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Abstract

Most previous bounding-box-based segmentation methods assume the bounding box
tightly covers the object of interest. However it is common that a rectangle input could
be too large or too small. In this paper, we propose a novel segmentation approach that
uses a rectangle as a soft constraint by transforming it into an Euclidean distance map.
A convolutional encoder-decoder network is trained end-to-end by concatenating images
with these distance maps as inputs and predicting the object masks as outputs. Our ap-
proach gets accurate segmentation results given sloppy rectangles while being general for
both interactive segmentation and instance segmentation. We show our network extends
to curve-based input without retraining. We further apply our network to instance-level
semantic segmentation and resolve any overlap using a conditional random field. Exper-
iments on benchmark datasets demonstrate the effectiveness of the proposed approaches.

1 Introduction
Rectangles are often used as input in computer vision tasks. For example, Rother et al.
[20] introduced using a rectangle around an object as input for interactive segmentation.
In instance segmentation, many methods [4, 5, 6, 9, 14, 15] follow the detect-and-segment
pipeline where several detection boxes are first obtained by some automatic detection algo-
rithms, then segmentation is performed on each of the boxes independently. However, an
important question raises: are rectangles leveraged in an effective way by current methods?

Fig. 1 shows examples of various rectangle cases and the segmentation results obtained
by different algorithms. The results of the first two examples are obtained by interactive seg-
mentation methods [20] and [13]. Most previous methods in this field assume the rectangle
is a bounding box. Pixels are then sampled inside/outside the bounding box to estimate the
foreground/background distributions. However, this strong assumption cannot handle cases
such as Fig. 1(a) where the box is inside the object boundaries and Fig. 1(b) where the box
does not leave enough background pixels.
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(a) GrabCut [20] (b) BoxPrior [13] (c) Hypercolumn [10] (d) MNC [6]

Figure 1: Rectangles (in green) and the results obtained by different algorithms (in cyan).
Note that the box in Fig. 1(b) contains the whole image. See Fig. 5 and 7 for our results.

The results of the last two examples are obtained by instance segmentation methods [10]
and [6]. Most recent instance segmentation methods are based on deep neural networks.
They all use detection rectangles as a hard constraint and either crop that region to use as the
network input or pool network features inside the box. However, since the detection boxes
are predicted by algorithms, many of them do not contain the whole object like in Fig. 1(c).
Even if a detection covers most of an object like in Fig. 1(d), only using the information
inside the rectangle will lose contextual information which is useful for segmentation.

The requirement to place fairly tight bounding boxes is too restrictive for user interac-
tion and detection algorithms. In this paper, we propose a novel way to use rectangles for
selection that produces more accurate results given a tight bounding box while also giv-
ing similar results for loosely-placed rectangles. Two key insights are that 1) a rectangle
should suggests the object is nearby, and 2) global context information is important for cor-
rect segmentation. Inspired by [27], we transform the rectangle into a Euclidean distance
map. The distance map is concatenated with the RGB image as input for a convolutional
encoder-decoder network (CEDN) [1, 18]. Our model is trained with loose rectangles to
allow for robust segmentation given sloppy input. The final prediction is the segmentation
mask of the object. Transforming rectangles into distance maps satisfies our key insights.
It encodes the distance from every pixel to the rectangle while also keeping all the image
content. As a result, our model is robust to rectangle placement while previous methods are
not. Moreover, our model is trained to segment general objects, and thus generates much
more accurate results.

As an application, we apply our method to automatic multi-object segmentation by com-
puting a selection from detection results. As multiple detections may overlap the same ob-
ject, we apply a dense conditional random field (CRF) [12] to convert individual segments
into an instance-level semantic labeling of the image. We also apply our model (trained on
rectangles) to hand-drawn curves and show that our approach generalizes well to this input
while allowing more flexibility in the input.

2 Related works
Computing a segmentation given a bounding box was introduced by Rother et al. [20]. It
computes a selection by iterating between computing foreground/background color mod-
els given a segmentation and computing a segmentation given foreground/background color
models. Improvements to this method include optimizing the segmentation and color models
in one step [23], adding a spatial extent prior [13], alternative optimization [25] and volume
balancing bias [2]. However, these models all rely on basic color and edge information and
do not use higher-order knowledge like the structure and shape of objects.
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Figure 2: The framework of our segmentation model. The rectangle is indicated in green in
the “Image" and “Distance map". The symbol � denotes the concatenation operation.

Detection-based instance segmentation methods also provide ways of computing a seg-
mentation given a rectangle. The works of [6, 14, 15] are most relevant to ours as they use
neural nets. Li et al. [14] trains a network that takes a segmentation heatmap as well as an
image and produces a new heatmap. At test time, a heatmap is generated using [10] and
then several iterations of the network are performed to get a solution. Dai et al. [6] use a
network consisting of a region-of-interest pooling and two fully-connected layers to com-
pute a mask given a bounding box. Liang et al. [15] train an instance-level segmentation
neural network that takes an initial object proposal and a number of CNN feature maps and
applies them iteratively to refine the segmentation. These methods each compute their seg-
mentation within the bounding box and are thus sensitive to its placement. In contrast, we
allow loosely-placed rectangles and generate a segmentation without need of a preliminary
segmentation or multiple iterations of processing. Additionally, this line of work falls short
of specifying exactly which pixels in an image belong to which object as they can return
multiple bounding boxes for a single object, often with different class labels, and can also
return overlapping segmentation for adjacent objects. We resolve this using a conditional
random field to provide an instance-level semantic segmentation without overlap between
objects.

3 Segmentation from rectangles
We propose a method of computing a segmentation from a rectangle, which is useful for
both interactive segmentation and instance segmentation. In our approach, a rectangle is first
transformed into a Euclidean distance map with the same size as the image input. Then the
distance map is concatenated with the image along the channel dimension to construct an
input pair to a CEDN model [1, 18]. The final prediction is the object mask. The framework
of our approach is illustrated in Fig. 2. Our approach is inspired by [27] but different from
theirs in mainly 4 aspects. First, [27] is not applicable for rectangle inputs. Second, they also
do not address the sloppy input problem. Third, their method is a two-step process which
requires post-processing by graph cut while our model is trained end-to-end. Last, we extend
our segmentation results to automatic multi-object segmentation while there is no clear way
to extend [27] to this problem.

3.1 Rectangle sampling
Since our segmentation model is trained on many (image, rectangle) pairs, our algorithm
samples several rectangles for each instance by randomly jittering the ground truth bounding
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box. Specifically, for each instance, let us define the ground truth tight bounding box B0

as [x0
min,y

0
min,x

0
max,y

0
max] where each element represents the minimum/maximum x/y coordi-

nate. Our algorithm randomly samples Ntrain rectangles. The four coordinates of rectangle
Bi, i 2 {1, ...,Ntrain} are generated by

xi
min/max = x0

min/max + v ·gi
j · (x0

max � x0
min),

yi
min/max = y0

min/max + v ·gi
j · (y0

max � y0
min),

(1)

where gi
j ⇠ N (0,1), j 2 {1,2,3,4} are standard Gaussian random variables. v is a hyper-

parameter that controls the degree of rectangle variation. With this sampling strategy, a small
training dataset can be augmented while keeping the model free from overfitting.

3.2 Rectangle transformation
Our algorithm then transforms each of the sampled rectangles into a distance map. In par-
ticular, given a rectangle B in an image I, let us define the pixels on the edge of B as a set
Se = {pi | pi is on the edge of B} where pi represent the location of pixel i. Similarly, let us
define the pixels inside B as a set Si and the pixels outside B as a set So. Then our algorithm
creates a 2-D distance map D which has the same width and height as the image I. We
compute D at location pi as:

D(pi) =

8
><

>:

128�min8p j2Se |pi �p j|, if pi 2 Si,

128, if pi 2 Se,

128+min8p j2Se |pi �p j|, if pi 2 So,

(2)

where | · | denotes the Euclidean distance. We use signed distance transformation to better
capture the context information of rectangle inputs while the unsigned transformation in [27]
gives inferior results. For the efficiency of data storage, we truncate the values of D between
0 to 255. Finally we concatenate the RGB channels of I and the distance map D to construct
a training pair.

3.3 CEDN model training
Our segmentation model inputs the concatenated training pairs and predicts binary instance
masks. The structure is a CEDN model including an encoder and decoder. The encoder
network is composed of several convolutional and max-pooling layers which abstract the
input data to small feature maps while the decoder network has several convolutional and
unpooling layers which reconstruct the image details from coarse to fine. We use the first
14 layers of VGG-16 [22] to initialize the encoder network. Since our input has 4 channels,
the convolutional filters at the first layer have one extra channel compared to VGG-16 which
are initialized with zeros. For the decoder network, we use a more concise network structure
than the encoder network to reduce redundant parameters and speed up training. The decoder
structure is shown in Fig. 2 in more details. All the parameters of the decoder network are
initialized with Xavier [8]. To address overfitting, Dropout is used after each convolutional
layer of the decoder network. In addition, we resample all the training data randomly in the
beginning of each training epoch.
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(a) (b) (c)
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Figure 3: The pipeline of our instance-level pixel labeling. (a) Image with all detection
boxes. (b) The segmentation per detection after NMS. Object contours with different colors
are outlined. (c) The final pixel-wise segmentation after CRF. (d) Ground truth.

4 Instance-level semantic segmentation
We extend our segmentation method to convert detection boxes into a instance-level semantic
segmentation. In doing so, we not only compute a segmentation for each detection box
independently but also resolve any overlap between segments to generate a pixel labeling.

Our approach to convert detection results into a pixel-labeling is illustrated in Fig. 3.
Given a test image, our method takes as input a set of detections and accompanying class la-
bels and scores. We first process the detections using non-max suppression ignoring the class
labels. We use our rectangle segmentation on each remaining detection box i independently
to generate a foreground probability map P f

i and a background probability map Pb
i .

Our algorithm weights each detection box i by using its largest categorical confidence
score si to update P f

i and Pb
i such as P fnew

i = si ·P f
i and Pbnew

i = 1�P fnew
i . Since each Pbnew

i
represents the background probabilities given a particular rectangle i, the background prob-
ability map Pbnew given all the rectangles can be computed as Pbnew = ’N

i=1 Pbnew
i where N is

the total number of detections. Finally we do normalization among P= [Pbnew ,P fnew
1 , ...,P fnew

N ].
To assign an unique instance label to every pixel in the image, our algorithm solves the

problem by leveraging the fully connected Conditional Random Field (CRF) model [12].
The objective function is formulated as minÂk ju(lk)+Âk< j jp(lk, l j), where lk 2 [0,N] is
the label assignment for pixel k. We define the unary potential as ju(lk) = � log(P(lk)).
The pairwise potential commonly penalizes the label disagreement between nearby pixels
with similar colors. We adopt the same formulation as used in [3]. The final solution of the
objective function gives an pixel-level instance labeling as well as semantic labeling.

5 Experiments

5.1 Implementation
Our models are trained on the PASCAL VOC 2012 dataset [7] and MS COCO dataset [16].
For PASCAL dataset, we adopt the same training and testing splits as used in [9, 10]. For MS
COCO dataset, we use the 2014 train-80k dataset for training. In each training iteration, we
randomly sample 4 bounding boxes per instance and make them a mini-batch. The sampling
parameter v is 0.15. The training inputs are resized to 320⇥320. We use Adam [11] for
optimization. The learning rate is 10�5. The threshold of our non-max suppression is 0.5.

To validate our method, we train a deconvolutional network [18] on PASCAL which
takes the image patch inside a given rectangle as input and output the corresponding object
mask. The network has the same structure as ours except its input only has RGB channels.
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Methods Error rate (%)
GrabCut [20] 8.1
BoxPrior [13] 3.7
OneCut [23] 6.7
MILCut [26] 3.6
KernelCut [24] 7.1
Deconvolution [18] 4.6
Ours-PASCAL 4.5
Ours-COCO 3.3

Table 1: Error rates on the provided boxes. Figure 4: Error rates on different scales of rectangles.

GrabCut BoxPrior OneCut MILCut KernelCut Deconvolution Ours GT

Figure 5: The segmentation results of different methods on the GrabCut dataset.

5.2 Rectangle Segmentation
We evaluate both our performance as an interactive selection tool on the GrabCut dataset [20]
as well as our performance segmenting objects from detections on the SBD dataset [21]. We
report the test results on MS COCO in the supplementary materials 1.

GrabCut dataset: For each object of its 50 test images, [13] provides a tight bounding
box. The evaluation metric is the error rate which computes the percentage of misclassified
pixels within the bounding boxes. We report our results by using these boxes in Table 1.
Our PASCAL model is trained on 20 categories, but still has a good generalization ability on
unseen objects of this dataset. Our COCO model is trained on more categories and images
and thus achieves better results.

Besides using the provided bounding boxes, for each box, we fix its center position and
change its size by different scales. We then evaluate all the methods on the generated rect-
angles. The evaluation metric is the percentage of misclassified pixels over the whole image
region. All the baseline implementations are based on the authors’ provided codes. The
results are illustrated in Fig. 4. It is obvious that previous methods deteriorate their perfor-
mance rapidly when the rectangle sizes change. Because these methods require the rectangle
to bound the object, so either smaller (Fig. 5, rows 1) or larger (Fig. 5, row 2) rectangles cause
the method to fail. In the extreme case, when a bounding box covers everything in an image,
most methods will select everything as foreground (Fig. 5, row 3). The proposed deconvolu-
tional baseline only performs well when the rectangles are larger because it too requires the
rectangle to bound the object. In contrast, our method has consistently good performance
with varying rectangle sizes.

PASCAL dataset: We run our PASCAL model and previous methods (with code pub-
licly available) on the same detection results obtained by [6] which has a similar detection
framework as Faster R-CNN [19]. All the methods are evaluated by the standard metrics

1Project website: https://sites.google.com/view/deepgrabcut
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Methods mAPr=0.5 mAPr=0.7 mAPr
vol

SDS [9] 49.7 25.3 41.4
CFM [5] 60.7 39.6 -
MPA [17] 61.8 - 52.0
IIS [14] 63.6 43.3 -
R2-IOS [15] 68.8 47.5 -
MNC [6] 65.0 46.3 55.6
GrabCut [20] 37.2 18.3 32.2
Hypercolumn [10] 62.2 41.8 52.0
Deconvolution [18] 59.3 39.0 50.4
Deconvolution [18]
(enlarged boxes) 62.3 45.4 54.1

Ours-PASCAL 67.3 51.0 58.6

Table 2: Results on the PASCAL validation dataset. Figure 6: Segmentation IOU v.s. Detection IOU.

GrabCut Hypercolumn MNC Deconvolution Deconvolution
(enlarged box) Ours Ground

truth

Figure 7: Segmentation given the same detections on the PASCAL validation set.

mAPr at 0.5 and 0.7 thresholds and the mAPr
vol metric which average the mAPr over 0.1

to 0.9 thresholds. The results are displayed in Table 2. The five methods in the top section
of Table 2 use their own detections since we could not get their codes. The methods in the
second section use the detection results from [6]. For the proposed deconvolutional baseline,
we also compare its performance with enlarged detection boxes (i.e. each box is upscaled by
1.5 ratio) to include more context.

It can be seen that given the same detections, our method has the best results under all the
evaluation metrics. In overall comparison, our method still achieves the best results under
two metrics, which are more related to the segmentation performance. It is also worthy
noting that some of the methods [10, 14] can only segment the 20 categories of the PASCAL
dataset while our model is generalizable to all object classes. In addition, the deconvolutional
baseline has much worse performance than ours, which well demonstrates the importance of
our distance-transformation channel.

In Fig. 7 we show some visual results which can intuitively explain why our method
works better. In the first row, the detection rectangle only covers parts of the object. All
the other comparison methods use the rectangle as hard constraints, and thus fail to segment
the whole objects. In the 2nd and 3rd rows, the objects inside the detection boxes have
some overlap with other objects. Therefore only using image context inside the rectangles
will lose important information. For example, the arm of the boy looks like the arm of the
woman inside the box (2nd row) and the separate part of the car is impossible to be inferred
without having the global view (3rd row). Therefore our novel way of leveraging rectangle
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metric Segmentation
models v = 0 0.1 0.2 0.3

mAPr=0.5
GrabCut [20] 34.2 30.5 23.1 13.6
Hypercolumn [10] 60.0 58.3 55.1 43.5
Ours 64.0 63.7 62.1 57.3

mAPr=0.7
GrabCut [20] 16.7 12.3 5.9 2.5
Hypercolumn [10] 40.4 34.5 25.9 13.1
Ours 45.5 44.8 43.1 36.4

mAPr
vol

GrabCut [20] 30.9 28.2 23.3 17.7
Hypercolumn [10] 51.0 49.2 45.6 40.0
Ours 55.0 54.8 53.7 49.8

Table 3: Evaluation of rectangle misplacement.

cat
cat

cat cat
cat

catcat
cat

car

person

car

car

car

person

car
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car
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sheepsheep

sheep

sheep
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sheep

sheep

sheep

(a) (b) (c) (d)
Figure 8: (a) Input image. (b) All detections of [6]. (c)
Using the naive labeling approach (score thresholding at
0.7). (d) Using our labeling approach.

information is the key for the success of our method.
To further evaluate our method, we first compare the intersection-over-union (IOU) score

of the detection rectangles of [6] with the IOU of the corresponding segmentation. Each de-
tection/segmentation is compared to the ground truth rectangle/segment that has the highest
detection IOU. Then all the rectangle IOU scores and mask IOU scores are averaged over
0.05 interval bins. The results are illustrated in Fig. 6. The curve from our method is above
all the other methods, indicating that our method computes the best segmentations given the
same rectangles. It is also worth noting that our method has a higher IOU for its segmenta-
tions than its detections (e.g. when the rectangle IOU ⇡ 0.6 our mask IOU ⇡ 0.7).

In the second experiment in Table 3, we randomly jitter the detections of [10] using Eq. 1
with the uniform distribution [�1,1] and evaluate the results under the standard metrics. Our
results show much less degradation with the increasing parameter v compared to two other
methods, demonstrating that our method is more robust to the rectangle placement.

5.3 Instance-level semantic segmentation
We evaluate our pixel labeling approach on the PASCAL validation dataset given a set of
detections. We compare to a naive baseline used in [6] for visualizing their segmentation
results that thresholds segments by their detection scores and then paints each segment into
the final label map. Since our labeling method is generic to all methods which can output
segmentation probability maps, we first compare the results by using the segmentations of [6]
in Fig. 8.

There are some obvious limitations for the naive labeling approach: 1) objects with small
detection scores will be eliminated (Fig. 8, row 1), 2) it will get confused when an object
is covered by multiple detections (Fig. 8, row 2). 3) It does not leverage the information of
labeling consistency between nearby pixels (Fig. 8, row3). While our labeling approach can
solve all the problems. More visual results obtained by our rectangle segmentations and our
labeling approach are shown in Fig. 9.

5.4 Handling arbitrary closed curves
We have demonstrated the effectiveness of our segmentation model on sloppy rectangle in-
puts. In fact, our model can even generalize to arbitrary closed curves (such as circle, ellipse,
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Input Ours GT Input Ours GT
Figure 9: The visual results of our pixel-level labeling based on our rectangle segmentations.

Figure 10: In each image, the user selection is out-
lined in green and the segmentation is outlined in cyan.

Figure 11: While a bounding box cannot select one
half of the stone, loosely-drawn curves easily can.

triangles etc.), even though our model is only trained on rectangles. Following a similar test-
ing procedure for a rectangle input, an arbitrary closed curve (generated either manually or
automatically) is transformed into a distance map as pixels along the edges of the curve have
the distance 128 and the distances of the other pixels are computed as Eqn. 2. We show sev-
eral visual examples in Fig. 10 as well as some video demos in the supplementary materials
to prove the great flexibility of our approach.

Allowing arbitrary closed shapes not only allows greater flexibility and arguably a more
natural user interface, but also can provide more accurate results, especially in the case where
multiple objects share similar bounding boxes. In Fig. 11 a bounding box is placed around
the darker half of a stone in an attempt to select just that half. However, this bounding box
almost entirely includes the lighter half, so our method selects the entire stone. However, a
loosely-drawn curve around either half of the stone can accurately select the respective half.
Our model extends to allow such flexibility without requiring retraining.
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6 Conclusions
We propose a novel neural network based segmentation method that uses rectangles as input.
Our segmentation model is robust to the placement of the rectangles and has a good under-
standing of global context. Moreover, our method generalizes well to curve-based inputs
without retaining. We also propose a CRF-based labeling approach for the instance-level
semantic segmentation task to have a unique labeling of each pixel. Experimental results on
several benchmark datasets demonstrate the effectiveness of the proposed method on both
the interactive segmentation and instance segmentation tasks.
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