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LIX, École Polytechnique

kein.iitian@gmail.com

Maks Ovsjanikov
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Abstract

We present a novel learning-based approach for comput-

ing correspondences between non-rigid 3D shapes. Unlike

previous methods that either require extensive training data

or operate on handcrafted input descriptors and thus gen-

eralize poorly across diverse datasets, our approach is both

accurate and robust to changes in shape structure. Key to

our method is a feature-extraction network that learns di-

rectly from raw shape geometry, combined with a novel reg-

ularized map extraction layer and loss, based on the func-

tional map representation. We demonstrate through exten-

sive experiments in challenging shape matching scenarios

that our method can learn from less training data than ex-

isting supervised approaches and generalizes significantly

better than current descriptor-based learning methods. Our

source code is available at: https://github.com/

LIX-shape-analysis/GeomFmaps.

1. Introduction

Shape correspondence is a key problem in computer vi-

sion, computer graphics and related fields with a broad

range of applications, including texture or deformation

transfer and statistical shape analysis [7], among many oth-

ers. While classical correspondence methods have been

based on handcrafted features or deformation models [49],

more recent approaches have focused on learning an opti-

mal model from the data either in supervised [11, 53, 25, 16]

or even unsupervised settings [19, 43, 17].

Despite significant progress in recent years, however,

learning-based approaches for shape correspondence typ-

ically require large amounts of training data in order to

learn a model that generalizes well to diverse shape classes

[53, 16]. Several existing methods address this chal-

lenge by learning a derived representation, through a non-

linear transformation of pre-computed feature descriptors

[11, 25, 19, 43], rather than on the geometry of the shapes

themselves. Unfortunately, as we demonstrate below, this
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Figure 1. Given a pair of shapes, our approach builds consistent de-

scriptors directly from the underlying point clouds (left), and auto-

matically computes an accurate pointwise correspondence (right).

reliance on a priori hand-crafted descriptors makes the re-

sulting learned models both less robust and less accurate

leading to a significant drop in generalization power to new

shape classes or instances.

In this work, we propose an approach that combines the

power of learning directly from the 3D shapes with strong

regularization based on a novel spectral correspondence ex-

traction layer. Our method is inspired by recent learn-

ing techniques employing the functional map representa-

tion [25, 43]; however, we extend them to learn the features

from 3D geometry rather than from some pre-computed de-
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scriptors. Furthermore, we introduce a regularizer into the

functional map computation layer that greatly improves the

speed and robustness of training. Finally, we demonstrate

how the spectral loss based on the functional map repre-

sentation in the reduced basis significantly reduces over-

fitting, while still leading to accurate correspondences cou-

pled with recent post-processing techniques. As a result,

our overall pipeline is both more robust and has greater gen-

eralization power than existing methods, while still being

able to learn from limited training data.

2. Related Work

Computing point-to-point maps between two 3D discrete

surfaces is a very well-studied area of computer vision. Be-

low, we review those closest to our method, or with the best

known results to serve as baselines, and refer to recent sur-

veys [49, 6, 44] for an in-depth discussion.

Our method is built upon the functional map representa-

tion, which was originally introduced in [32] as a tool for

non-rigid shape matching, and then extended in follow-up

works [33]. The key property of this representation is be-

ing able to express maps as small matrices, encoded in a

reduced basis, which greatly simplifies the associated opti-

mization problems.

The original work used only a basic set of constraints

on functional maps, which have been extended significantly

in, e.g., [24, 2, 20, 14, 9, 41, 31, 21, 40] among many other

works. These approaches both extend the generality and

improve the robustness of the functional map estimation

pipeline, by using regularizers, robust penalties and pow-

erful post-processing of the computed maps.

A key challenge in all of functional map estimation tech-

niques, however, is the strong reliance on given input de-

scriptors used for computing the maps. Several approaches

have suggested to use robust norms [24, 23], improved

pointwise map recovery [42, 15] or more principled reg-

ularizers [39] which can help alleviate noise in the input

descriptors to a certain extent but do not resolve strong in-

consistencies in challenging cases.

More recent techniques have advocated learning optimal

descriptors for functional map estimation directly from the

data [11, 25]. These methods compute a transformation

of given input descriptors so that the estimated functional

maps are close to ground truth maps given during training.

This idea was very recently extended to the unsupervised

setting [19, 43] where the supervised loss was replaced with

structural penalties on the computed maps.

Despite significant progress, however, in all of these

cases, the descriptors are optimized through a transforma-

tion of hand-crafted input features, such as SHOT [48],

Heat [45] or Wave kernel signatures [5]. This has two severe

consequences: first, any information not present in the input

features will be absent from the optimized descriptors, and

second, such approaches generalize poorly across datasets

as the input features can change significantly. This is par-

ticularly true of the commonly-used SHOT descriptors [48],

which are sensitive to the triangle mesh structure and, as we

show below, can vary drastically across different datasets.

A number of other techniques have also been proposed

for shape correspondence learning without using the func-

tional map representation. These include approaches that

exploit novel convolutional layers on triangle meshes [27,

8, 30, 36] and more general methods that use learning from

depth-maps [53] or in some feature space [46, 10] among

many others. Remarkably, relatively few methods aim to

learn directly from the raw 3D shape geometry for shape

correspondence, with the notable exceptions of [16, 12]. In

large part this is due to the complexity of the correspon-

dence problem, where unlike, e.g., shape segmentation, the

number of labels can be unbounded. As a result, exist-

ing techniques address this either by learning from precom-

puted features, or relying on template-based matching and

large training sets [16, 12], that might even require manual

curation. Although PointNet [37] and its variants [38, 4, 47]

achieve impressive results from raw point clouds for classi-

fication tasks, they are not yet competitive for shape corre-

spondence task.

Contribution

In this paper we show that feature learning for shape

matching can be done directly from the raw 3D geometry

even in the presence of relatively little training data, and

without relying on a template or an a priori parametric (e.g.,

human body) model. Our main contribution is a end-to-

end learnable pipeline that computes features from the 3D

shapes and uses them for accurate dense point-to-point cor-

respondence. We achieve this by introducing a novel map

extraction layer using the functional map representation in a

reduced basis, which provides a very strong regularization.

Finally, we demonstrate that recent refinement techniques

adapted to small functional maps [29], combined with our

efficient learning pipeline jointly result in accurate dense

maps at the fraction of the cost of existing methods.

3. Shape Matching and Functional Maps

One of the building blocks in our pipeline work is based

on the functional map framework and representation. For

completeness, we briefly review the basic notions for esti-

mating functional maps, and refer the interested reader to a

recent course [33] for a more in-depth discussion.

Basic Pipeline Given a pair of 3D shapes, M,N repre-

sented in a discrete setting as triangle meshes, and contain-

ing respectively m and n vertices, this pipeline aims at com-

puting a map between them.

It consists in four main steps. First, the first few eigen-
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functions of the discrete Laplace-Beltrami operator are

computed on each shape, namely kM and kN functions re-

spectively.

Second, a set of descriptor functions on each shape that

are expected to be approximately preserved by the unknown

map. For instance, a descriptor function can correspond to a

particular dimension of the Heat or Wave Kernel Signatures

[45, 5] computed at each point. Their coefficients are stored

in the respective basis as columns in matrices A,B.

Third, the optimal functional map C is then computed

by solving the following optimization problem:

Copt = argmin
C

Edesc

(

C
)

+ αEreg

(

C
)

, (1)

where the first term aims at preserving the descriptors:

Edesc

(

C
)

=
∥

∥CA − B
∥

∥

2
, whereas the second term reg-

ularizes the map by promoting the correctness of its overall

structural properties. It is common to use Fröbenius norm to

compute the distance between these matrices. This Eq. (1)

leads to a simple least-squares problem with kM × kN un-

knowns, independent of the number of points on the shapes.

As a last step, the estimated functional map C, which

maps across the spectral domains and converted to a point-

to-point map. As a post processing step, called refinement,

a number of advanced techniques are available [42, 15, 40,

29]. Most of them iteratively take the map from spectral to

spatial domain, until it reaches a local optimum.

3.1. Deep Functional Maps

Despite its simplicity and efficiency, being a sequen-

tial framework, the functional map estimation pipeline de-

scribed above is fundamentally error prone, due to the initial

choice of descriptor functions. To alleviate this dependence,

several approaches have been proposed to learn an optimal

transformation of initial descriptors from data [11, 25, 43].

These works aim at transforming a given set of descriptors

so that the optimal computed map satisfies some desired cri-

teria during training. This transformation can be learned

with a supervised loss, as in [11, 25], as well as with an

unsupervised loss as in the more recent works of [19, 43].

More specifically, the FMNet approach proposed in [25]

assumes to have as input, a set of shape pairs for which

ground truth point-wise maps are known, and aims to solve

the following problem:

min
T

∑

(S1,S2)∈Train

lF (Soft(Copt), GT(S1,S2)), where (2)

Copt = argmin
C

‖CAT (D1) −AT (D2)‖. (3)

Here, adopting the notation from [43] T is a non-linear

transformation, in the form of a neural network, to be ap-

plied to some input descriptor functions D, Train is the

set of training pairs for which ground truth correspondence

GT(S1,S2) is known, lF is the soft error loss, which penal-

izes the deviation of the computed functional map Copt, af-

ter converting it to a soft map Soft(Copt) from the ground

truth correspondence, and AT (D1) denotes the transformed

descriptors D1 written in the basis of shape 1. Thus, the

FMNet framework [25] learns a transformation T of de-

scriptors T (D1), T (D2) based on a supervised loss that

minimizes the discrepancy between the resulting soft map

and the known ground truth correspondence.

A related recent approach, SURFMNet [43] follows a

similar strategy but replaces lF with an unsupervised loss

that enforces the desired structural properties on the result-

ing map, such as its bijectivity, orthonormality and commu-

tativity with the Laplacian.

3D-CODED In contrast to the the methods described above

that primarily operate in the spectral domain, there are also

some approaches that never leave the spatial domain. With

the recent works on point clouds neural networks, pioneered

by PointNet [37], and significantly extended by [4, 47],

to name a few, it is now possible to learn 3D features di-

rectly from point clouds. 3D-CODED [16, 12] is based

on this approach, as it is a method built on a variational

auto-encoder with a PointNet architecture for the encoder.

Their method relies on a template that is supposed to be

deformable in a non-rigid but isometric way to any of the

shape of the datasets. It is a supervised method, and re-

quires the knowledge of all ground-truth correspondences

between any shape of the dataset and the deformable tem-

plate. 3D-CODED is trained on 230K shapes, introduced in

SURREAL [50], and generated with SMPL [26].

Motivation The two main classes of existing approaches

have their associated benefits and drawbacks. On the one

hand, spectral methods are able to use small matrices in-

stead of all the points of the shape, and operate on intrinsic

properties of the 3D surfaces, making them resilient to a

change in pose, and allowing them to train on really small

datasets. However, due to their use of input descriptors (typ-

ically SHOT [48]), they tend to overfit to the connectivity of

the training set, which can lead to catastrophic results even

in apparently simple cases. On the other hand, 3D-CODED

shows extreme efficiency when trained on enough data, re-

gardless of the connectivity, but with a small dataset, it is

prone to overfitting and fails to generalize the training poses

to predict the different poses of the test set.

Our method is a mix of the two approaches, and, as we

show below, can obtain accurate results with little training

data leading to state-of-the-art accuracy on a challenging

recent benchmark of human shapes in different poses and

with different connectivity [28].
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4. Method

4.1. Overview

In this paper, we introduce a novel approach to learn-

ing descriptors on shapes in order to get correspondences

through the functional map framework. Our method is com-

posed of two main parts, labeled as Feat and FMReg in Fig-

ure 2. The first aims at optimizing point cloud convolu-

tional filters [4, 47] to extract features from the raw geome-

try of the shapes. These filters are learned using a Siamese

network on the source and a target shapes by using shared

learnable parameters Θ, in a similar way as in [25]. How-

ever, unlike that approach and follow-up works [19, 43] we

learn the features directly from the geometry of the shapes

rather than computing a transformation of some pre-defined

existing descriptors. These learned descriptors are projected

in the spectral bases of the shapes and fed to the second

block of the method, which uses them in a novel regularized

functional map estimation layer. Finally, we use a spec-

tral loss, based on the difference between the computed and

the ground truth functional maps. This makes our approach

very efficient as it operates purely in the spectral domain,

avoiding expensive geodesic distance matrix computations

as in [25, 19] and moreover allows us to handle functional

or soft ground truth input maps without requiring the train-

ing shapes to have the same number of points or fixed mesh

connectivity.

We stress again that the two components: learning fea-

tures directly from the shapes and using the functional map

representation both play a crucial role in our setup. The for-

mer allows us to learn robust and informative features inde-

pendently from the mesh structure, while the latter allows

us to strongly regularize correspondence learning, resulting

in a method that generalizes even in the presence of a rela-

tively small training set.

4.2. Architecture

The novelty of our architecture lies in its hybrid charac-

ter. The first part, which we will refer to as the feature ex-

tractor in the following, aims at computing point-wise fea-

tures on the input shapes. It corresponds to the Feat block

in Figure 2, and takes as input only the point clouds making

it robust towards changes in connectivity.

The purpose of the second part is to recover robust func-

tional maps using these learned features. This block is built

according to the pipeline of [32], first taking the features to

the spectral domain over the two shapes (which corresponds

to the dot products blocks after the Feat blocks in Figure

2), and then computing the map by minimizing an energy.

However, since our method is based on a neural network,

this operation should be differentiable with respect to the

features over the shapes for the back-propagation algorithm

to work. We extend the previously proposed functional map

Feat

Feat

FMreg

Figure 2. Overview of our approach: given a pair of shapes, we

optimize for a point cloud convolutional model to get point-wise

features for each shape, that we convert to a functional map using

our FMReg block. The loss that we put forward penalizes maps

according to their distance to the ground-truth map between the

two shapes.

layers [25] to also incorporate a differentiable regularizer,

which results in the very robust map extraction, represented

as FMReg in Figure 2.

4.3. The feature extractor

The goal of this block is to learn functional characteri-

zations of point clouds that will later be used to compute

spectral descriptors and then functional maps. To this end,

this network must be applied with the same weights to the

source and target shapes, as represented in Figure 2, and

must result in informative descriptors, extracted from the

point clouds of the two shapes.

For this part, we chose the state of the art point cloud

learning method KPConv [47], by extending the segmenta-

tion network proposed in that work. Our feature extractor

is thus a Siamese version of the segmentation network de-

scribed in KPConv, which we review for completeness in

the supplementary materials.

4.4. The regularized FMap layer

This block provides a novel fully differentiable way to

compute a robust functional map from potentially low di-

mensional spectral descriptors.

The main goal is, as in Section 3, to recover the ground-

truth bijection between M and N , on which we have the

computed raw-data features F and G.

For this we first express the computed feature func-

tions in the respective spectral basis, which we denote by

ΦM and ΦN . This leads to the spectral descriptors A =
(ΦM)†F and B = (ΦM)†G, with Φ† the Moore pseudo-

inverse of Φ. We stress again that this step is where we

shift focus from the spatial to the spectral domain, and cor-

responds to the dot product blocks in Figure 2.

In the pipeline first introduced in [32] and then widely

used in the follow-up works [34], the standard strategy is to

compute the functional map C that optimizes the following

energy:
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min
C

∥

∥CA−B
∥

∥

2
+ λ

∥

∥C∆M −∆NC
∥

∥

2
, (4)

where λ is a scalar regularization parameter.

Remark that the optimization problem in Eq. (4.4) is

quadratic in terms of C and can be solved e.g. via standard

convex optimization techniques. However, in the learning

context, we need to differentiate the solution with respect

to the spectral features A,B, which is challenging when C

is computed via an iterative solver. Alternatively, the prob-

lem in Eq. can be written directly in terms of a large least

squares system, by vectorizing the matrix C as was sug-

gested in [32]. However, for a k × k functional map, this

leads to a system of size k2×k2 which becomes prohibitive

even for moderate values of k. To avoid these issues, pre-

vious learning-based approaches based on functional maps

[25, 19, 43] have only optimized for C using the first part of

the energy in Eq. (4.4):
∥

∥CA−B
∥

∥

2
. This results in a sim-

ple linear system for which the derivatives can be computed

in closed form. This has two major limitations, however:

first the linear system is only invertible if there are at least k

linearly independent feature functions. This condition can

easily be violated in practice, especially in the early stages

of learning, potentially resulting in a fatal error. Further-

more, the lack of regularization makes the solved-for func-

tional map very sensitive to inconsistencies in the computed

descriptors, which leads to an overall loss of robustness.

In our work we address this problem by using the full en-

ergy in Eq. (4.4) in a fully differentiable way. In particular,

we use the fact that the operators ∆M and ∆N are diagonal

when expressed in their own eigen-basis.

Indeed we remark that the gradient of the energy in Eq.

(4.4) vanishes whenever CAA
T +λ∆ ·C = BA

T , where

the operation · represents the element-wise multiplication,

and ∆ij = (µM
j − µN

i )2, where µM
l and µN

l respectively

correspond to the eigenvalues of ∆M and ∆N . It is then

easy to see that this amounts to a separate linear system for

every row ci of C :

(AA
T + λdiag((µ1

j − µ2
i )

2))ci = Abi (5)

where bi stands for ith row of B.

In total, if k is the number of eigenvectors used for rep-

resenting the functional map, this operation amounts to in-

verting k different k × k matrices. Since inverting a linear

system is a differentiable operation, which is already imple-

mented e.g. in TensorFlow, this allows us to estimate the

functional map in a robust way, while preserving differen-

tiability.

4.5. The supervised spectral loss

Our method also uses a loss with respect to the ground

truth functional map in the spectral domain. This is similar

to the energy used in [11], but is different from the loss of

the original FMNet work [25], which converted a functional

map to a soft correspondence matrix and imposed a loss

with respect to the ground truth point-wise map, relying on

expensive geodesic distance matrix computation.

Specifically, calling C the functional map obtained by

the FMap block, and C
gt the ground truth spectral map, our

loss is defined as:

lspec =
∥

∥C−C
gt
∥

∥

2

As mentioned above, we use a Fröbenius norm to compute

the distance between matrices.

It is important to note that whenever a pointwise ground

truth map is given it is trivial to convert it to the functional

map representation. Conversely, the ground truth spectral

map is more general than the point-wise ground truth corre-

spondence. Indeed, with just a few precise landmarks one

can recover a functional map accurate enough to make this

loss efficient, for instance through the original pipeline of

[32], but also with more recent follow-up works, such as

[40] or [29], which we will further describe as baselines to

our method in Section 5.

This is useful, e.g., in the case of re-meshed datasets. In-

deed, complete ground truth correspondences between two

shapes of these datasets are not fully known. One can only

have access to the (often partial and not bijective) ground

truth pointwise map from a template mesh T to each re-

meshed shape Si. Ecah such map can be converted to a

functional map Ci and a very good approximation of the

spectral ground truth C
gt
i→j between Si and Sj can be ex-

pressed as C
†
jCi.

4.6. Postprocessing

Once our model is trained, we can then test it on a pair of

shapes and get a functional map between these shapes. This

map can either directly be converted to a point to point map,

or refined further. We use a very recent and efficient re-

fining algorithm, called ZoomOut [29] based on navigating

between spatial and spectral domains while progressively

inceasing the number of spectral basis functions. This effi-

cient postprocessing technique allows us to get state-of-the-

art results, as described in Section 5.

4.7. Implementation

We implemented our method in TensorFlow [1] by

adapting the open-source implementation of SURFMNet

[43] and KPConv [47].

Our feature extraction network is based on a residual

convolutional architecture of [47], consisting of 4 convolu-

tional blocks with leaky linear units, with successive pool-

ings and dimension augmentation from 128 to 2048, fol-

lowed by a 4 up-sampling blocks with shortcuts from cor-

responding pooling layers, and dimension reduction from
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2048 back to 128. Please see the Supplementary materials,

part A, in [47] for more details. Following the pipeline of

KPConv, we start with a sub-sampled version of our point

clouds with a grid subsampling of step 0.03. The pooling

layers are therefore obtained with grid samplings of param-

eters 0.06, 0.12, 0.24 and 0.48.

Similarly to FMNet [25] and SURFMNet [43], our net-

work is applied in a Siamese way on the two shapes, using

the same learned weights for the feature extractor.

In the case of fully automatic spectral methods such as

BCICP [40] and ZoomOut [29], or the deep learning based

FMNet [25, 19] (supervised or unsupervised) and SURFM-

net [43], all results are invariant by any rigid transforma-

tion of the input shapes. However, in the case of meth-

ods using the 3D coordinates of the points to generate in-

formation about the input shape, this does not remain true.

Consequently, both 3D-CODED [16] and our method avoid

this dependency through data augmentation to be as close

as possible to the generality of fully spectral methods. To

that end, assuming the shapes are all aligned on one axis

(e.g. on human the natural up axis), both 3D-CODED

and our method perform data augmentation by randomly

rotating the input shapes along that axis. Our implemen-

tation is publicly available at https://github.com/

LIX-shape-analysis/GeomFmaps.

4.8. Parameters

In addition to the architecture above, our method has two

key hyper-parameters: the size of the functional basis and

the regularizer λ in Equation 5. For the size of the basis,

we discovered if this number is too high, for instance, with

120 eigenvectors as in FMNet and SURFMNet, it can easily

lead to overfitting. However, by reducing this number to

30, the results of SURFMNet on FAUST re-meshed (here

reported in Table 1) go from 0.15 to 4.5. As a consequence,

we choose the number of eigenvectors to be 30 in all of

our experiments on our method. Regarding the weight λ in

Equation (5), we observed that setting it to λ = 10−3 helps

getting good results while drastically reducing the number

of training steps, as pointed out in the ablation study. We

use this value throughout all experiments.

We train our network with a batch size of 4 shape pairs

for a number of epochs depending on the number of shapes

in the dataset. We use a learning rate of .001 and gradually

decreasing it to 0.0001 with ADAM optimizer [13].

5. Results

Datasets

We test our method on a wide spectrum of human

datasets: first, the re-meshed versions of FAUST dataset [7]

containing 100 human shapes in 1-1 correspondence, and

of SCAPE [3], made publicly available by Ren et al. [40].

Method \ Dataset F S F on S S on F

BCICP 15. 16. * *

ZoomOut 6.1 7.5 * *

SURFMNet 15. 12. 32. 32.

SURFMNet+icp 7.4 6.1 19. 23.

Unsup FMNet 10. 16. 29. 22.

Unsup FMNet+pmf 5.7 10. 12. 9.3

FMNet 11. 17. 30. 33.

FMNet+pmf 5.9 6.3 11. 14.

3D-CODED 2.5 31. 31. 33.

Ours 3.1 4.4 11. 6.0

Ours+zo 1.9 3.0 9.2 4.3

Table 1. Comparative results (×100) of the different methods on

Experiment 1.

These re-meshed datasets offer significantly more variabil-

ity in terms of shape structures and connectivity, including

for instance point sampling density, making them harder

to match for existing algorithms. We also highlight that

the SCAPE dataset is slightly more challenging since the

shapes are less regular, and two shapes never share the same

pose. This is not true for FAUST, wherein all the poses

present in the test set also exist in the training set, with the

variation coming from body type only, making the pose re-

covery easier at test time.

We also use the re-meshed version of the more recent

SHREC’19 dataset [28], which, in theory, is the most chal-

lenging of the test sets, because of stronger distortions in the

poses, the presence of an incomplete shape, and the number

of test pairs (430 in total, so two times the number of test

pairs of FAUST or SCAPE). At last, we also use the generic

training dataset of 3D-CODED [16], originally consisting

in 230K synthetic shapes generated using Surreal [50], with

the parametric model SMPL introduced in [26]. We use

it only for training purposes in our second experiment, to

show that our method can generalize well to changes in con-

nectivity, being able to train on a synthetic, very smooth,

identical triangulation for the whole training set, and still

produce results of excellent quality on re-meshed datasets.

Ablation study

Our method is built with a number of building blocks,

all of which we consider essential to achieve optimal per-

formance. To illustrate this, in the supplementary materials

we provide an extensive ablation study of all the key com-

ponents of our algorithm.

Baselines

We compare our method to several state of the art meth-

ods: the first category includes fully automatic methods

without any learning component [40, 29]. These methods

are simply evaluated on the test sets without any training.

The second category includes FMNet [25] and its unsu-
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Figure 3. Comparison with 3D-CODED while varying training size of SURREAL dataset and simultaneously testing on other datasets.

pervised versions, referred to as Unsup FMNet [19] and

SURFMNet [43], with and without post-processing (PMF

[52] for FMNet, and standard functional map refinement

[32], referred to as ICP, for SURFMNet). All these variants

of FMNet give similar results, but SURFMNet is the only

one to train within a few hours, without requiring too much

space. This is due to the fact SURFMNet only operates in

the spectral domain, in contrast to other methods. Lastly,

we compare to the supervised 3D-CODED [16], described

earlier in more details in Section 3. For conciseness, we re-

fer to our method as Ours in the following text. We show

our results with and without ZoomOut [29] refinement, re-

ferred to as ZO, in order to prove that our method stands

out even without post processing. We compare these differ-

ent methods in two main settings named Experiment 1 and

Experiment 2 below.

Experiment 1 consists of evaluating the different meth-

ods in the following setting: we split FAUST re-meshed

and SCAPE re-meshed into training and test sets contain-

ing 80 and 20 shapes for FAUST, and 51 and 20 shapes

for SCAPE. We obtain results for training and testing on

the same dataset, but also by testing on a different dataset.

For instance, by training on SCAPE re-meshed train set and

testing on FAUST re-meshed test set. This experiment aims

at testing the generalization power of all methods to small

re-meshed datasets, as well as its ability to adapt to a differ-

ent dataset at test time.

Experiment 2 consists of sampling 100, 500, 2000, and

5000 shapes from the SURREAL dataset to be used for

training. We then test the trained models on the test sets of

FAUST re-meshed, SCAPE re-meshed, and SHREC19 re-

meshed. This experiment aims at testing the robustness and

generalization power of the different methods in the pres-

ence of varying amounts of training data, as well as adapt-

ability to train on a perfect synthetic triangulations and still

get results on challenging re-meshed shapes.

Quantitative results

To evaluate the results, we use the protocol introduced

in [22], where the per-point-average geodesic distance be-

tween the ground truth map and the computed map is re-

ported. All results are multiplied by 100 for the sake of

readability.

As we can see in Table 1, our method performs the best

overall on Experiment 1. Fully automatic methods do not

provide competitive results compared to the learning meth-

ods (except on crossed settings because they did not train on

anything and are thus not influenced by the training shapes).

As reported in the Section 3.1, this highlights that hand-

crafted features can easily fail. It is noticeable that spectral

methods (FMNet variations, and Ours as a hybrid method)

get reasonable, or even good results in our case, with these

small datasets. In comparison, 3D-CODED seems to fail in

almost all cases. It is remarkable that it can learn on such a

small dataset as the training set of FAUST re-meshed. One

explanation for that is that FAUST contains the same set of

poses in the test set as in the train set.

Contrary to other baselines, our method gives good re-

sults on all settings, even without refinement, showing good

resilience to a really low number of shapes, even with re-

meshed geometry. We would like to stress that no other

method is able to achieve such a generalization with this

low number of shapes.

For a fair comparison with 3D-CODED, we complete

our study with a second experiment, in which the training

set is now made of the same shapes 3D-CODED uses for

training in their paper, namely SURREAL dataset. The aim

of this experiment is to further showcase the generalization

power of our method when compared to 3D-CODED. First,

by training on a very smooth synthetic dataset, on which

previous fully spectral methods tend to easily overfit due to

the obvious mismatch in triangulation in training and test

set. Our second goal is to observe the dependence of differ-

ent methods on size of the training set.

We report the results (multiplied by 100) of 3D-CODED

and Our method in Figure 3, as they are the only two com-

petitive algorithms in Experiment 2. These results once
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Figure 4. Qualitative results obtained with texture transfers for the different methods on Experiment 2, training on two different numbers

of shapes in the SURREAL dataset, and testing on SHREC re-meshed shapes.

again demonstrate that our method can achieve impressive

results even with a low number of training shapes. On

SHREC re-meshed, we achieve state of the art results with

an average error of 0.048 with only 500 training shapes. We

provide additional quantitative comparisons in the supple-

mentary materials.

It can be observed in Figure 3 that our results are consis-

tent and unaltered even with the drop in number of training

shapes. 3D-CODED, on the other hand, always suffers from

a reduced training set.

Qualitative results

In Figure 4 we show the results of our method (with and

without ZoomOut refinement [29]), 3D-CODED [16], FM-

Net [25] (with and without PMF refinement [51]), trained

on respectively 2000 and 100 shapes, as presented in Ex-

periment 2, via texture transfer.

With 2000 training shapes, both our method and 3D-

CODED lead to good or even excellent texture transfers,

while fully spectral methods fail due to the change of con-

nectivity from training to test set. However, with only 100

training shapes, 3D-CODED fails to get a good reconstruc-

tion in many cases, leading to bad texture transfer as in Fig-

ure 4. This highlights the fact that our method performs bet-

ter than any other existing method when only a few training

shapes are provided.

6. Conclusion, Limitations & Future Work

We presented a method for improving the robustness

and reducing overfitting in learning shape correspondences.

Key to our approach is a hybrid network structure, made of

a raw-data feature extractor that learns descriptors on a pair

of shapes, and a novel robust functional map layer. Our net-

work can thus operate in both the spectral and the spatial

domain, thus taking advantages of both representations.

Our approach has several limitations: first, as a super-

vised method it requires at least partial correspondences

(as discussed in Section 4.5) between the training shapes.

Also, it requires data augmentation to be able to predict

non-aligned shapes, which can be costly and unstable.

In the future, we plan to work towards an unsupervised

spectral loss, similar in spirit to SURFMNet [43], while

avoiding the symmetry ambiguity problem. We also plan

to try other, invariant feature extractors such as [18], or [35]

to avoid data augmentation.
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