is 

how to decipher and exploit the effects of mutations on biomolecules. For efforts ranging 
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from the identification of genetic variants underlying human disease, to the development of 

modified proteins with useful properties, to the synthesis of large molecular libraries that are 

enriched with functional sequences, there is a need to be able to rapidly assess whether a 

given mutation in a protein or RNA will disrupt function1,2. Although high-throughput 

technologies can now simultaneously assess the effects of thousands of mutations in 

parallel1,3–27, sequence space is exponentially large and experiments are resource intensive. 

Accurate computational methods are thus an important component of high-throughput 

sequence annotation and design.

Most improvements to computational predictions of mutation effects have been driven by 

leveraging of the signal of evolutionary conservation among homologous sequences28–33. 

Historically, these tools have been used to analyze the conservation of single sites in proteins 

in a background-independent manner. Recent work has demonstrated that the incorporation 

of intersite dependencies in a pairwise interaction model of genetic variation can lead to 

more accurate prediction of the effects of mutations in high-throughput mutational 

scans34–37. However, numerous lines of evidence suggest that higher-order epistasis 

pervades the evolution of proteins and RNAs38–41, and pairwise models are unable to 

capture this. Naive extension of pairwise models with third or higher terms is statistically 

unfeasible, as even third-order interaction models for a protein of 100 amino acids will have 

approximately 1 billion parameters. Even if such a model could be engineered or coarse-

grained42 to be computationally and statistically tractable, it would only marginally improve 

the fraction of higher-order terms considered, leaving fourth and higher-order interactions 

out of reach.

Direct parameterization of sequence-variation models with all possible interactions of order 

k leads to an intractable combinatorial explosion in the number of parameters to consider. 

An alternative to this fully observed approach for modeling data—in which the correlations 

between positions are explained directly in terms of position-position couplings—is to 

model variations in terms of ‘hidden’ variables to which the observed positions are coupled. 

Two widely used models for the analysis of genetic data, principal component analysis and 

admixture analysis43–45, can be cast as latent-variable (i.e., hidden-variable) models in 

which the visible data (genotypes) depend on hidden variables (factors or populations) in a 

linear way. In principle, the replacement of those linear dependencies with flexible nonlinear 

transformations could facilitate the modeling of arbitrary-order correlations in an observed 

genotype, but the development of tractable inference algorithms for them is more complex. 

Recent advances in approximate inference46,47 have made these kinds of nonlinear latent-

variable models tractable for the modeling of complex distributions for many kinds of data, 

including text, audio, and even chemical structures48, but their application to genetic data 

remains in its infancy.

Here we developed nonlinear latent-variable models for biological sequence families and 

leveraged approximate inference techniques to infer the families from large multiple-

sequence alignments. We show how a Bayesian deep latent-variable model can be used to 

reveal latent structure in sequence families and predict the effects of mutations with 

accuracies exceeding those of site-independent or pairwise-interaction models.
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Results

A deep generative model captures latent structure in sequence families.

The genes observed across species today are the results of long-term evolutionary processes 

that select for functional molecules. We sought to model the constraints underlying the 

evolutionary processes of these sequences and to use those constraints to make reasonable 

inferences about what other mutations may be plausible. If we approximate the evolutionary 

process as a ‘sequence generator’ that generates a sequence x with probability p(x\θ) and 

parameters θ that are fit to reproduce the statistics of evolutionary data, we can use the 

probabilities that the model assigns to any given sequence as a proxy for the relative 

plausibility of a molecule satisfying functional constraints. We consider the log-ratio

log
p x(Mutant) |θ

p x(Wild‐type) |θ

as a heuristic metric for the relative favorability of a mutated sequence, x(Mutant), compared 

with that of a wild-type sequence, x(wiid-type). This log-ratio heuristic has been shown to 

accurately predict the effects of mutations across multiple kinds of generative models p(x|
θ)34. Our innovation here is to consider a nonlinear latent-variable model for p(x|θ) that is 

capable of capturing higher-order constraints (Fig. 1a and Methods). This approach is fully 

unsupervised, as we do not train on observed mutation-effect data but rather use the 

statistical patterns in observed sequences as a signal of selective constraint.

We introduce a nonlinear latent-variable model p(x|θ) to implicitly capture higher-order 

interactions between positions in a sequence. We imagine that when the data are generated, a 

hidden variable z is sampled from a prior distribution p(z), in our case a standard 

multivariate normal, and a sequence x is in turn generated on the basis of a conditional 

distribution p(x|z,θ) that is parameterized by a neural network. If the system were fully 

observed, the probability of data would be simple to compute as p(x|z,θ)p(z), but when z is 

hidden we must contend with the marginal likelihood,

p(x |θ) = ∫ p(x |z, θ)p(z)dz

which considers all possible explanations for the hidden variables z by integrating them out. 

Direct computation of this probability is intractable in the general case, but we can use 

variational inference49 to form a lower bound on the (log) probability. This bound, known as 

the evidence lower bound (ELBO), ℒ(ϕ; x) takes the form

logp(x |θ) ≥ ℒ(ϕ; x) ≜ 𝔼q[logp(x |z, θ)] − DKL(q(z |x, ϕ) p(z))

where q(z|x,ϕ) is a variational approximation for the posterior distribution p(z|x,θ) of hidden 

variables given the observed variables. We model both the conditional distribution p(x|z,θ) 

of the generative model and the approximate posterior q(z|x,ϕ) with neural networks, which 
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results in a flexible model-inference combination known as a variational autoencoder 

(VAE)46,47 (Fig. 1b). After the model is fit to a given family through optimization of the 

variational parameters ϕ, it can be readily applied to predict the effects of arbitrary types and 

numbers of mutations. We quantify effects with an approximation to the log-ratio by 

replacing each log probability with the ELBO (Fig. 2).

We use a particular combination of priors, parameterizations, and learning algorithms to 

make the model more interpretable and more likely to generalize. First, we encourage sparse 

interactions50 with a group sparsity prior on the last layer of the neural network for p(x|z,θ). 

This prior encourages small subgroups of hidden units in the network to influence only a 

few positions at a time. Second, we encourage correlation between amino acid usage by 

transforming all local predictions of the amino acids at each position with a shared a linear 

map C, which we refer to as a dictionary. Finally, and in deviation from standard practice for 

VAEs, we learn distributions over the weights of the neural network for p(x|z,θ) with a 

variational approximation over both the global model parameters and the per-datum hidden 

variables. This means that rather than learning a single neural network for p(x|z,θ), we learn 

an infinite ensemble of networks.

We optimized the joint variational approximation over global and local parameters by 

stochastic gradient ascent on the ELBO to obtain a fully trained model (Methods). Because 

this is a nonconvex optimization problem with multiple solutions, we fit five replicas of the 

model from different initial conditions. Throughout the analysis, we considered both the 

average performance across these five fits and the performance of the ensemble prediction 

that averaged the predictions together.

Model probabilities correlate with experimental mutation effects.

We compared predictions from DeepSequence to a collection of 42 high-throughput 

mutational scans (712,218 mutations across 108 sets of experiments on 34 proteins and a 

tRNA; Methods, Supplementary Tables 1 and 2, Supplementary Fig. 1). We found that the 

predictions of the DeepSequence ensemble correlated equally as well or better with 

experimental mutation effects across a majority of the datasets, compared with predictions 

from both a pairwise interaction model (EVmutation34; 33/42 datasets; median difference in 

rank correlation Δρ = 0.036) and a siteindependent model (34/42 datasets; median Δρ = 

0.063) trained on the same data (Fig. 3, Supplementary Table 3). The average performance 

of DeepSequence without ensembling reproduced this overall advantage over EVmutation 

(32/42 datasets; median Δρ = 0.024) and the site-independent model (3¼2 datasets; median 

Δρ = 0.055). The clear exceptions to the overall superiority of DeepSequence were the 

comparisons to the viral protein mutation experiment effects, and especially the two HIV 

env experiments, which suggests that the VAE approach is more dependent on a larger 

diversity of fit sequences on which to train the model. When compared against a subset of 

the data that was previously analyzed34, the DeepSequence predictions were consistently 

more accurate than those of other commonly used methods, such as BLOSUM62 (20/20; 

median Δρ = 0.32), SIFT32 (20/20; median Δρ = 0.24), and Polyphen231 (19/20; median Δρ 
= 0.20) (Supplementary Table 4).
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The deep mutational scans that we analyzed typically involved only one or a few mutational 

steps from assayed sequences (‘test set’) to the sequences that the model was trained on, 

which raised the question of how well the model can generalize when the number of steps is 

larger. To test this, we reran the experiments for TEM1 P-lactamase with artificially purged 

training sets in which sequences with 35%, 60%, 80%, 95%, or 100% identity to wild-type 

TEM1 were removed. We found that DeepSequence continued to outperform pairwise and 

site-independent models even when all sequences within 60% sequence identity were 

purged. The Spearman correlation decreased by only 0.07, despite the fact that all mutated 

test sequences were ~100 mutational steps away from the training set (Methods, 

Supplementary Fig. 2).

We observed a consistent amino acid bias in the prediction accuracy of all three evolutionary 

models (independent, EVmutation, and DeepSequence) when we compared the residuals of 

the rankings of the predictions with the experimental data for each amino acid transition 

(Supplementary Fig. 2), but we were unable to find consistent patterns for this discrepancy. 

For instance, we could not explain the observed bias by codon usage. Accounting for this 

bias by fitting a linear model on top of the predictions improved DeepSequence, but the 

improvements were small (Supplementary Fig. 3, Methods).

Sequence space in latent space.

Examining the low-dimensional latent spaces learned by a latent-variable model can give 

insight into relationships between data points (sequences). To gain insight into the 

organization of latent space directly, we fit an otherwise identical copy of the model with 2-

dimensional rather than 30-dimensional z to β-lactamase (Fig. 4). This visualization 

illustrated the comparative shallowness of deep mutational scans: all mutated sequences 

from the deep mutational scans of β-lactamase were tightly concentrated in a small region of 

latent space. We also observed an uneven distribution in latent space with phylogenetically 

coherent structure; however, we caution against overinterpreting this distribution, because it 

will depend strongly on the choice of prior and the variational approximations51.

Bayesian learning prevents overfitting and facilitates interpretation.

To test the importance of our specific choices for the architecture and learning algorithm, we 

carried out an ablation study of model design decisions across a subset of proteins. We found 

that all of the major design decisions contributed to improved performance, including the 

use of sparse priors on the last layer, a learned dictionary of amino acid correlations, a global 

inverse-temperature parameter, and a Bayesian variational approximation for the weights 

(Supplementary Table 5, Fig. 5, and Methods). The largest improvement seemed to result 

from the use of variational Bayes to learn distributions over the weights of the network 

rather than point estimates, even when point estimation was combined with group sparsity 

priors52 or Dropout53 regularization (Supplementary Table 5).

We considered two kinds of structured correlations in multiple-sequence alignments in the 

design of the final layer. The first was correlated bias in amino acid usage, where 

hydrophobic or polar amino acids tend to have correlated liability at a given position. We 

captured this with a shared linear transformation C that was tied across all positions and 
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found that its implicit correlation structure (CTC) reflected well-known amino acid 

similarities (Fig. 6a, Supplementary Table 6). The second kind of correlation in multiple-

sequence alignments is between positions, and often coincides with structural 

proximity54–57. Our group sparsity prior captured these correlations by learning 500 soft 

subgroups of positions that were each connected to four hidden units. We computed the 

average pairwise distance between positions in each subgroup using representative structures 

from the Protein Data Bank (Methods) and found that most distances were less than a null 

expectation (Methods, Fig. 6a, Supplementary Tables 7 and 8), with subsets of residues 

close in 3D.

Interpretation of mutation-effect predictions.

We then explored which sets of mutations were most differentially predicted by 

DeepSequence (using a subset of eight experiments with large overall differences from the 

independent methods; Supplementary Fig. 5, Supplementary Table 9, Methods). 

DeepSequence was most accurate for all proteins across all residue classifications that we 

explored, including both evolutionary (‘conservation, ‘frequency’) and structural features 

(‘interaction’) (Fig. 6b). The overall increased accuracy of the latent model predictions was 

particularly strong for mutations that were deleterious in the experiment, and often where 

these deleterious sites were variable or proximal to interacting ligands. For example, in the 

RNA-recognition-motif domain of the poly(A) binding protein and the PDZ domain in 

PSD95 and kanamycin kinase, residues close to their ligands or cofactors are the most 

differentially accurate. These include a residue position involved in specificity switching 

G330 in the PDZ domain and RNA interaction sites in the RNA recognition motif (Fig. 6b). 

These results are consistent with the idea that the latent model makes better predictions for 

sites sensitive to change but still varied across evolution, and hence context dependent.

Discussion

We have presented a deep latent-variable model that can capture higher-order correlations in 

biological sequence families and shown how it can be applied to predict the effects of 

mutations across diverse classes of proteins and RNAs. We found that the predictions of the 

deep latent-variable model were more accurate than those of a previously published 

pairwise-interaction approach to model epistasis34,36, which in turn was more accurate than 

commonly used supervised methods58,59. In addition, both latent variables and global 

variables of the model learned interpretable structure for both macrovariation and phylogeny, 

as well as the structural proximity of residues.

Deep latent-variable models introduce additional flexibility for modeling of higher-order 

constraints, but at the cost of reduced interpretability and increased potential for overfitting. 

Indeed, we found that even traditional approaches for regularization, such as Dropout53 and 

sparsity priors, were often worse than the already-established pairwise models. While this 

work was in progress, other nonlinear latent-variable models were proposed for sequence 

families60,61, evidencing the benefits of more parametrically powerful models for sequence 

variation. A key aspect of this work distinguishing it from both those and other models in 

our ablation study is its use of approximate Bayesian inference, whereby we estimated 
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distributions over model parameters and propagated that uncertainty into model predictions. 

Although we found that mean-field approximate variational inference and group sparsity 

priors were sufficient to exceed the performance of a wide range of models, it is likely that 

future work would benefit from other biologically motivated priors, as well as more accurate 

approximations for variational inference62,63. Additionally, the incorporation of more rigidly 

structured probabilistic graphical models in model dependencies between latent variables 

could improve generality and interpretability64.

Lastly, the efficacy of DeepSequence for predicting experimental mutational scans will be 

contingent on both the quality and the relevance of the evolutionary sequence data in two 

ways. First, DeepSequence and other mutation-effect-prediction methods train on multiple-

sequence alignments34,55,65–67, for which the quality of the available data may vary across 

families and for which decisions on inclusion thresholds are somewhat ad hoc. Second, the 

premise that evolutionary data can be applied to predict outcomes of an experiment is highly 

contingent on the relevance of the experimental assay to long-term selective forces in the 

family. A mutation may be damaging with regard to some measurable protein feature—for 

example, enzyme efficiency—but harmless for stability or even organism fitness, as others 

and we have previously discussed13,34,68. Both of these issues could be partially addressed 

by the incorporation of DeepSequence predictions as features in a supervised learning 

framework.

Despite the challenges for deep models of sequence variation and data used to train them, 

they are likely to be of increasing importance for the high-throughput design and annotation 

of biological sequences. Evolution has conducted and continues to conduct an unthinkably 

large number of protein experiments, and deep generative models can begin to identify the 

statistical patterns of constraint that characterize essential functions of molecules.

Methods

Datasets.

We constructed a dataset of deep mutational scans that combined those analyzed in 

EVmutation3–12,14–18,20–22,24,69 with additional studies published later25,70–80. Data 

underlying Fig. 3 include 41 measurements across 35 protein or RNA domains. The 

conditions, assay, references, maps to data for specific figures, and criteria for 

disambiguating multiple available measurements are listed in Supplementary Table 1.

Alignments.

We repeated the same alignment-generation protocol used for EVmutation34. Briefly, for 

each protein (target sequence), we obtained multiple-sequence alignments of the 

corresponding protein family in five search iterations of the profile HMM homology search 

tool jackhmmer81 against the UniRef100 database of nonredundant protein sequences82 

(release 11/2017 for the main analysis and 11/2015 for the ablation study). We used a bit 

score of 0.5 bits per residue as a threshold for inclusion unless the alignment yielded <80% 

coverage of the length of the target domain, or if there were not enough sequences 

(redundancy-reduced number of sequences ≥ 10L, where L is the sequence length). For 
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<10L sequences, we decreased the required average bit score until satisfied, and when the 

coverage was <80% we increased the bit score until satisfied. Proteins with <2L sequences 

at <70% coverage were excluded from the analysis. See previous work for ParE-ParD toxin-

antitoxin and tRNA alignment protocols.

Sequence weights.

The distributions of protein and RNA sequences in genomic databases are biased by both (i) 

human sampling, as some parts of a phylogeny may be more studied and sequenced than 

others, and (ii) evolutionary sampling, as some groups of species have arisen from large 

radiations and will have proteins that are over-represented. We aim to reduce these biases by 

reweighting the data distribution. We use the previously established procedure83 of 

computing each sequence weight πs as the reciprocal of the number of sequences within a 

given Hamming distance cutoff. If DH(x(s), x(t)) is the normalized Hamming distance 

between the query sequence x(s) and another sequence in the alignment x(t) and θID is a 

predefined neighborhood size (percent divergence), the sequence weight is

πs = ∑
t

N
I DH x(s), x(t) < θID

−1

The effective sample size of a multiple-sequence alignment can then be computed as the 

sum of these weights as

Neff = ∑
t

N
πt

To fit a model to reweighted data, there are two common approaches. First, as was done 

previously83, one can reweight every log-likelihood in the objective by its sequence weight 

πs. Although this works well for batch optimization, we found that it led to high-variance 

gradient estimates with mini-batch optimization that made stochastic gradient descent 

unstable. We instead used the approach of sampling data points for each mini-batch with 

probability ps proportional to their weight as ps = πs/Neff.

Following prior work34, we set θID = 0.2 for all multiple-sequence alignment sequences 

(80% sequence identity) except those for viral proteins, where we set θID = 0.01 (99% 

sequence identity) owing to limited sequence diversity and the expectation that small 

differences in viral sequences will have a higher probability of containing constraint 

information than the same diversity might from a sample of mammals, for instance.

Background: latent factor models.

Probabilistic latent-variable models reveal structure in data by positing a partially 

unobserved generative process that created the data and then conducting inference to learn 

the parameters of the generative process. We focus on models in which an unobserved set of 

factors z are drawn from an independent distribution and each data point arises according to 

a conditional distribution p(x|z,θ) that is parameterized by θ. This process can be written as
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z 𝒩 0, ID

x p(x |z, θ)

Principal component analysis (PCA) has been a foundational model for the analysis of 

genetic variation and can be realized in this probabilistic framework as the zero-noise limit 

of probabilistic PCA43,84. With linear conditional dependencies p(x|z,θ), PCA can model 

only additive interactions between the latent factors z. This limitation could in principle be 

remedied through the use of a conditional model p(x|z,θ) with nonlinear dependencies on z.

Here we consider a conditional model for sequences p(x|z,θ) that differs from PCA in two 

ways. First, the conditional distribution of the data p(x|z,θ) will be categorical rather than 

Gaussian to model discrete characters. Second, the conditional distribution p(x|z,θ) will be 

parameterized by a neural network rather than a linear map. In this sense, our latent-variable 

model may be thought of as a discrete, nonlinear analog of PCA.

Nonlinear categorical factor model.

Our probabilistic model is specified by two components: a prior distribution p(z) that 

specifies the marginal distribution of the hidden variables z, and a conditional distribution 

p(x|z,θ) that specifies how a sequence x is generated given the hidden variables. In our 

model, the sequence x is a string of letters of length L drawn from an alphabet of size q, and 

the hidden variables z are a vector of real numbers with length D.

In this work, we structure our prior and conditional distribution similarly to original versions 

of the VAE46. That is, we model the prior distribution p(z) as a multivariate normal of 

dimension D with mean 0 and identity covariance, and we model the conditional distribution 

p(x|z,θ) as a simple fully connected neural network with two hidden layers. Thus, the 

generative process for the joint distribution p(z)p(x|z,θ) can be written as

z 𝒩 0, ID

h(1) = f 1 W(1)z + b(1)

h(2) = f 2 W(2)h(1) + b(2)

h(3, i) = W(3, i)h(2) + b(3, i) for i = 1…L
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p xi = a |z = e
ha
(3, i)

∑be
hb
(3, i) for i = 1…L

where the nonlinearities are rectified linear units (ReLU) f1 = max(0, u) on the first layer and 

sigmoidal f2 = 1/(1 + e−u) on the second. The sigmoidal nonlinearity was introduced to 

bound the magnitude of the preactivations that are multiplied by the structured matrix W(3,i) 

(discussed in the next section). It is important to note that each letter xi is conditionally 

independent of every other position given the hidden variables z and, as a result, all 

correlations between letters must be mediated by correlations with the hidden variables.

Structured parameterization.

All biologically motivated aspects of our model are captured in a structured parameterization 

of the final weight matrix. Our parameterization is motived by three assumptions. (i) 

Sparsely interacting subsystems: hidden factors influence small subsystems of positions at a 

time, rather than jointly affecting the entire sequence. (ii) Correlated amino acid usage: 

certain amino acids are more likely to functionally substitute other amino acids in the same 

position on the basis of biochemistry. (iii) Selective uncertainty: differences in the strength 

of selection may lead to varying effective ‘temperatures’ of the constraint distribution. To 

capture these constraints, we parameterize at each position i as

W(3, i) = λCW(3, i)diag Si

where W(3,i) is a [q × H] matrix that linearly combines the H activations in the final hidden 

h(2) layer to q multinomial logits for the different characters (for example, amino acids) at 

position i. The parameterization consists of four terms: a matrix C that captures amino acid 

correlations, a matrix S with elements on (0,1) that gates which hidden units can affect 

which positions, a scalar constant λ capturing the overall selective constraint shared across 

all positions (inverse temperature), and underlying parameters W(3, i) that combine with the 

other terms to capture site-specific constraints. We describe these elements in turn.

To capture correlations in amino acid usage, we split the weights themselves into a 

combination of local weights at each position W(3, i) plus a global ‘dictionary’ matrix C. The 

inner dimension of the product CW(3, i) is a hyperparameter E such that C is a global [q × E] 

matrix that left multiplies each of the W(3, i) matrices, which are [E × H], to transform to the 

alphabet of the model (for example, the amino acids).

To capture sparsely depending subsystems, we learn an [H × L] matrix S that masks which 

neurons in the final hidden layer h(2) can influence which positions in the sequence. Each 

column vector Si captures the hidden units in h(2) that affect position i in the sequence. We 

constrain the values of this matrix to be between 0 and 1, and also to tie some of the rows of 

S to be equal (Fig. 5; see parameterization below). In the above expression we write diag(Si) 
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to indicate the [H × H] matrix containing the column vector si along its diagonal, which 

allows us to frame the matrix S as a component of the parameterization of W(3,i). In practice, 

we actually compute the effect of S with broadcasting as h(3, i) = λCW(3, i) Si ⊙ h(2) + b(3, i).

Lastly, a positive scalar λ captures the overall strength of the constraints. Typically, 

including a scalar prefactor in a weight matrix is fully redundant, but placing a prior over 

this parameter and then modeling uncertainty with a variational approximation can capture 

global, sequence-wide correlations in the selective strength.

We parameterize the constrained parameters S and λ with unconstrained forms S and λ that 

can be optimized by gradient descent. The global ‘inverse temperature’ λ is parameterized 

by the softplus function as λ = log 1 + eλ . The sparsity matrix S is constrained to both (i) 

have elements on (0,1) and (ii) have H/k blocks of k identical rows. To accomplish this, we 

parameterize it in terms of an [H/k × L] matrix S, transform it by a sigmoid, and tile the rows 

of S k times with the transform S ji = 1 + exp S j mod (H /k), i
−1

. When paired with a 

Gaussian prior over S and W(3, i), the scale parameters S will be a priori logit-normally 

distributed, and the resulting product W(3, i) diag Si  can be seen as a continuous relaxation 

of a spike and slab prior (where it would be exact if the elements of S were Bernoulli).

Priors.

We place Gaussian priors over all unconstrained parameters as 

W i j 𝒩(0, 1), Ci j 𝒩(0, 1), Si j 𝒩 μs, σs
2 , and λ 𝒩(0, 1). To set the hyperparameters μs, σs

2, we 

consider the effective logit-normal prior over s, which can be thought of as a smooth 

relaxation of a Bernoulli that can be made sharper by an increase in the variance σs
2. We set 

μs = − 12.36 and σs
2 = 16.

Background: variational inference.

Nonlinear latent factor models are difficult to infer. Because the latent variables z are not 

observed, computation of the marginal likelihood of the data requires that they be integrated 

out as

logp(x |θ) = log∫ p(x |z, θ)p(z)dz

We must apply this integral because we do not know a priori which z is responsible for each 

data point x, and so we average over all possible explanations weighted by their relative 

probability. When this integral over z cannot be simplified, optimization of the marginal 

likelihood log p(x|θ) to fit a model to data will be intractable.

Variational inference forms a lower bound on log p(x|θ) that is easier to optimize. First, we 

introduce q(z|x,ϕ), an approximate distribution for z given x that is flexibly parameterized by 
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variational parameters ϕ. By Jensen’s inequality, we can lower-bound the intractable 

marginal likelihood log p(x|θ) as

logp(x |θ) = log∫ p(x |z, θ)p(z)dz

= log∫ p(x |z, θ)p(z)
q(z |x, ϕ) q(z |x, ϕ)dz

≥ ∫ log p(x |z, θ)p(z)
q(z |x, ϕ) q(z |x, ϕ)dz

We write this lower bound as

logp(x |θ) ≥ ℒ(ϕ) =Δ 𝔼q[logp(x |z, θ)] − DKL(q(z |x, ϕ) p(z))

which we refer to as the evidence lower bound (ELBO). Maximizing the ELBO has the side 

effect of minimizing the Kullback-Leibler (KL) divergence between the variational 

approximation q(z|x,ϕ) and the true posterior distribution for z given x,

p(z |x, θ) = p(x |z, θ)p(z)
∫ p x |z′, θ p z′ dz′

Variational approximation for local posteriors p(z|x,θ). We structure the functional form of 

the variational approximation for z as

g(1) = f 1 Wq
(1)x + bq

(1)

g(2) = f 1 Wq
(2)g(1) + bq

(2)

μ = Wμ
(3)g(2) + bμ

(3)

σ = exp Wσ
(3)g(2) + bσ

(3)

q(z |x, ϕ) = 𝒩 μ, diag σ2
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We apply the ‘reparameterization trick’ of Kingma and Welling46 and Rezende et al.47 to 

write the latent variables z as deterministic transforms of a noise source 

ϵ 𝒩 0, ID as z = μ + σ ⊙ ϵ, where the symbol ⊙ is an element-wise product.

Variational approximation for global posteriors p(θ |X). We briefly review46,47 how to extend 

variational approximations to include both the latent variables z and the global parameters 

θ46,47. Because the posterior for the global parameters is conditioned on the entire dataset, 

we must consider the marginal likelihood of the full dataset X = x(1), …, x(N) , which 

integrates out all of the corresponding latent factors Z = z(1), …, z(N) . The likelihood of the 

entire dataset log p(X) can be lower-bounded by

log p(X) = log∬ p(X |Z, θ)p(Z)p(θ)dZdθ

= log ∬ p(X |Z, θ)p(Z)p(θ)
q(Z, θ |X, ϕ) q(Z, θ |X, ϕ)dZdθ

≥ ∬ log p(X |Z, θ)p(Z)p(θ)
q(Z, θ |X, ϕ) q(Z, θ |X, ϕ)dZdθ

The ELBO can then be written as

logp(X) ≥ ℒ(ϕ)

≜ N𝔼x ∈ X 𝔼q(θ)q(z |x)(logp(x |z, θ)) − DKL(q(z |x, ϕ) p(z))

− ∑
θ(i)

DKL q θ(i) p θ(i)

We model all variational distributions over the parameters with fully factorized mean-field 

Gaussian distributions. We factorize the variational approximation across the global and 

local parameters as q(Z, θ |X, ϕ) = q(Z |X, ϕ)q(θ |ϕ) across Z as q(Z |X, ϕ) = ∏q z(i) |x(i), ϕ , 

and across the model parameters as q(θ |ϕ) = ∏ θ(i) |ϕ . In accordance with our data-

reweighting scheme, we set N = Neff, the effective number of sequences that is the sum of 

the sequence weights.

Model hyperparameters.

We used a fixed architecture across all sequence families. The encoder has architecture 

1500–1500-(30×2) with fully connected layers and ReLU nonlinearities. The decoder has 

two hidden layers: the first with size 100 and a ReLU nonlinearity, and the second with size 

2,000 with a sigmoid nonlinearity. The dictionary C is a q × 40 matrix where the alphabet 

size q is 20 for proteins and 4 for nucleic acids. We tied rows of the S matrix into groups of 
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size k = 4. Dropout53 was set to 0.5 when used in ablation studies. Models were optimized 

with Adam85 with default parameters and a batch size of 100 until convergence, completing 

300,000 updates.

Each model was fit five times to the same multiple-sequence alignment using a different 

random seed. We calculated the mutation effect prediction (ΔE) by taking the difference of 

the mean of 2,000 ELBO samples of the wild-type and a given mutated sequence.

Site-independent and pairwise model.

We compared the VAE with two other kinds of probabilistic models, both of which can be 

characterized as undirected graphical models with probability

P(x |θ) = 1
Z exp(E(x))

For these distributions, E(x) is the log-potential that describes the favorability of a sequence, 

and Z normalizes the distribution over sequence space. A site-independent model has site-

additive terms for each amino acid in each position as

Esite(x) = ∑
i

hi xi

while the pairwise model includes additional parameters for every pairwise combination of 

amino acids as

Epair(x) = ∑
i

hi xi + ∑
i < j

Ji j xi, x j

We estimated these models using the same methods previously described for EVmutation34 

(L2-penalized maximum pseudolikelihood). To compute the effects of mutations, we again 

use the log-ratio

log
p x(Mutant) |θ

p x(Wild‐type) |θ

which reduces to the difference of the (negative) energy values E(x) for the mutated and 

wild-type sequence.

Predictors for non-epistatic mutation effects.

We also compared a subset of protein datasets with three commonly used mutation-effect 

predictors—a BLOSUM62 matrix, SIFT32, and Polyphen231—as previously described for 

EVmutation34.
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Group sparsity analysis.

We aimed to test whether positional activations driven by specific neurons in the last hidden 

layer corresponded to structural proximity. We gathered ground-truth distance data from the 

PDB86 records of homologous sequences that were found via Jackhmmer (Supplementary 

Table 8). To aggregate distance information across multiple structures from the same family, 

we computed the median (across PDBs) of the minimum atom distances (across all atom 

pairs per position pair) for both intra- and homo-oligomer distances. The final aggregated 

distance matrix was the element-wise minimum of the intra- and homo-oligomeric distance 

matrices.

To identify the dominant connections between the last hidden layer of neurons and specific 

positions in the sequence, we consider the (approximate) sparsity structure of the matrix S. 

The row vectors Sa,: represent positions in the sequence that are affected by the hidden unit 

ha
2 . We quantify the ‘typical’ distances in these groupings by means of a weighted average 

of the distances, where the weighting within each group is computed as wi j
(a) = SaiSa j. The 

‘typical’ distance within a group a is then

D(a) =
∑i < jwi j

(a)Di j

∑i < jwi j
(a)

The null expectation for each D(a) is the expected average distance under permuted groups, 

which is simply the average pairwise distance across the whole structure. We discarded any 

‘disconnected’ hidden units for which the entire row of S had a negligible value 

∀ j, Si j < 0.001 .

Residual analysis.

We calculated the Spearman ρ by transforming paired data to ranked quantiles and then 

computing the Pearson correlation between the ranks. To determine where the model over- 

or underpredicted the ΔE for each mutation, we transformed the experimental measurements 

and mutation-effect predictions to normalized ranks on the interval [0,1].

To quantify the error between predictions, we fit a least-squares linear fit from the 

normalized ranks of the predictions to the normalized ranks of the data for each method and 

then measured the residuals of this fit. Thus, we define the residual effects as the residuals of 

a least-squares linear fit between the normalized ranks. Given a least-squares fit with slope 

and bias m and b, respectively, the residuals are then

εΔE = dExperiment − mdΔE + b

Thus positive residuals εΔE > 0 represent underprediction of the rank of the experimental 

effect (and thus overprediction of deleteriousness), whereas negative εΔE values represent 

overprediction of the experimental rank (and thus underprediction of deleteriousness). We 
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analyzed deep mutational scans with only single mutations, using the most recent 

experimental data for each protein. Residuals were grouped by the identity of the amino acid 

either before mutation (wild-type) or after mutation (mutant).

Bias correction.

To correct for biases between mutation-effect predictions and experimental measurements, 

we created a feature matrix for each mutation that included ΔE, amino acid identity before 

and after mutation, alignment column statistics (conservation and amino acid frequency), 

and residue hydrophobicity87. We used leave-one-out cross-validation (LOOCV) to correct 

the bias for each dataset. Using the most recent deep mutational scan (DMS) experiment as 

the representative of that protein family (28 DMS datasets), we used the mutants of 27 

datasets to fit a regression model to predict the residuals of each known mutation, εΔE, given 

the feature matrix. After this model was fit, it was used to predict εΔE for the mutants in the 

test dataset. This predicted residual bias εΔE was subtracted from the normalized predicted 

rank d ΔE = dΔE − εΔE. These corrected predictions were then reranked and compared to the 

experimental results for calculation of the corrected Spearman ρ. To predict the effects of 

mutations solely from DMS data, we used the same LOOCV procedure but excluded all 

evolutionary information in the feature matrix for each mutation. In this case, the feature 

matrix was used to directly compute a rank dDMS. We subsequently reranked these values 

and compared them to the ranked experimental results to calculate a corrected Spearman ρ.

Generalizability analysis.

We focused on the alignment and mutation effects of β-lactamase as a case study to test the 

generalizability of evolutionary models for the prediction of mutation effects 

(Supplementary Fig. 2). We first made four reduced alignments by removing the query 

sequence (BLAT_ECOLX) and all sequences with a normalized hamming distance greater 

than 0.95, 0.8, 0.6, and 0.35 to the query, respectively. Five latent variable models were fit to 

each alignment, as well as a pairwise and independent model using the same sequence 

weighting and model fitting techniques.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. A nonlinear latent-variable model captures higher-order dependencies in proteins and 
RNAs.
a, Comparison of a nonlinear latent-variable model with site-independent and pairwise 

models. b, The dependency p(x|z) (blue) of the sequence x on the latent variable z is 

modeled by a neural network, and inference and learning are made tractable by joint training 

with an approximate inference network q(z|x) (pink). This combination of model and 

inference is also known as a variational autoencoder. The size of the latent variables z and 

hidden dimensions of the neural network are shown.
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Fig. 2 |. Mutation effects can be quantified by likelihood ratios.
After fitting a probabilistic model to a family of homologous sequences, we heuristically 

quantified the effect of mutation as the log-ratio of mutant likelihood to wild-type likelihood 

(as approximated by the ELBO; Methods). Bottom: mutation-effect scores for positions 

310–393 in the PDZ domain.
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Fig. 3 |. A deep latent-variable model predicts the effects of mutations better than site-
independent or pairwise models.
a, DeepSequence captures the effects of mutations across deep mutational scanning 

experiments as measured by rank correlation. b, Comparison of prediction accuracy of 

DeepSequence to that of a site-independent model (top) and EVmutation (bottom).
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Fig. 4 |. Latent variables capture the organization of sequence space.
The β-lactamase family shown in two-dimensional latent space; a single deep mutational 

scanning experiment with variants (center: pink) is shown.
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Fig. 5 |. Structured priors over weights capture biological assumptions.
Top: traditional fully connected layer that outputs per-position logits over different letters 

(A, B, C, D) at each position. Center: a group-sparsity prior over the weights encourages 

block sparsity such that groups of k hidden units tend to influence all the logits at a small 

number of positions. Bottom: an additional global transform at every position in the 

sequence by a shared weight matrix captures correlations between letter usage.
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Fig. 6 |. Interpretation of model and effect predictions.
a, Left: log enrichment of 3D distances between residues that make up the sparse factors 

compared to a null distance (Methods). Box plots show the median (center line), 

interquartile range (hinges), and 1.5 times the interquartile range (whiskers); outliers are 

plotted as individual points. Right: correlations in the weights of the final width - 1 

convolution taken across all models reflect known amino acid correlations and are correlated 

with a well-known substitution matrix BLOSUM62 (Spearman p = 0.83, N = 210). b, Left: 

comparison of relative rank error between DeepSequence and a position-independent 
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conservation model across different positions and mutation attributes. Right: top five 

positions with the greatest reduction in rank error from the site-independent model to 

DeepSequence.
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