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ABSTRACT Deep generative models have achieved great success in areas such as image, speech, and

natural language processing in the past few years. Thanks to the advances in graph-based deep learning,

and in particular graph representation learning, deep graph generation methods have recently emerged with

new applications ranging from discovering novel molecular structures to modeling social networks. This

paper conducts a comprehensive survey on deep learning-based graph generation approaches and classifies

them into five broad categories, namely, autoregressive, autoencoder-based, reinforcement learning-based,

adversarial, and flow-based graph generators, providing the readers a detailed description of the methods in

each class. We also present publicly available source codes, commonly used datasets, and the most widely

utilized evaluation metrics. Finally, we review current trends and suggest future research directions based on

the existing challenges.

INDEX TERMS Generative models, deep learning, graph data, deep graph generators, molecular graph

generation.

I. INTRODUCTION

Recently, with the rapid development of data collection and

storage technologies, an increasing amount of data that needs

to be processed is available. Inmany research areas, including

biology, chemistry, pharmacy, social networks, and knowl-

edge graphs, there exist some relationships between data

entities that, if taken into account, more valuable features can

be extracted, yielding more accurate predictions. Using graph

data structure is a common way to represent such data, and

therefore graph analysis research has attracted considerable

attention.

Over the past few years, machine learning-based graph

studies have made significant progress, mainly focusing on

graph representation learning [1]–[5] whose main goal is

to find appropriate embeddings for nodes, edges, and the

whole graph in a continuous low-dimensional space. These

embeddings can be further utilized by various downstream

tasks such as graph visualization, clustering, node classifi-

cation, and link prediction [6]. Beyond the prominent field

of graph representation learning, graph-related research fur-

ther includes other areas such as graph matching [7], [8],

adversarial attack and defense on graph-based neural net-

works [9], [10], and graph attention networks [11], [12].

The associate editor coordinating the review of this manuscript and

approving it for publication was Fanbiao Li .

Graph generation is also another research line aiming to

generate new graph structures with some desired properties,

which dates back to 1960 [13] and is followed by several other

approaches [14]–[17]. However, the early methods generally

use hand-engineered processes to create graphs with prede-

fined statistical properties and, despite their simplicity, are not

capable enough to capture complicated graph dependencies.

Thanks to the recent successes of deep learning tech-

niques and algorithms, deep generative models, which aim

to generate novel samples from a similar distribution as the

training data, have received a lot of attention in various

data domains such as image [18], [19], text [20], [21], and

speech [22], [23]. Subsequently, studies related to deep

learning-based graph generators have started a little later,

which, unlike the traditional approaches, can directly learn

from data and eliminate the need for using hand-designed

procedures.

In the last few years, deep learning-based graph generation

has gradually attracted the attention of many researchers

with applications ranging from discovering new molecular

structures to modeling social networks. Therefore, due to

the expanding development of the modern graph generation

approaches, which we refer to as Deep Graph Generators

(DGGs), and also considering their applications in various

research areas, there is a need for articles that specifically

review them.
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TABLE 1. Categorization, key characteristic, and representative publications among deep graph generators.

To address this need, we conduct a comprehensive survey

on DGGs that exclusively reviews these methods and their

applications. Our key contributions are as follows:

• We first divide the existing approaches into five broad

categories: autoregressive DGGs, autoencoder-based

DGGs, reinforcement learning-based (RL-based)DGGs,

adversarial DGGs, and flow-based DGGs, providing the

readers with detailed descriptions of the methods in each

category and comparing them from different aspects.

This categorization is based on the model architectures,

adopted generation strategies, or optimization objectives

(the categories may sometimes overlap so that a method

can belong to more than one category). Table 1 summa-

rizes the main characteristics of these categories, along

with the most prominent approaches belonging to each

of them.

• We review the most outstanding applications explored

by the current DGGs and discuss their challenges along

with the solutions that have yet been proposed to address

them. We further suggest some other problems that can

potentially be solved by a graph generation perspective

as future applications.

• We give the interested readers easy access to addi-

tional resources and implementation details. Specifi-

cally, we categorize the most important datasets used

by DGGs and provide their statistical information along

with their accessible links. We also collect open-source

codes and summarize the evaluation metrics.

• We discuss current trends of deep graph generators in

both techniques and applications and suggest future

research directions accordingly.

We believe this article helps readers within the field to

classify their current knowledge, get informed of the latest

achievements, have quick access to the related resources, and

gain a useful view of the field’s future. It is also a good

source for readers outside the field to get acquainted with the

modern graph generation research area and quickly obtain an

overview of its recent techniques and trends.

Related works. So far, several surveys have reviewed deep

graph-related approaches such as those mainly focusing on

graph representation learning methods [6], [72]–[78], graph

attention models [79], knowledge graph research [80], [81],

attack and defense techniques on graph data [82], and graph

matching approaches [83], [84]. Although most of these sur-

veys have made a passing reference to some modern graph

generators, this field requires individual attention due to its

value and growing popularity. Recently, and somewhat con-

current to our work, Guo and Zhao [85] have exclusively

reviewed this research field from totally different catego-

rizations and perspectives than we do. Specifically, they

have classified the existing methods based on properties of

their generation process (e.g., whether the generation pro-

cess is conditional or unconditional, one-shot or sequential,

and etc.), while we categorize them mainly according to their

training objectives and model architectures in five classes

(i.e., autoregressive, autoencoder-based, RL-based, adversar-

ial, and flow-based) and identify key characteristics of the

approaches in each category. Moreover, the authors of [85]

neither provide supplementary resources related to DGGs

(i.e., datasets and source codes) nor they investigate trends

of techniques and applications. These are both included in

this paper with additional analyses of each category’s meth-

ods and their progression over time. We also review the

most recent approaches, some of which are not covered

in [85].

The rest of this article is organized as follows. Section II

briefly summarizes notations used in this survey and for-

mulates the problem of deep graph generation. Sections III

to VII provide a detailed review of the existing DGGs in

each of the five categories discussed above. Section VIII

provides an overview of the categories’ characteristics and

compares them from various perspectives. Section IX clas-

sifies the current applications and suggest some potential

future ones. Section X goes through implementation details

by summarizing commonly used datasets, widely utilized

evaluation metrics, and available source codes. Section XI

reviews current trends in both techniques and applications

and discusses future research directions. Finally, Section XII

concludes the survey.

II. NOTATIONS AND PROBLEM FORMULATION

This section reviews the notations used in the survey and pro-

vides a problem formulation for generating a set of plausible

graphs.
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TABLE 2. Commonly used notations.

A. NOTATIONS

We represent a graph as G = (V ,E), where V is the graph’s

node set, and E denotes its edge set, with |V | = n and

|E| = m.N also indicates the largest graph size in the dataset.

There are n! possible node orderings for the graph; thus, if we

choose an orderingπ , the graph can be represented by the cor-

responding adjacency matrix Aπ ∈ R
n×n. Moreover, we can

represent the graph with sequences of its ordered nodes or

edges denoted by Snode, π and Sedge, π , respectively, where

the former is denoted by the shorter form Sπ in the following

for simplicity. The notations are summarized in Table 2.

B. PROBLEM FORMULATION

Given a dataset of graphs DG with the underlying data distri-

bution p(G) (i.e., for each graph G in the dataset, G ∼ p(G)),

a DGG aims to learn how to obtain new samples from the data

distribution by employing deep neural networks. Specifically,

this can be done by either estimating the p(G) first and

then sample from the estimated distribution or acquiring an

implicit strategy, which only learns how to sample from the

distribution without explicitly modeling it.

III. AUTOREGRESSIVE DEEP GRAPH GENERATORS

In this section, we review those approaches generating graph

structures sequentially in a step-wise fashion, where the pre-

diction at each time step is affected by the previous out-

puts. We further divide them into recurrent and non-recurrent

approaches, where the former captures the generation history

by employing recurrent units, while the latter makes deci-

sions directly based on the latest partially generated graph.

The main characteristics of these methods are summarized

in Table 3.

A. RECURRENT DGGs

Recurrent DGGs are a bunch of autoregressive deep graph

generators that use RNNs, namely long short-term memory

(LSTM) [86] or gated recurrent units (GRU) [87], to exert

the influence of the generation history on the current decision.

Here, we provide a detailed review of these methods in two

subcategories.

1) NODE-BY-NODE GENERATORS

Most of the autoregressive methods append one new node

at a time into the already generated graph. For example,

Li et al. [24] propose to generate molecular graphs sequen-

tially, where the generation process initiates by adding a node

to an empty graph. It then continues by iteratively deciding

whether to append a new node to the graph, connect the lastly

added node to the previous ones, or terminate the process.

To this end, the authors propose two architectures, namely

MolMP and MolRNN, to determine probabilities for each of

these three actions. More precisely, MolMP decides based

on the graph’s current state, modeling the generation as a

Markov Decision Process. It first calculates an initial embed-

ding for graph nodes followed by several convolutional layers

and an aggregation operation to obtain a graph-level repre-

sentation. It then passes both the node-level and graph-level

embeddings through MLP and softmax layers to compute the

probabilities required for action selection. MolRNN, on the

other hand, exploits molecule level recurrent units to make

the generation history affect the current decision, which

improves the model’s performance. It adopts the same

approach as MolMP to obtain embeddings and then updates

the recurrent units’ hidden state as follows:

hi = ftrans(hi−1, hv∗ , hGi−1
), (1)

where ftrans is implemented using GRUs, hv∗ is the latest

appended node embedding, and hGi−1
denotes the represen-

tation for the graph generated before the i-th generation

step. Next, the action probabilities are calculated similarly as

MolMP, except that MolRNN replaces hi by the graph-level

representation. Moreover, the authors make the conditional

graph generation possible by first converting a given require-

ment to a conditional code and then modifying the graph

convolution to include this code.

You et al. [25] propose GraphRNN, another deep autore-

gressive model with a hierarchical architecture consisting of

a graph-level RNN and an edge-level RNN which learns to

sampleG ∼ p(G) without explicitly computing p(G). For this

purpose, GraphRNN first defines a mapping fS from graphs

to sequences where for a graphGwith n nodes under the node

ordering π , the mapping is defined as follows:

Sπ = fS (G, π) = (Sπ1 , . . . , S
π
n ), (2)

where each element Sπi ∈ {0, 1}i−1, i ∈ {1, . . . , n} repre-

sents the edges between node π (vi) and the previous nodes.
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TABLE 3. The main characteristics of autoregressive deep graph generators.

Since for undirected graphs, there exists themapping function

fG(S
π ) = G, it is possible to sample G at inference time

by first sampling Sπ ∼ p(Sπ ) and then applying fG, which

obviates the need to compute p(G) explicitly. To learn p(Sπ ),

due to the sequential nature of Sπ , p(Sπ ) can be further

decomposed as in Eq. (3), which is modeled by an RNN with

state transition and output functions defined in Eq. (4) and (5),

respectively:

p(Sπ ) =

n+1
∏

i=1

p(Sπi |Sπ1 , . . . , S
π
i−1) =

n+1
∏

i=1

p(Sπi |Sπ<i), (3)

hnodei = f nodetrans (h
node
i−1 , In

node
i ), Innodei = Sπi−1, (4)

θi = fout (h
node
i ), (5)

where f nodetrans is implemented using a GRU and serves as the

graph-level RNN that maintains the state of the graph gener-

ated so far. Furthermore, the authors propose two varients for

the implementation of fout . First, they propose GraphRNN-S,

a simple variant that does not consider dependencies between

edges and models p(Sπi |Sπ<i) as a multivariate Bernoulli dis-

tribution. Next, to fully capture the complex edge dependen-

cies, they propose the full GraphRNN model as illustrated

in Figure 1, which approximates fout by another RNN

(i.e., the edge-level RNN) formulated as follows:

h
edge
i,j = f

edge
trans (h

edge
i,j−1, In

edge
j ), In

edge
j = Sπi,j−1, h

edge
i,0 =hnodei .

(6)

Furthermore, GraphRNN introduces a BFS node ordering

scheme to improve scalability with two benefits. First, it will

suffice to train themodel on all possible BFS orderings, rather

than all possible node permutations. Second, it reduces the

number of edges to be predicted in the edge-level RNN.

Subsequently, several graph generation methods have

been proposed inspired by GraphRNN. For example,

Liu et al. [88] propose two further variants for the imple-

mentation of fout function in Eq. (5), namely RNN-Transf

andGraphRNN+Attn. Specifically, RNN-Transf replaces the

edge-level RNN in the full GraphRNN model with a vanilla

Transformer [89] decoder consisting of a self-attention sub-

layer and a graph-state attention sublayer with the memory

FIGURE 1. An illustration of the graph generation procedure at inference
time proposed in GraphRNN [25] (reprinted with permission). Green
arrows denote the graph-level RNN, and blue arrows represent the
edge-level RNN.

from hidden states of the node-level RNN. GraphRNN+Attn,

on the other hand, maintains the edge-level RNN. More pre-

cisely, it is an additive attention mechanism in the edge-level

RNN that computes the attention weights in each step using

the last hidden states of the node-level RNN as well as the

current hidden state of the edge-level RNN.

MolecularRNN [26] extendsGraphRNN to generate realis-

tic molecular graphs with desired chemical properties. As in

molecular graphs, both nodes and edges have types, likeli-

hood formulation in Equation (3) is rewritten as follows:

p(Sπ ,Cπ ) =

n+1
∏

i=1

p(Cπi |Sπ<i,C
π
<i)p(S

π
i |Cπi , S

π
<i,C

π
<i), (7)

where Sπi,j ∈ {0, 1, 2, 3} is the categorical edge type that

corresponds to no, single, double, or triple bonds, and Cπi ∈

{1, 2, . . . ,K } determines node (atom) type. Then, Molecular-

RNN substitutes the graph-level RNN input in Eq. (4) with

the embeddings of categorical inputs as in Eq. (8):

Innodei = [emb(Sπi−1), emb(C
π
i−1)]. (8)

Furthermore, a two-layer MLP with softmax output activa-

tion is added on top of the hidden states of both graph-level

and edge-level RNNs to predict node and edge types, respec-

tively. After likelihood pretraining on the molecular datasets,

the model is fine-tuned with the policy gradient algorithm to

shift the distribution of the generated samples to some desired
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chemical properties, namely, lipophilicity, drug-likeness, and

melting point. Thus, the MolecularRNN acts as a policy

network to output the probability of the next action given

the current state, where the set of states consists of all pos-

sible sub-graphs and the possible atom connections to the

existing graph, for all the atom types, serve as the action

set. Moreover, each valid molecule is considered as a final

state sn, where its corresponding final reward is denoted

by r(sn). The intermediate rewards r(si), 0 < i < n are also

obtained by discounting r(sn) as in the following loss function

formula:

L (θ ) = −

n
∑

i=1

r(sn) · γ i · log p(si|si−1; θ ), (9)

where γ is the discount factor and the transition probabilities

p(si|si−1; θ ) are the elements of the product in Eq(7). Further-

more, MolecularRNN introduces the structural penalty for

atoms violating valency constraints during training. It also

adopts a valency-based rejection sampling method during

inference, which guarantees the generated samples’ validity.

Sun and Li [90] learn a mapping from a source to a target

graph by adopting an encoder-decoder based approach, where

the encoder utilizes recurrent based models to encode the

source graph and the decoder generates the target graph in a

node-by-node fashion, which makes it necessary to consider

an ordering over nodes. Therefore, the authors first introduce

a procedure to transform a graph G into a DAG (Directed

Acyclic Graph) to provide the required node ordering. They

then obtain embeddings for each of the DAG’s nodes by

proposing two encoders: an Energy-Flow encoder and a

Topology-Flow encoder, where the former utilizes only the

information of adjacent nodes, while the latter exploits both

the adjacent and non-adjacent nodes’ information. Afterward,

the decoder sequentially generates the target graph condi-

tioned on the source graph by adopting a relatively similar

generation strategy as the GraphRNN.

So far, we have studied GraphRNN [25] as one of the most

widely used deep graph generators and then reviewed the

subsequent graph generation approaches inspired by it; each

generates different types of graphs from general to molec-

ular ones. Moreover, there are also other methods that use

GraphRNN as a basis for solving some application-specific

problems. For example, REIN [91] proposes to autoregres-

sively generate meshes from input point clouds inspired

by GraphRNN so that in each generation step, it predicts

edges from the newly introduced point to all the previ-

ous ones. The generated mesh can then be used for the

task of 3D object reconstruction. DeepNC [92] is another

GraphRNN-based approach that proposes a network comple-

tion algorithm to infer the missing parts of a network. Specif-

ically, it first trains GraphRNN to learn a likelihood over the

data distribution. The method then formulates an optimiza-

tion problem to infer the missing parts of a partially observed

input graph in such a way that maximizes the learned

likelihood.

2) EDGE-BY-EDGE GENERATORS

In addition to the methods discussed so far, there also exist

other approaches adopting an edge-based generation strategy.

Bacciu et al. [28] propose to generate a sequence of edges

for each graph instead of generating graphs node-by-node.

They first convert a graph G under the node ordering π to an

ordered edge sequence Sedge, π = [S
edge, π
1 , . . . , S

edge, π
m ],

where S
edge, π
i = (uπi , v

π
i ) is the i-th edge in the sequence that

connects the source node uπi to the destination node vπi (here

uπi and vπi are IDs assigend to graph nodes byπ ). Note that the

sequence is ordered, that is S
edge, π
i ≤ S

edge, π
i+1 iff uπi < uπi+1

or (uπi = uπi+1 and v
π
i < vπi+1). Then, the authors defineU

π =

[uπ1 , . . . , u
π
m] and V

π = [vπ1 , . . . , v
π
m] as sequences of the

source and destination node IDs, respectively and decompose

the edge sequence probability as follows:

Sedge, π = p(Uπ )p(V π |Uπ ), (10)

where p(Uπ ) and p(V π |Uπ ) are approximated with

two RNNs. Specifically, RNN1 is used to estimate p(Uπ ) with

the following transition and output functions:

hRNN1i = ftrans(h
RNN1
i−1 , InRNN1i ), InRNN1i =emb(uπi−1)

p(uπi |uπi−1, h
RNN1
i−1 )

= fout (h
RNN1
i ) = Softmax(Lin(hRNN1i )), (11)

where ftrans is implemented as a GRU and Lin is a linear

projection to map the recurrent output to the node ID space.

Once all of theUπ ’s elements are generated, the last recurrent

state of RNN1 is used to initialize the state of RNN2, and the

process moves to RNN2 that is givenUπ as input. Thus RNN2

computes the probability distribution of p(V π |Uπ ) with the

same architecture as RNN1 by approximating p(vi|ui, h
RNN2
i−1 )

each step.

Similarly, GraphGen [29] proposes another edge-based

generation strategy that adds a single edge to the already

generated graph at each stage. To this end, the method first

converts a graph G to a sequence Sedge = [S
edge
1 , . . . , S

edge
m ]

using the minimum DFS code [93], where each S
edge
i cor-

responds to an edge e = (u, v) and is described using

a 5-tuple (tu, tv,Lu,Le,Lv), where tu is the timestamp

assigned to node u during the DFS traversal, and Lu and

Le denote the node and edge labels, respectively. As the

minimum DFS codes are canonical labels, and thus there is

a one-to-one mapping between a graph and its corresponding

sequence, there is no longer need to deal with multiple repre-

sentations for the same graph under different node permuta-

tions during training, which improves the method scalability.

Then, GraphGen takes a similar approach to GraphRNN [25]

to decompose p(Sedge) as follows:

p(Sedge)=

m+1
∏

i=1

p(S
edge
i |S

edge
1 , . . . , S

edge
i−1 )=

m+1
∏

i=1

p(S
edge
i |S

edge
<i ),

(12)

where m is the number of edges, and making the simplify-

ing assumption that tu, tv, Lu, Le, and Lv are independent,
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reduces p(S
edge
i |S

edge
<i ) in Eq. (12) to:

p(S
edge
i |S

edge
<i ) = p((tu, tv,Lu,Le,Lv)|S

edge
<i )

= p(tu|S
edge
<i ) × p(tv|S

edge
<i ) × p(Lu|S

edge
<i )

× p(Le|S
edge
<i ) × p(Lv|S

edge
<i ). (13)

To capture conditional distributions in Eq. (13), the authors

propose to use a custom LSTM with the transition

function ftrans in Eq. (14), and five separate output functions

for each component of the 5-tuple. For example, ftu in Eq. (15)

is utilized for predicting tu, where ∼M represents sampling

from a multinomial distribution.

hi = ftrans(hi−1, Ini), Ini = emb(S
edge
i−1 ), (14)

tu ∼M θtu = ftu (hi), (15)

S
edge
i = concat(tu, tv,Lu,Le,Lv). (16)

Figure 2 outlines the proposed pipeline.

FIGURE 2. Flowchart of GraphGen [29].

B. NON-RECURRENT DGGs

There are some other autoregressive methods that, unlike

the recurrent models, do not consider the entire history, and

instead, they only focus on the latest version of the par-

tially generated graph at each time step. To better review

these methods, we further divide them into two following

subsections.

1) ATTENTION-BASED METHODS

Here, we review the methods in which the attention mecha-

nism plays a key role. In this regard, GRAN [30] proposes

to generate one block of nodes and associated edges at each

generation step by optimizing the following likelihood:

p(Lπ ) =

T
∏

t=1

p(Lπbt |L
π
b1
, . . . ,Lπbt−1

), (17)

where Lπ is the lower triangular part of the adjacency matrix

Aπ , B denotes the block size, bt = {B(t − 1) + 1, . . . ,Bt}

is the set of row indices for the t-th block of Lπ , and T =

⌈N
B
⌉ is the number of graph generation steps. For the t-th step,

GRAN adds B new nodes to the already-generated subgraph

and connects them with each other as well as the previous

B(t − 1) nodes to acquire an augmented graph as depicted

in Figure 3. The authors then apply the following graph neural

network with attentive messages on the augmented graph to

get updated node representations:

mrij = f (hri − hrj ), h̃ri = [hri , xi], arij = σ
(

g(h̃ri − h̃rj )
)

hr+1
i = GRU(hri ,

∑

j∈N (i)

arijm
r
ij), (18)

FIGURE 3. An overview of GRAN [30] (reprinted with permission). Dashed
lines are augmented edges. Nodes with the same color belong to the
same block (block size = 2).

where hri is the representation for node i after round r , mrij
is the message vector from node i to j, xi indicates whether

node i is in the previously generated nodes or the newly added

ones, and arij is an attention weight associated with edge(i, j).

Both the message function f and the attention function g

are implemented as 2-layer MLPs with ReLU nonlinearities.

After R rounds of message passing, the final node represen-

tation vectors hRi for each node i is obtained, and then GRAN

models the conditional probability in Eq. (17) with a mixture

of Bernoulli distributions to capture edge dependencies via

K latent mixture components:

p(Lπbt |L
π
b1
, . . . ,Lπbt−1

) =

K
∑

k=1

αk

∏

i∈bt

∏

1≤j≤i

θk,i,j

α1, . . . , αK = Softmax
(

∑

i∈bt,1≤j≤i

MLPα(h
R
i −hRj )

)

θ1,i,j, . . . , θK ,i,j = σ
(

MLPθ (h
R
i − hRj )

)

. (19)

GRAM [31] proposes to combine graph convolutional

networks with graph attention mechanisms to obtain richer

features during the graph generation process, where the pro-

posed graph attention mechanism extends the one in [89]

by introducing bias terms as a function of the shortest path

between nodes. In particular, GRAM tries to maximize the

following likelihood, which is somewhat similar to Eq. (7):

p(Aπ ,Cπ )

=

n+1
∏

i=1

p(Cπi |Aπ<i,<i,C
π
<i)

i−1
∏

j=1

p(Aπj,i|A
π
<j,i,C

π
i ,A

π
<i,<i,C

π
<i).

(20)

To this end, the authors propose an architecture that

consists of three networks, namely, feature extractor, node

estimator, and edge estimator. Firstly, the feature extractor

extracts the local and global information using graph convolu-

tion layers and graph attention layers, respectively, where an

attention layer employs a self-attention mechanism with the

query, key, and value that are set to the node feature vectors.

A graph pooling layer then aggregates all node features into

a graph feature vector, denoted as hG, by summing them

up. Next, the node estimator determines a label for the new

node based on the feature vector of the graph generated so

far. Thereafter, the edge estimator predicts labels for edges

between the newly added node and those already exist in
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the graph one after the other using a source-target attention

mechanism as follows:

Aπj,i = Softmax(gEE (h
v
j , h

G, hvi , h
e
<j)), (21)

where gEE is a three-layer feedforward network, hvj and h
v
i

are label embeddings of node vj and the new node vi, respec-

tively, and he<j is computed using a source-target attention

with Concat(hvj , h
v
i ) as its query and {Concat(hvt , h

v
i , h

e
t,i)|t =

1, . . . , j− 1} as both the key and value.

AGE [32] introduces another attention-based generative

model, which is conditioned on some input graphs. In other

words, the method takes an existing source graph as input and

generates a transformed version of it, modeling its evolution.

To this end, the authors propose an encoder-decoder based

architecture, where its decoder autoregressively generates the

target graph in a node-by-node fashion. More specifically,

the encoder first applies the self-attention mechanism to the

source graph in order to learn its nodes’ representations.

Then, at each generation step, the decoder first adopts a

similar self-attention mechanism as the encoder, followed

by source-target attention, which discovers the correlations

between the nodes in the source graph and the ones in the

already generated target graph. This way the decoder com-

putes a representation for the graph generated so far, which

will be further used to predict the new node’s label and

connections.

2) OTHER METHODS

Besides the attention-based methods reviewed above, other

autoregressive non-recurrent DGGs either do not use atten-

tion at all, or the attention mechanism does not play a decisive

role in their generation process. For example, DeepGMG [33]

proposes a sequential graph generation process which can be

seen as the following sequence of decisions: (1) whether to

add a new node of a particular type or not (with probabilities

provided by the faddnode in Eq. (22), where hG is the graph

representation vector, and fan is an MLP that maps hG to the

action output space), if a node type is selected (2) the model

decides whether to continue connecting the newly added node

to the existing graph or not (referring to Eq. (23), where h
(T )
v

is embedding of the new node v after T rounds of propagation

in a graph neural network, and fae is another MLP), if yes (3)

it selects a node already in the graph and connects it to the

new node (referring to the Eq. (24), where fs maps pairs h
(T )
u

and h
(T )
v to a score su). The algorithm goes back to step (2)

and repeats until the model decides not to add another edge.

Finally, the algorithm goes back to step (1) to add subsequent

nodes or terminate the process.

faddnode(G) = Softmax (fan(hG)), (22)

faddedge(G, v) = σ (fae(hG, h
(T )
v )), (23)

su = fs(h
(T )
u , h(T )v ), ∀u ∈ V

fnodes(G, v) = Softmax (s). (24)

DeepGG [94] further extends DeepGMG [33] by adding

the idea of finite state machines into the generation process.

Furthermore, similar to the GraphRNN [25], DeepGG learns

the graph distribution from a sequence called construction

sequence, which consists of graph evolutionary actions such

as node addition, edge addition, and node deletion.

Recently, BiGG [34] proposes an autoregressive model

to increase scalability for generating sparse graphs.

To learn a generative model, BiGG uses a single canonical

ordering π (G) to model each graph G, as in [33], aiming to

learn a lower bound on p(G):

p(G) = p(V )P(E|V ) = p(|V | = n)
∑

π

p(Aπ )

≈ p(|V | = n)p(Aπ (G)), (25)

where p(|V | = n) can be directly estimated using an empirical

distribution over the graph size. Therefore the goal is only

to model p(Aπ (G)) under a default canonical ordering, which

will be denoted by p(A) in the following. Considering that

most real-world graphs are sparse, BiGG generates only the

non-zero entries in A in a row-wise manner to enhance effi-

ciency and scalability; thus, the method adopts a recursive

strategy inspired by R-MAT [95], for generating each edge

as illustrated in the left half of Figure 4. To further improve

efficiency, the authors propose to jointly generate all the

connections of an arbitrary node u (non-zero entries in the

u-th row of A) by autoregressively generating an edge-binary

tree, as shown in the right half of Figure 4. Finally, BiGG

introduces the full autoregressive model that generates the

entire adjacency matrix row by row. The full model utilizes

the autoregressive models as building blocks:

p(A) = p({Nu}u∈V ) =
∏

u∈V

p(Nu|{Nu′ : u′ < u}), (26)

where Nu denotes the set of neighbors for node u. More

specifically, inspired by Fenwick tree [96], the authors pro-

pose a data structure called row-binary forest to encode all

the edge-binary trees generated so far, which will be used to

generate new edge-binary tree for the current step.

IV. AUTOENCODER-BASED DEEP GRAPH GENERATORS

This section reviews those approaches that employ whether

autoencoders (AEs) or VAEs [97] to generate graph struc-

tures. In particular, a common practice in these methods

is first to encode an input graph into a latent space using

GNN [98], GCN [1], or their variants and then start to gen-

erate the graph from this latent space embedding. We divide

the existing approaches based on their generation granular-

ity level (i.e., adopting an all-at-once generation strategy,

using valid substructures as building blocks, or generating

graphs in a node-by-node fashion) into the following three

subsections. The main characteristics of the most prominent

autoencoder-based graph generators are presented in Table 4.

A. ONE-SHOT GENERATORS

A series of autoencoder-based DGGs generate the entire

graph all at once. VGAE [50] proposes a graph generation

model that primarily aims to perform unsupervised learning
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FIGURE 4. An overview of the edge generation procedure in [34] (reprinted with permission).

TABLE 4. The main characteristics of autoencoder-based deep graph generators.

on graphs based on the variational autoencoder [97]. Given a

graph G with adjacency matrix A and node feature matrix X ,

VGAE infers the latent matrix Z by a two-layer GCN [1]:

q(Z|X ,A) =

n
∏

i=1

q(zi|X ,A),

with q(zi|X ,A) = N (zi|µi, diag(σ
2
i )), (27)

where µ = GCNµ(X ,A) is the matrix of mean vectors µi;

similarly log σ = GCNσ (X ,A). Then, the generative model

is designed as a simple inner product of latent variables as

follows:

p(A|Z)=

n
∏

i=1

n
∏

j=1

p(Aij|zi, zj), with p(Aij=1|zi, zj)=σ (z
T
i zj),

(28)

where σ (.) is the logistic sigmoid function. The model

parameters are then learned by optimizing the VAE objec-

tive. However, the authors also proposed a more straight-

forward, non-probabilistic, and autoencoder-based version of

the method called GAE. The main limitation of VGAE is that

it can only learn from a single input graph. GraphVAE [51],

on the other hand, proposes another VAE-based generative

model that learns from a dataset of graphs. The method first

embeds the input graph into continuous representation z using

a graph convolution network [99] as the encoder qφ(z|G),

where the dimensionality of z is relatively small in order

to learn a high-level compression of the input data. Then,

the decoder outputs a probabilistic fully-connected graph

with a fairly small predefined maximum size directly at once

denoted by G̃. The whole GraphVAE model is trained by

minimizing the upper bound on negative log-likelihood as

follows:

Lθ,φ(G) = Eqφ (z|G)[− log pθ (G|z)] + KL[qφ(z|G)||p(z)],

(29)

where qφ(z|G) and pθ (G|z) are the encoder posterior and

the decoder generative distributions respectively, and φ and

θ are parameters to be learned. Since no particular ordering

of nodes is imposed in neither G nor G̃, the authors further

adopt an approximate graph matching algorithm for align-

ing G with G̃ in order to compute the likelihood pθ (G|z) in

Eq. (29). However, the growth of GPUmemory requirements,

number of parameters, and graph matching complexity for
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larger graph sizes limit the applicability of GraphVAE only

to generate smaller graphs.

MPGVAE [52] further improves GraphVAE by building a

message passing neural network (MPNN) into the encoder

and decoder of a VAE, eliminating the need for complex

graph matching algorithms. In particular, the method first

encodes a molecular graph using a variant of MPNNs [100]

combined with a graph attention [11] to aggregate the infor-

mation over each node’s neighbors. The encoder then obtains

a graph-level representation using the set2set model [101]

and uses this representation to parametrize the posterior dis-

tribution qφ(z|G). Next, the decoder samples z ∼ qφ(z|G)

and projects it to a high dimensional space consisting of

several vectors and then passes these vectors through an

RNN to compute initial states for the graph nodes. Afterward,

it uses an identical MPNN as the encoder to obtain the final

representation for each edge and node. The decoder then

reconstructs the graph by predicting the atom types and bond

types based on these final representations.

RGVAE [53] regularizes the framework of varia-

tional autoencoders to generate semantically valid graphs.

To impose validity constraints in the training of VAEs,

RGVAE transforms a constrained optimization problem to

a regularized, unconstrained one by adding inequality con-

straints to the objective function of VAEs, which forms a

Lagrangian function. More precisely, RGVAE minimizes the

following loss function in each parameter update:

L = Lθ,φ(G) + µ
∑

i

gi(θ, z)+, where z ∼ pθ (z), (30)

where gi(θ, z) ≤ 0 denotes the i-th validity constraint, g+ =

max(g, 0), and Lθ,φ(G) is the standard VAE loss function as

in Eq. (29). The training of RGVAE is illustrated in Figure 5,

where l denotes the index of a training example and l denotes

a synthetic example, utilized in the regularization term.

FIGURE 5. The framework of RGVAE [53] (reprinted with permission). The
top flow corresponds to the standard VAE, while the bottom flow denotes
the regularization, where a synthetic z(l ) is decoded to compute the
constraints gi (θ, z(l ))+.

Graphite [54] proposes a latent variable generative model

based on VAE for unsupervised representation learning in

large graphs. The method only models graph structure,

and any supplementary information such as node features

X ∈ R
n×k is considered as conditioning evidence. To learn

the model parameters θ , Graphite maximizes a lower bound

on log-likelihood of the observed adjacency matrix condi-

tioned on X :

log pθ (A|X ) ≥ Eqφ (Z|A,X )

[

log
pθ (A,Z|X )

qφ(Z|A,X )

]

. (31)

In more detail, the authors take an encoding approach

based on the mean-field approximation, which represents

graph nodes in the latent space using a graph neural network.

Next, they propose an iterative two-step approach as the

decoding part: it first constructs an intermediate weighted

graph Â from the latent matrix Z. Then, a parameterized

graph neural network updates the latent matrix Z∗. The pro-

cess alternates between these two steps to refine the graph

gradually. More formally, given Z and X , Graphite iterates

over the following two operations:

Â =
ZZ⊤

||Z||2
+ 11⊤, Z∗ = GNNθ (Â, [Z,X ]), (32)

where an additional constant of 1 is added into the first

operation to ensure entries are non-negative. Finally, it should

be noted that similar to VGAE [50], Graphite is also limited

to learning from a single input graph.

In addition to the aforementioned graph generative

approaches, some initial steps have taken towards making

DGGs interpretable. Stoehr et al. [102] propose to learn

disentangled, interpretable latent variables corresponding to

generative parameters of graphs. The main goal of learning

such disentangled variables is to make the latent space more

interpretable as each latent variable encodes one and only

one data property. Therefore, the authors use a GCN as the

encoder combined with a deconvolutional neural network as

the decoder to minimize the loss function of β-VAE [103].

In this setting, a higher value of β yields the more orthog-

onalized latent space. To further enforce disentanglement of

latent variables, themodel also learns an additional parameter

decoder h, which maps latent variables to generative param-

eters as illustrated in Figure 6. Recently, NED-VAE [55]

proposes a more generalized generative approach for disen-

tanglement learning on attributed graphs that uncovers the

independent latent factors in both edges and nodes. In particu-

lar, NED-VAE aims to develop amodel that can learn the joint

distribution of the graph G and three groups of generative

independent latent variables, namely, zf , ze, and zg each of

which controls the properties of only nodes, only edges,

and the joint patterns between them, respectively. Therefore,

inspired by the β-VAE [103] formulation and considering the

independence resulted from the disentanglement assumption,

the goal is to maximize the following objective function:

L (θ, φ,G,Z, β)

= Eqφ (Z|G)[log pθ (F |zf , zg)pθ (E|ze, zg)]

−βDKL(qφ(zf |F)||p(zf )) − βDKL(qφ(ze|E)||p(ze))

−βDKL(qφ(zg|E,F)||p(zg)), (33)

where E ∈ R
n×n×d is the edge attributes tensor, and

F ∈ R
n×k refers to the node attribute matrix. Based on the

above objective, the authors propose an architecture consist-

ing of three sub-encoders, namely, a node encoder, an edge

encoder, and a node-edge co-encoder to model the distri-

butions qφ(zf |F), qφ(ze|E), and qφ(zg|E,F), respectively,

as depicted in Figure 7. The architecture also consists of two
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FIGURE 6. Architecture Overview of [102] (reprinted with permission).

FIGURE 7. The architecture of NED-VAE [55] consisting of three
sub-encoders, as well as two sub-decoders (reprinted with permission).

sub-decoders: a node decoder, and an edge decoder to model

pθ (F |zf , zg) and pθ (E|ze, zg), respectively. The authors fur-

ther propose multiple variant models to address different

issues, including group-wise disentanglement, variable-wise

disentanglement, and the trade-off between reconstruction

error and disentanglement performance.

More recently, DGVAE [56] proposes to replace the com-

monly used Gaussian distribution in VAE-based graph gen-

eration models by the Dirichlet distribution as a prior for the

latent variables, causing them to describe the graph cluster

memberships, which as a result adds interpretability to the

model. For this purpose, the authors adopt the same formula-

tion as VGAE [50] in Eq. (27) for the encoding process except

that they utilize a GNN variant, named Heatts, proposed by

their own and employ the Laplace approximation [104] to

model both q(zi|X ,A) and p(zi) as Dirichlet distributions.

Furthermore, DGVAE adopts a somewhat similar decoding

strategy as VGAE [50] and proves that maximizing the

reconstruction term of the model is equivalent to minimizing

balanced graph cut, which further gives the authors the moti-

vation for designing the Heatts.

B. SUBSTRUCTURE-BASED GENERATORS

There exists a number of works using valid chemical sub-

structures as building blocks to generate more plausible

molecular graphs. JT-VAE [57] adopts such a strategy by

extending the variational autoencoder framework, which,

as a consequence, avoids invalidity of the intermediate sub-

graphs. Specifically, JT-VAE first decomposes a molecular

graph G into a junction tree τG to make the graph cycle-free,

where each node in the tree represents a substructure of the

molecule. Then, both G and τG are encoded to latent represen-

tations zG and zτ , respectively, using different encoders.More

precisely, zτ encodes the junction tree without capturing the

exact mutual connections between substructures, while zG
encodes the graph to capture the fine-grained connectivi-

ties. Afterward, JT-VAE reconstructs the junction tree from

its latent representation zτ using a tree-structured decoder,

where a tree is generated node-by-node, in a top-down man-

ner. Next, the authors introduce a graph decoder to repro-

duce the molecular graph based on the underlying predicted

junction tree. Since there are potentially many molecules

corresponding to the same junction tree, the graph decoder

learns how to assemble the subgraphs (nodes in the tree)

to reconstruct the molecular graph. Furthermore, to gener-

ate molecules with desired properties, the method performs

Bayesian optimization in the latent space.

JT-VAE is basically designed to use small substructures

as building blocks, which degrades its performance for gen-

erating larger molecules such as polymers. To address this

issue, HierVAE [37] recently proposes a motif-based hier-

archical graph encoder-decoder that employs significantly

larger motifs as basic building blocks. To this end, the authors

design an encoder that learns hierarchical representation for

a given molecular graph G in a fine-to-coarse fashion, from

atoms to connected motifs. Then, it obtains the latent vector

zG by sampling from a Gaussian distribution parametrized

using the acquired motif representations. The decoder, on the

other hand, autoregressively generates a molecular graph in a

coarse-to-fine fashion conditioned on zG. More specifically,

at each generation step, the decoder first predicts the next

motif to be attached to the already generated graph. Then,

it predicts the attachment points in the new motif, i.e., what

atoms belong to the intersection of the new motif and its

neighbor motifs. Finally, the decoder decides how the new

motif should be attached to the current graph based on its pre-

dicted attachment points. The model parameters are learned

by minimizing the VAE loss function formulated in Eq. (29).

Furthermore, the authors extend the architecture to graph-

to-graph translation [62] in order to induce desired properties

in the generated molecules.

MHG-VAE [58] guides VAE to always generate valid

molecular graphs by proposing molecular hypergraph

grammar (MHG), a special case of hyperedge replace-

ment grammar (HRG) [105] for generating molecular

hypergraphs, to encode chemical constraints. In particular,

the proposed encoder consists of three parts as follows:

Enc = EncN ◦ EncG ◦ EncH , (34)

where EncH first encodes a molecular graph into a molecular

hypergraph, and EncG represents the molecular hypergraph

as a parse tree by leveraging MHG. Then, EncN encodes

the previously generated parse tree into the latent continuous

space using a seq2seq GVAE [106]. The decoder, on the

other hand, acts as an inversion to the encoder and applies

production rules, including those with chemical substructure

terminals. Finally, using Bayesian optimization, MHG-VAE

optimizes the latent continuous space (and its corresponding

molecules) towards desired properties.
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MoleculeChef [38] proposes to generate molecular graphs

using a set of common reactant molecules as building blocks

to address the synthesizability issue. In particular, the encoder

maps from a multiset of reactants to a distribution over latent

space. This is done by using GGNNs [107] to embed each

reactant molecule separately, which are further summed to

form one embedding for the whole multiset. A feed-forward

network is then used to parameterize a Gaussian distribu-

tion over the latent space. The decoder, on the other hand,

autoregressively maps from the latent space to a multiset

of reactants using an RNN, where the latent vector z ini-

tializes its hidden layer, and at each generation step, it out-

puts one reactant or halts the process. Afterward, a reaction

predictor [108] predicts how the previously generated reac-

tants produce a final molecule as illustrated in Figure 8.

To learn the model parameters, MoleculeChef minimizes the

following WAE [109] objective function:

Lθ,φ(G) = EG∼DEqφ (z|G)[− log pθ (G|z)]

+ λD(EG∼D [qφ(z|G)], p(z)), (35)

whereD is a divergencemeasure, namely themaximummean

discrepancy (MMD). Finally, the authors propose to optimize

the molecular properties in the continuous latent space in a

similar manner to CGVAE [39], which we will discuss in the

following subsection.

FIGURE 8. An overview of MoleculeChef [38] (reprinted with permission).

C. NODE-BY-NODE GENERATORS

Besides themethods reviewed above, some other autoencoder-

based DGGs use graph nodes as building blocks, and

their decoders adopt autoregressive generation strategies.

CGVAE [39] is one of these methods whose encoder first

samples a latent vector zv for each node v of an input graph

from a normal distribution parametrized using GGNNs [107].

Then, the decoder starts from these vectors and sequentially

generates a graph node-by-node with the help of two decision

functions, namely, focus and expand. More precisely,

the focus function determines the next node to be added

into the graph, and the expand function iteratively chooses

edges to add from the currently focused node until particular

stop criteria met, and once the generated subgraph changes,

all node representations get updated. Moreover, CGVAE

employs a valency masking mechanism as part of expand

function in the case of molecule generation to guarantee

chemical validity. The authors also propose to optimize

graph properties by minimizing L2 distance between some

numerical property Q and a differentiable gated regression

score R(G) as formulated in Eq. (36), using gradient ascent in

the continuous latent space:

R(G) =
∑

v

σ (g1(zv)).g2(zv), (36)

where g1 and g2 are neural networks.

DEFactor [40] proposes an encoder-decoder based archi-

tecture with a recurrent autoregressive decoder for condi-

tional graph generation. In this regard, the encoder first

applies a GCN [1] to obtain node embeddings, which are then

aggregated by an LSTM to compute the graph-level repre-

sentation z. Then, the two-step decoder first employs another

LSTM in order to autoregressively generate embeddings for

each of the graph nodes based on the computed z:

hi = ftrans(gin([z, si−1]), hi−1), si = fembed ([hi, z]), (37)

where ftrans is implemented by an LSTM [86], gin and

fembed are MLPs, and si is the node embedding generated at

timestep i. Next, the decoder establishes an edge factorization

approach to compute the existence probability of an edge of

type k between nodes u and v as follows:

p(Eu,v,k |su, sv) = σ (s⊺uDksv), (38)

where Dk is the diagonal matrix of learnable factors for the

k-th edge type. Finally, DEFactor makes the generation pro-

cess conditional by first concatenating the condition vector C

with z. It then utilizes a pre-trained discriminator to assess

the property C in the graphs generated by the decoder in the

training phase.

NeVAE [59] proposes a probabilistic and permutation

invariant encoder that is relatively similar to other graph

representation learning algorithms, such as GraphSAGE [2]

andGCNs [1], except that it uses variational inference to learn

the aggregator functions, which is further proved that makes

the resulting embeddings well suited for the molecular graph

generation task. The authors then introduce a probabilistic

decoder that first samples the number of graph nodes from

a Poisson distribution. It also samples a latent vector zv per

node v ∈ V fromN (0, I). Then, for each node v, the decoder

passes zv through a neural network followed by a softmax

classifier to determine node features, i.e., the atom type.

Next, the total number of graph edges is sampled from a

Poisson distribution parametrizes by another neural network

conditioned on all latent vectors Z. Thereafter, the decoder

samples graph edges one by one from a softmax distribution

among all potential edges not generated that far, and similar

to CGVAE [39], uses a set of binary masks to guarantee some

local structural and functional properties. Finally, it deter-

mines the edge type by sampling from another softmax distri-

bution with different binary masks. These masks get updated

every time the decoder generates a new edge. The model’s

objective is similar to that of conventional VAE-based meth-

ods plus maximizing the Poisson distribution log-likelihood,

which models the number of graph nodes. Moreover, similar
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FIGURE 9. The framework of GraphVRNN [41] (reprinted with permission).

to JT-VAE [57], NeVAE utilizes Bayesian optimization over

the continuous latent space to discover molecules with desir-

able properties.

GraphVRNN [41] proposes a VAE-based extension to

GraphRNN [25] to learn the joint probability distributions of

graph structure as well as the underlying node attributes by

rewriting the likelihood function in Eq. (3) as follows:

p(Sπ ,Xπ ) =

n+1
∏

i=1

p(Sπi ,X
π
i |Sπ<i,X

π
<i), (39)

where X ∈ R
n×k is the attribute matrix. Then, the authors

adopt an autoregressive variational autoencoder to capture

the latent factors over graphs with complicated structural

dependencies by optimising the lower bound of the likelihood

as follows:

Lθ,φ,ψ (S
π,Xπ )=

∑

i

Ezi∼qψ (.)[log pθ (S
π
i ,X

π
i |S

π
<i,X

π
<i, z≤i)]

−βDKL(qψ (zi|S
π
≤i,X

π
≤i)||pφ(zi|S

π
<i,X

π
<i)),

(40)

where qψ (zi|S
π
≤i,X

π
≤i) and pφ(zi|S

π
<i,X

π
<i) are the pro-

posal and the prior distributions in conditional VAE

(CVAE) [110] formulation, respectively, and DKL is the

Kullback-Leibler (KL) divergence that is tuned by the

β hyperparameter. An overview of the GraphVRNN frame-

work is depicted in Figure 9.

Lim et al. [42] utilize a combination of VAE and Deep-

GMG [33] for generating molecular graphs with desired

properties containing an arbitrary input scaffold in their struc-

ture. To this purpose, the encoder uses a variant of the interac-

tion network [100], [111] to obtain a representation vector hG
for the input graph, which will be further used to parametrize

a normal distribution to sample a latent vector z. The decoder,

on the other hand, takes a scaffold S as input and extends it by

making sequential decisions of node and edge additions in the

same way as DeepGMG [33], except that it also incorporates

the latent vector z in the graph propagation process so that

updating node and edge features during the generation is

directly affected by z. Moreover, the model makes it pos-

sible to conduct the process towards generating molecules

with desired properties by concatenating the corresponding

condition vector C with z. After the training with the VAE

objective finishes, one could give a scaffold S as well as a

condition vector C concatenated with a z sampled from the

standard normal distribution to the decoder in order to get a

generated molecule with optimized properties.

V. RL-BASED DEEP GRAPH GENERATORS

This section provides a detailed review of generative

approaches utilizing reinforcement learning algorithms to

induce desired properties in the generated graphs. Table 5

gives a comparison among these methods from multiple

aspects.

GCPN [43] proposes a stepwise approach for molecu-

lar graph generation, formulating the problem as a Markov

Decision Process to train an RL agent in a chemistry-aware

environment. Thus, at each generation step t , the method first

takes the intermediate graph Gt and the set of scaffolds C as

input and computes the state st by applying a GCN variant

that supports multiple edge types. It then samples an action at
from the policy πθ based on the obtained node embeddings,

which can be either to add a new scaffold subgraph or connect

two nodes already in the graph. Next, the actionwill be further

processed by the state transition dynamics, and if it violates

chemical rules, it will be rejected so that the state stays

unchanged. After that, GCPN utilizes two types of rewards to

guide the RL agent, namely, intermediate and final rewards,

where the former consists of a stepwise validity reward that

encourages the generation process to obey chemical valency

rules, and an adversarial reward, which employs the GAN

framework [64] to ensure similarity between real molecules

and those to be generated. On the other hand, the final

reward includes a domain-specific reward formolecular prop-

erty optimization and a similar adversarial reward. Finally,

the authors adopt Proximal Policy Optimization (PPO) [112]

to optimize the policy network parameters. An overview of

the method is depicted in Figure 10, where each row corre-

sponds to one step in the generation process.

Subsequently, several methods propose extensions to

GCPN. For example, Shi et al. [44] utilize a combination

of general semantic features extracted from the SMILES

representations of molecules and their graph representa-

tions in order to form more comprehensive states during
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TABLE 5. The main characteristics of rl-based deep graph generators.

FIGURE 10. An overview of GCPN [43] (reprinted with permission).

the generation process. To this end, the authors propose an

architecture consisting of a SMILES encoder and an action

generator. First, the encoder obtains context vector z from

an input SMILES string, which will be further processed

by two attention mechanisms, namely action-attention and

graph-attention, to get the enhanced context vector z̃. Then,

the model concatenates the current graph state st with z̃ to

pass a heterogeneous state into the action generator that has

the same generation mechanism as GCPN, except that it does

not involve adversarial rewards. Furthermore, the model is

trained in two stages. The supervised learning stage learns an

initialization for the model parameters to alleviate the insta-

bility of an RL agent training by minimizing the following

objective function:

J = −
1

M

M
∑

m=1

log
1

N

N
∑

n=1

∑

t

logP(at |z̃, st ) + DKL(Pz||P0),

(41)

where M is the number of molecules in the training dataset,

N denodes the number of sampled trajectories for generating

each molecule, and Pz and P0 are the distribution of the

learned context vector and a prior distribution, respectively.

Afterwards, the reinforcement learning stage further opti-

mizes the process towards generating molecular graphs with

desired properties. Figure 11 provides an overview of this

framework.

FIGURE 11. An overview of the framework proposed by Shi et al. [44].
In the supervised learning phase, only the part in the gray box is trained.
On the other hand, the whole architecture is involved in the
reinforcement learning stage.

Karimi et al. [45] propose another extension to GCPN

for drug-combination design, which is a key part of com-

bination therapy. To this end, the authors first develop

Hierarchical Variational Graph Auto-Encoders (HVGAE) to

embed prior knowledge such as gene-gene, gene-disease, and
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disease-disease networks to acquire more accurate disease

representations. Then, they formulate the problem as gen-

erating a set of graphs G = {G(k)}Kk=1 conditioned on the

learned disease representations by employing a similar gen-

eration strategy as GCPN, with the difference that in addition

to chemical validity and adversarial rewards, they design

a reward to encourage generating disease-specific drug

combinations.

More recently, DeepGraphMolGen [46] combines GCPN

with a molecular property prediction network imple-

mented as a GCN followed by a feedforward layer, which

provides GCPN with an extra chemical reward to tilt the pro-

cess towards generating molecules with additional property,

i.e., binding potency to dopamine transporters.

Besides GCPN and its subsequent approaches, there exist

other RL-based methods that generate graph structures by

taking different strategies. GraphOpt [47] models graph for-

mation via a Markov Decision Process, aiming to learn both a

graph construction procedure5 and a usually unknown latent

objective function F : G → R that reflects the underlying

graph formation mechanism. Therefore, inspired by [113],

the authors formulate the following objective:

5∗ = argmin
5

max
F

[F (G) − F (5(V ))],

Fopt = argmax
F

[F (G) − F (5∗(V ))], (42)

where Fopt assigns the highest score to the observed graphs

compared to all other ones, and optimization over F is,

in fact, a search for the reward function via inverse rein-

forcement learning (IRL) [114]. In other words, GraphOpt

learns a reward function, which is in contrast to most of

the RL frameworks that utilize an existing one. The optimal

construction procedure, on the other hand, tries to construct

a graph G′ = 5∗(V ) in a sequential link formation process

given node-set V , which is expected to be the most similar

graph to the observed one using F as the similarity measure.

To this end, the authors propose a continuous latent action

space to infer a link formation action at at each time step t

by first sampling two vectors a(1) and a(2) from a normal

distribution parametrized based on the current graph state st ,

which is computed by a GNN [98]. They then choose two

graph nodes with themost similar embeddings to the obtained

vectors to construct an edge.

MNCE-RL [48] proposes a graph convolutional policy net-

work with a novel GCN architecture for generating molecules

with optimized properties, which, similar to MHG-VAE [58],

utilizes grammar rules to guarantee the validity of molecules.

To this end, the authors first extend the NCE graph gram-

mar [115] to make it applicable for generating molecules.

They then infer the production rules of the grammar from a

set of input molecules. Next, the RL-based generation process

starts whose action space consists of the set of legal produc-

tion rules, and at each step, the policy samples a rule based on

the node features obtained by applying the proposed GCN on

the intermediate graph. A domain-specific reward guides the

process towards generating desirable molecules. Moreover,

MNCE-RL assigns a negative reward when the number of

steps exceeds a threshold to avoid prolonging the generating

process.

GEGL [49] proposes to incline a deep neural network

called neural apprentice policy towards generating molecules

with desired properties. In this respect, the apprentice pol-

icy first generates a set of molecules by a SMILES-based

LSTM and stores them into a fixed-size max-reward priority

queue Q. Then, a genetic expert policy utilizes the content

of Q as seed molecules and applies two genetic opera-

tors, namely, the graph-based mutation and crossover [116],

to them and stores the generated molecules in another priority

queue denoted byQex . After generating each sample, bothQ

and Qex are updated so that they always contain molecules

with the highest rewards. Next, the apprentice policy updates

its model’s parameters by learning to imitate the molecules

stored inQ∪Qex , and thewhole procedure repeats iteratively.

This way, the expert policy guides the apprentice policy to

generate molecules with preferred properties.

VI. ADVERSARIAL DEEP GRAPH GENERATORS

This section reviews methods employing generative adver-

sarial networks (GANs) [64] to generate either molecular or

non-molecular graph structures. To conduct a more accurate

study, we divide the existing approaches into multiple subsec-

tions. Moreover, Table 6 provides a multifaceted comparison

of them.

A. RANDOM WALK-BASED METHODS

A series of works focus on generating random walks instead

of the entire graph, as graph randomwalks are invariant under

node reordering. In this respect, NetGAN [65] introduces

the first implicit generative model for graphs that learns

the distribution of biased random walks over a single graph

using the WGAN framework [117]. In particular, NetGAN

first samples a collection of random walks using the biased

second-order strategy [118] to prepare the model’s training

data. Then, the generator learns to sequentially generate ran-

dom walks node-by-node using the LSTM [86] architecture,

which is initialized by a latent vector z sampled from a

standard normal distribution. Meanwhile, the discriminator

decides whether a random walk is real or not after processing

its entire node sequence by another LSTM. After training

finishes, the authors construct the adjacency matrix of a new

graph using multiple generated random walks. Further to

this, a number of generative approaches have been proposed

inspired by the idea of NetGAN or extending it. For exam-

ple, STGGAN [119] adopts a similar generating scheme for

spatial-temporal graphs.

MMGAN [66] generalizesNetGAN to capture higher-order

connectivity patterns by introducingmultiple types of random

walks, each biased towards different motif structures. To sim-

plify the process, MMGAN focuses only on 3-node motifs

and proposes an architecture consisting of three GANs,

namely, NetGAN that considers pairwise relationships, and

two other motif-based GANs. The random walks generated
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TABLE 6. The main characteristics of adversarial deep graph generators.

by each of the three GANs are then combined to construct the

output graph.

SHADOWCAST [67] proposes another extension to Net-

GAN in order to make the generation process controllable,

which can be considered as a step towards generating graphs

with more explainable properties. To this end, the authors

first define a graph called shadow with the same structure as

the original one but with different node labels so that these

node-level properties can control the generation process.

Then, they expand the architecture of NetGAN by adding

a sequence-to-sequence model called shadow caster, which

is implemented by an LSTM [86]. Specifically, the shadow

caster takes in sampled walks from the shadow network and

generates synthetic shadow walks of preferred distribution to

control the generation process. Next, these model-generated

shadow walks are fed into both generator and discriminator

as conditions, which are finally trained using the conditional

GAN [120] framework.

B. GRAPH-BASED METHODS

Unlike random walk-based approaches, most of the existing

adversarial graph generators deal with the entire graph. Here,

we study these methods in two categories.

1) GENERAL GRAPH-BASED ADVERSARIAL DGGs

MolGAN [63] proposes the first implicit generative model

for small molecular graphs. In this respect, its generator first

takes a latent vector z sampled fromN (0, I ). Then, it outputs

a probabilistic graph all at once using an MLP in a way

similar to GraphVAE [51], which, as a consequence, limits

the model to generate graphs of a predefined maximum size.

However, in contrast to GraphVAE, MolGAN does not need

to perform an expensive graph matching algorithm, as it

makes the model likelihood-free using the GAN framework.

Next, a permutation-invariant discriminator tries to distin-

guish between generated graphs and real ones using a combi-

nation of the Relational-GCN [121] and anMLP. The authors

train the discriminator using the WGAN [117] objective,

while they combine a reinforcement learning objective with

that of the WGAN to train the generator, aiming at inclining

the process towards generating molecules with desired chem-

ical properties. More precisely, the authors employ a deter-

ministic policy gradient algorithm, namely, DDPG [122],

to maximize the reward, which is approximated by a reward

network with the same architecture as the discriminator. The

overall architecture of MolGAN is shown in Figure 12.

FIGURE 12. An overview of MolGAN [63] (reprinted with permission).

LGGAN [123] adopts a similar generator to that of Mol-

GAN. However, its discriminator uses JK-Net [124] to com-

pute graph embeddings and outputs both the graph label

and the probability of the graph being real. Moreover,

to incorporate the class information, the authors utilize the

AC-GAN [125] framework.

CONDGEN [61] proposes a model of graph varia-

tional generative adversarial nets for conditional struc-

ture generation. It addresses both the challenges of

permutation-invariance and context-structure conditioning

indicated by the information of attributes or labels in the

networks. The method first applies the trick of latent space

conjugation to the base VGAE [50] model in order to con-

vert its node-level encoding into a permutation-invariant

graph-level one that allows learning from a dataset of graphs

with variable sizes, which is a notable improvement over the

VGAE. More precisely, µ and σ in Eq. (27) are replaced by

the following parameters:

q(zi|X ,A) = N (z̄|µ̄, diag(σ̄ 2)), (43)

where µ̄ = 1
n

∑n
i=1 gµ(X ,A)i and σ̄

2 = 1
n2

∑n
i=1 gσ (X ,A)

2
i .

However, the process is still not completely permutation-

invariant because the reconstruction loss of the VGAE is

computed between the generated adjacency matrix A′ and

the original matrix A, which may be under different node
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permutations. Therefore, the authors propose a GCN-based

discriminator to enforce the structural similarity between the

generated and the true adjacencymatrices and learn its param-

eters by optimizing the GAN objective. Thus, the encodings

GCND(A) and GCND(A
′) computed by the discriminator,

become permutation-invariant and the reconstruction loss

can be computed as ||GCND(A) − GCND(A
′)||22. Moreover,

according to [120], the authors use the concatenation of con-

dition vector C and latent variable Z to enable conditional

structure generation. Then, motivated by CycleGAN [126],

they further enforce mapping consistency between the graph

context and the structure spaces by sharing the parameters

in the two GCN networks, namely, the GCNs in the graph

encoder and the discriminator.

More recently, TSGG-GAN [68] adopts a time series con-

ditioned generative model that aims to generate a graph given

an input multivariate time series, where each time series

acts as context information associated with one of the graph

nodes. This is particularly the case when it is straightforward

to obtain node-level information, while the underlying net-

work is totally unknown. To this end, using SRU [127] to

extract the information of the time series followed by anMLP,

the generator generates the entire graph all at once. At the

same time, the discriminator takes a pair of amultivariate time

series and a graph as inputs, which are then processed using

SRU and GCN, respectively. Thereafter, the discriminator

utilizes Neural Tensor Networks (NTN) [128] to measure the

similarity between the time series and the graph and decides

whether the graph is real or not.

2) GRAPH-TO-GRAPH TRANSLATORS

In addition to the aforementioned methods, there exist other

approaches trying to generate a new graph based on an ini-

tial one. VJTNN [62] proposes a graph-to-graph translation

model that learns a mapping from a source molecular graph X

to a target graph Y with enhanced chemical properties by uti-

lizing a similar encoder-decoder architecture as JT-VAE [57]

whose tree decoding process is further enriched by adding

an attentionmechanism.More specifically, VJTNNaugments

the basic encoder-decoder model with latent code z derived

based on the embeddings of both source and target graphs

and minimizes the conditional VAE loss function to learn

the mapping F : (X , z) → Y . The authors then propose an

adversarial variation called VJTNN + GAN to force gener-

ated graphs to follow the distribution of the target ones, which

is trained using the WGAN framework [117].

Mol-CycleGAN [69] establishes structural similarity

between the source and target molecular graphs by adopting

a CycleGAN-based [126] approach. To this end, the method

first computes the latent space embeddings for X and

Y using JT-VAE [57] and then learns the transformation

F : X → Y (and its reverse, i.e., G : Y → X ) in that

space. Mol-CycleGAN also introduces the discriminator DX
(and DY ) to decide whether a sample is from the distribution

of X (or Y ) or it is generated by G (or F). The model

parameters are trained by optimizing the following

loss function:

L (F,G,DX ,DY )

= LGAN (F,DY ,X ,Y ) + LGAN (G,DX ,Y ,X )

+ λ1Lcyc(F,G) + λ2Lidentity(F,G), (44)

where the authors utilize the adversarial loss of

LS-GAN [129] and the similarLcyc(F,G) andLidentity(F,G)

as CycleGAN, where the former reduces the space of map-

ping functions and acts as a regularizer, while the latter makes

the generated molecule not to be structurally far away from

the original one. After the training finishes, Mol-CycleGAN

takes a molecule X as input and calculates its embedding by

applying the encoder of the JT-VAE. Then, F(X ) computes an

embedding corresponding to a molecule with desired proper-

ties that is also structurally similar to X . Finally, the model

generates the optimized molecular graph Y using the

JT-VAE’s decoder.

Misc-GAN [70] proposes another translation model

inspired by CycleGAN [126] to learn a mapping func-

tion F from a source graph Gs to its corresponding target

graph Gt while preserving the hierarchical graph structures

(i.e., the community structures) in the target graph in different

levels of granularity. The model training consists of three

stages: First, it constructs coarser graphs in L granularity

levels based on an input target graph Gt . Then, at each

level l, it trains an independent CycleGAN-based generative

model from Gs to G
(l)
t . Finally, all generated graphs G̃

(l)
t are

aggregated together to form the reconstructed target graph G̃t .

The framework is trained by minimizing the following loss

function:

L = Lms + LF + LG + Lcyc, (45)

where Lms is the multi-scale reconstruction loss between the

target graphGt and the generated graph G̃t ,LF is the forward

adversarial loss for learning a mapping from the source to the

target graph, LG is the backward adversarial loss to learn the

reverse mapping, andLcyc is the cycle consistency loss [126].

VII. FLOW-BASED DEEP GRAPH GENERATORS

In addition to the methods we have discussed so far, a line

of research has recently emerged, which employs flow-based

approaches in the field of graph generation. For example,

GNF [60] develops a generative model of graphs by com-

bining normalizing flows with a graph auto-encoder. More

specifically, the authors first train a permutation invariant

graph auto-encoder that encodes an input graph to a set of

node features X ∈ R
n×k using a standard GNN. Then,

a simple decoder outputs a probabilistic adjacency matrix Â,

in which edge probability between two arbitrary nodes i and j

with embedding vectors xi and xj is computed as follows:

Âij =
1

1 + exp(C(||xi − xj||
2
2 − 1))

, (46)

where C is a temperature hyperparameter. After the

auto-encoder training completes, the encoder is employed to
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compute node features X to be used as training input for

the GNF. Then, the GNF, which is based on non-volume

preserving flows [130], learns a mapping from the com-

plicated graph distribution into a latent distribution that is

well modelled as a Gaussian. At inference time, GNF gen-

erates node features by first sampling Z ∼ N (0, I ) from

the latent space followed by applying the inverse mapping,

X = f −1(Z ) which is then fed into the decoder to get

the predicted adjacency matrix as illustrated in Figure 13.

GraphNVP [71] takes a similar approach, but rather than

pretraining an auto-encoder to get continuous node features,

the authors propose to perform Dequantization [130], [131]

by adding uniform noise to the discrete adjacency tensor as

well as the node label matrix. More precisely, GraphNVP

proposes a two-step generation scheme by learning two latent

representations for each graph, one for the adjacency tensor

and the other for node labels.

FIGURE 13. The framework of GNF [60] for the graph generation
(reprinted with permission).

In addition to the flow-based methods we have studied

so far that generate the whole graph in one step, there

are other approaches adopting autoregressive generation

strategies. For example, GraphAF [35] proposes to gener-

ate molecular graphs by combining the advantages of both

autoregressive and flow-based models. The method first con-

verts a molecular graph structure G = (A,C), where both

node type matrix C and the adjacency matrix A are discrete,

into continuous data G′ = (A′,C ′) using Dequantization

technique [130], [131] in order to make the data usable for

a flow-based model. Then, conditional distributions for the

i-th generation step are defined according to Autoregressive

Flows (AF) [132] as follows:

p(C ′
i |Gi) = N (µCi , (α

C
i )

2)

p(A′
ij|Gi,Ci,Ai,1:j−1) = N (µAij, (α

A
ij )

2), (47)

where Gi is the current sub-graph, µCi , α
C
i , and µ

A
ij , α

A
ij

are the means and standard deviations of Gaussian distri-

butions, which are computed by different neural networks

based on node embeddings of the sub-graph generated so

far. To calculate the exact likelihood, an invertible mapping

from the molecule structuresG′ = (A′,C ′) to latent Gaussian

space z is defined as:

zi = (C ′
i − µCi ) ⊙

1

αCi

, zij = (A′
ij − µAij) ⊙

1

αAij

, (48)

where 1

αCi
and 1

αAij
denote element-wise reciprocals of αCi

and αAij , respectively and ⊙ is the element-wise multiplica-

tion. At inference time, GraphAF just samples random vari-

ables zi and zij from the latent Gaussian space and converts

them to the molecule structures as in Eq. (49) to generate new

graphs in an autoregressive manner:

C ′
i = zi ⊙ αCi + µCi A′

ij = zij ⊙ αAij + µAij . (49)

GraphAF further proposes a valency-based rejection sam-

pling similar to MolecularRNN [26] to guarantee the validity

of generated molecules. The authors also propose to fine-tune

the generation process with reinforcement learning to gener-

ate molecules with optimized properties.

More recently, GrAD [36] proposes another autoregressive

flow-based approach for graph generation, which can also

be considered as a variant of GRAN [30]. In particular, its

training consists of two stages. Firstly, for generating each

new block of B nodes in the t-th step, the model samples

latent codes Hbt ∈ R
B×k to initialize the corresponding node

representations. Then, different from GRAN’s formulation in

Eq. (18), the node features get updated using graph attention

layers almost according to [89], except that self-attention

weights are calculated only based on each node’s neigh-

borhood to inject structural information of the currently

generated graph into the updating process. After node rep-

resentations are obtained, the model follows a similar gener-

ation strategy as GRAN and jointly optimizes the generator’s

parameters and the distribution of latent codes. In the second

training stage, GrAD trains a flow-based reversible model to

map samples from the optimized distribution of latent codes

to a simple Gaussian distribution. Therefore, at the inference

time, one can first sample a batch ofB vectors Z ∈ R
B×k from

a Gaussian base distribution and apply the inverse mapping

Hbt = f −1(Z ) to obtain initial node representations and then

go through the generation process.

Table 7 summarizes the main characteristics of the

flow-based DGGs.

VIII. DEEP GRAPH GENERATOR CATEGORIES: SUMMARY

AND COMPARISON

So far, we have divided the existing DGGs into five overlap-

ping categories and reviewed the methods in each category

in detail. In this section, we summarize the characteristics of

the categories mentioned in Sections III to VII and compare

them against each other.

We first discuss autoregressive DGGs. The main character-

istic of these methods is that they adopt a step-by-step strat-

egy for graph generation such that at each stage, decisions

are made based on the results obtained from the previous

steps. In addition, based on whether the whole generation

history influences the current decision or the decision is
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TABLE 7. The main characteristics of flow-based deep graph generators.

made based only on the graph generated so far, we further

divide autoregressive methods into two sub-categories: recur-

rent and non-recurrent. The advantage of the algorithms in

this category over other categories is their stepwise nature

of generating process, which potentially makes them more

scalable. Therefore, the most scalable DGGs [25], [29], [30],

[34], generating the largest graphs with several thousands of

nodes belong to this category, which are trained on datasets

of graphs instead of a single graph. Furthermore, there are

approximately equal numbers of autoregressive methods for

molecular and non-molecular applications, that will be dis-

cussed in the following section.

Autoencoder-based DGGs generate graphs from a continu-

ous latent space.While most of them utilize VAEs, only a lim-

ited number of them use simple autoencoders. These methods

first encode a graph into a latent space and then generate the

desired graph from this space. Most of the autoencoder-based

graph generators proposed so far are not scalable enough to

be applied on datasets of large graphs. They typically can

generate graphs with less than 100 nodes, which are more of

the molecular type. However, there exist a few methods [50],

[54] that are trained on one single relatively large graph

for the task of link prediction. Furthermore, this type of

DGGs can optimize different objectives in the continuous

latent space and generate graphs with desired properties by

decoding the optimized latent vectors. This is usually easier

than performing the optimization in the graph space, which is

another reasonwhy these approaches are mostly used for gen-

erating molecular graphs with certain chemical properties.

Moreover, the graph generators that have taken steps towards

model interpretability and disentanglement, belong to this

category.

The third category, which has fewer methods than the

previous two ones, is dedicated to the RL-based DGGs. These

methods aim to learn a graph generation policy by maximiz-

ing a reward function, which unlike other approaches, allows

performing the optimization directly in the graph space, based

on a criterion that is not necessarily differentiable. Hence,

almost all the RL-based DGGs are designed to generate

molecular graphs with specific properties induced by the

reward function which have commonly less than 100 nodes.

Furthermore, as most of the current RL-based graph gen-

erators adopt a step-by-step generation strategy, they also

belong to the autoregressive category. However, they do not

employ just a maximum likelihood-based objective function

as opposed to the methods reviewed in Section III.

Adversarial DGGs employ generative adversarial net-

works [64] for generating graph structures. This sidesteps

the need for likelihood-based optimization that is a challenge

for graph generation tasks due to the factorial number of

node orderings in terms of the number of graph nodes, which

makes optimizing the exact likelihood function intractable.

Some of the existing adversarial DGGs focus on generating

random walks and train their generative model by using only

one single and large graph (commonly with thousands of

nodes), while others generate the entire graph, which are

mostly trained on datasets of small graphs (with fewer than

200 nodes). In addition, these methods have been used almost

equally in molecular and non-molecular applications.

Recently, a small number of flow-based DGGs have been

proposed. They make the exact likelihood optimization pos-

sible by defining invertible transformations from the com-

plicated data distribution to a simple distribution. However,

defining an invertible mapping function adds complexity to

the design of these models. In addition, flow-based graph

generators are applied in both molecular and non-molecular

applications withmore concentration on the former and there-

fore they have been utilized most often on rather small graphs

with fewer than 100 nodes.

IX. APPLICATIONS

Deep graph generation approaches have a wide range of

applications, from discovering new molecular structures and

building knowledge graphs to modeling physical, social,

and biological networks. Here we review some of the most

explored applications and suggest potential future directions.

A. MOLECULAR GRAPH GENERATION

The molecule generation approaches aim to downsize the

high-dimensional chemical space to expedite drug design and

material discovery. Since molecules can be considered as

graphs, where the atoms form the graph’s node-set and the

chemical bonds determine how those nodes connect, the most

widely explored application of modern deep graph generative

methods is generating molecular structures, a problem that

has been previouslymostly formulated as producing SMILES

strings [106], [133]–[136]. Using graph generators instead

of SMILES based models results in generating more valid

intermediate substructures compared to mostly meaningless

partially generated substrings. It also allows better capturing

the similarities between molecules as molecules with similar

structures can have totally different SMILES encodings.
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Deep molecular graph generation approaches pro-

posed so far utilize various frameworks, from VAEs [38],

[39], [51]–[53], [57]–[59] and GANs [37], [63], [69] to

RL-based [43], [44], [48], autoregressive [24], [26], [31],

[33], [35], [42] and flow-based frameworks [35], [60], [71].

They also adopt different generation strategies at varying

granularity levels. For example, some of them generate the

whole graph all at once [51], [63], while others add one atom

at a time [24], [26], [33] or use valid chemical substructures

as their building blocks [37], [42], [57].

Moreover, in molecular graph generation, two challenges

must be taken into account. First, the generated molecules

must satisfy the explicitly specified validity constraints,

i.e., an atom’s chemical bonds should not exceed its valence.

The graph generator models proposed so far address the

issue by employing different mechanisms, including intro-

ducing structural penalties during the training [26], [43],

adopting valency-based rejection sampling at the inference

time [26], [35], utilizing a grammar-based approach [58],

adding regularization terms to the objective function [53],

using valid chemical substructures as building blocks [37],

[38], [42], [57], and employing valency masking mechanism

[39], [59]. The second challenge to be considered is that

new molecular structures should obey some desired proper-

ties. This problem has also been addressed by taking var-

ious strategies including minimizing a distance [38], [39]

or utilizing Bayesian optimization [57]–[59] in some con-

tinuous latent space, maximizing a domain-specific reward

in RL-based approaches [43], [44], [63], or performing

the generation given an input molecule with desired prop-

erties and try to preserve those properties in the target

molecule [37], [69].

B. NON-MOLECULAR GRAPH GENERATION

Although the most remarkable application of modern

graph generation approaches explored so far is generating

molecular structures, several other non-application-specific

approaches have been proposed [25], [28], [30], [36], [41],

[55], [61] working on more general datasets. While these

methods’ ultimate goal is to be used on real-world appli-

cations such as generating social network graphs, most of

them suffer from scalability issues. Thus, they are currently

being applied to synthetic or relatively small real datasets.

Despite the steps taken towards making these models more

scalable [25], [30], [34], it should be specifically considered

as future work.

C. FUTURE APPLICATIONS

Beyond the discussed applications, some other problems can

potentially be solved from a graph generation perspective.

This is particularly the case when the output space includes

graphs, and so the generated output, on the one hand, must

depend on the input and, on the other hand, must obey the

distribution of the output space graphs. Below, two practical

examples of these problems are mentioned.

1) LANGUAGE-BASED GRAPH GENERATION

In natural language processing, several approaches have been

proposed to extract rich graph-structured information from

textual data. They include methods aiming to extract AMRs

(Abstract Meaning Representations) [137]–[139], semantic

graphs [140], semantic dependency graphs [141]–[143], and

even those that transform one graph into another based on

some input sentences [144]. However, most existing methods

often propose some domain-specific procedures to produce

these graph-structured knowledge representations, which,

as a result, are not capable enough to consider various effec-

tive factors. Therefore, as a future orientation, the commu-

nity can solve such problems with a conditional generative

approach, making it possible to generate graphs from their

corresponding distribution given the specified textual input.

2) SCENE GRAPH GENERATION

Scene graphs are structured representations of images provid-

ing higher-level knowledge for scene understanding, where

the objects in each image form the node-set of the corre-

sponding scene graph, and the relationships between objects

determine how the nodes connect. As this class of graphs

has a wide range of applications, including image captioning,

visual question answering, image retrieval, and image genera-

tion [145], scene graph generation becomes a line of research

in recent years.

Most scene graph generation methods first detect objects

from an input image using object detection models like Faster

R-CNN [146] to form the set of graph nodes. Meanwhile,

the relationships can be extracted either jointly with the

objects [147] or after all the objects are detected [148]–[151].

Among these approaches, some generate scene graphs solely

based on input images [148], [149], [152], while others

benefit from additional text input [150], [153], or some

self-generated extra information [145], [151]. Moreover,

as the number of objects increases, somemodels [145], [154],

[155] propose to first generate multiple subgraphs and then

aggregate them to construct the complete scene graph to

address the scalability issue.

Here, we have briefly reviewed and categorized some of

the scene graph generation methods. However, they are more

of a relational information extractor from images rather than

graph generators, which estimate the underlying data distri-

bution. Therefore, it can be explored in the future.

X. IMPLEMENTATIONS

In this section, we discuss the implementation details by

categorizing and summarizing commonly used datasets and

evaluation metrics. We also collect the available source codes

in Appendix A.

A. DATASETS

There are many datasets for learning on graphs that

have been investigated by previous studies, including [73]

and [156]. However, none of these studies has thoroughly and
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TABLE 8. Summary of the commonly used datasets.

exclusively collected and categorized the datasets used in

graph generation approaches. Here, we have summarized the

most prominent ones in three general categories according to

the main graph generation applications, as shown in Table 8.

Downloadable links for real-world datasets are accessible by

clicking on their names. Synthetic datasets are also provided

with links to their generating codes. Furthermore, to give

the readers a more detailed view of the data used by DGGs,

we provide statistical information of the real-world datasets.

This information is based on the latest or the most popular

versions of these datasets, which can be accessed via the

provided links.

Besides the datasets listed in Table 8, there are two bench-

marks related to the molecular graph generation tasks. Below,

we provide a brief description of them:

• GuacaMol [157] is an evaluation framework (i.e. an

open-source Python package) for the assessment of

models for de novo molecular design using a subset of

the ChEMBL database. MNCE-RL [48] and GEGL [49]

utilize GuacaMol in their experiments.

• MOSES [158] is another benchmarking platform for

standardizing training and comparison of molecular

generative models that, similar to GuacaMol, provides

an open-source Python package. It uses a subset of

the ZINC database for training and testing. Molecu-

larRNN [26] and GraphAF [35] use MOSES for their

model evaluation.

As mentioned earlier, we categorize the datasets utilized

to evaluate deep graph generators into three classes. Here,

we briefly review the characteristics of each class:
• Chemical & Bioinformatics: The datasets of this cat-

egory consist of a large number of graphs (mostly

more than tens of thousands and even up to millions

of graphs); however, these graphs are relatively small

in size, with usually less than 150 nodes. Almost all of

these datasets have node and edge labels.

• Social: This category contains datasets, each consisting

of only one single but large graph (containing from thou-

sands to millions of nodes). These graphs are all citation

networks whose nodes correspond to publications, and

edges represent the citation relationship between papers.

Since these graphs are large, andmost current graph gen-

erators suffer from scalability problems, several tech-

niques have been employed to deal with this issue. For

example, someDGGs focus on generating randomwalks

instead of the entire graph. Then, they construct the

final graph by aggregating multiple generated random

walks [65]–[67]. Some others sample several subgraphs

from the main graph to form their training set [29],

[61]. Finally, the remaining approaches base their eval-

uation more on tasks such as link prediction and node

classification [47], [50], [54], [60].

• Synthetic: Particular patterns are employed to pro-

duce each of the synthetic datasets. Therefore, they are

primarily used to assess the ability of generative models
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to learn these patterns. The statistics of utilized syn-

thetic datasets can vary significantly from one DGG

to another since they can be produced under arbitrary

settings. Therefore, summarizing their statistical infor-

mation is meaningless, and we leave the corresponding

fields blank in Table 8

Furthermore, to better analyze data categories mentioned

in Table 8, Figure 14 shows the tendency of DGGs belong-

ing to each of the five categories towards using different

types of datasets. It reveals that chemical and bioinformat-

ics datasets are the most popular among current DGGs and

confirms our discussion in Section IX that indicates gen-

erating molecular structures is the most explored applica-

tion of modern graph generation approaches. More precisely,

autoregressive, autoencoder-based, and RL-based graph gen-

erators have performed most of their experiments on these

datasets. For autoregressive approaches, this is mainly due

to the step-by-step nature of the generation process, which

allows making wiser and more controlled decisions to pro-

duce molecules with desired chemical properties that also

satisfy chemical constraints. Additionally, autoencoder-based

DGGs are highly appropriate for utilizing this type of dataset

since optimizing various objectives in the continuous latent

space allows them to generate graphs with desired properties.

This is also true for RL-based graph generators whose reward

functions are designed to induce specific properties in the

generated graphs (for a more detailed discussion please refer

to Section VIII).

FIGURE 14. The number of dataset usage by DGGs belonging to each of
the five categories for each type of dataset (based on the methods
referenced in Table 1 and the datasets listed in Table 8).

Moreover, Figure 14 demonstrates that autoencoder-based

and adversarial approaches have made the most use of social

datasets. Almost all of these autoencoder-based DGGs eval-

uate their generative models towards tasks such as link pre-

diction and node classification instead of graph generation

itself. In this respect, they differ from most of the reviewed

methods, which aim to generate graphs from a similar dis-

tribution as the training data and perform the model evalu-

ation using distribution-related metrics. Furthermore, nearly

all of the adversarial approaches that have utilized social

datasets to evaluate their models are trained to generate ran-

dom walks instead of the whole graph. These indicate that

current methods are not yet scalable enough to be easily

used for generating large graphs such as social networks.

Finally, Figure 14 unveils that utilizing synthetic datasets is

more common between autoregressive, autoencoder-based,

and flow-based DGGs. This kind of evaluation assesses

the ability of generative models to learn particular patterns

in synthetic datasets and is much more prevalent among

non-molecular graph generators. Therefore, it is not wel-

comed by the RL-based approaches proposed so far, which

are mainly designed for generating molecular graphs. This is

also the case for the current adversarial DGGs as they mostly

focus on generating molecular graphs or random walks of

social networks.

B. EVALUATION METRICS

Depending on the application, graph generation approaches

use different evaluation metrics. Specifically, the molecular

graph generators adopt two different sets of metrics where the

first set contains those evaluating the overall quality of gener-

ated samples, including validity, uniqueness, novelty, recon-

struction, internal diversity, negative log-likelihood (NLL),

and some structural statistics like nearest neighbor similarity

(SNN) or fragment/scaffold similarity. The second set, on the

other hand, contains metrics assessing special chemical prop-

erties of the molecules, namely, synthetic accessibility score

(SA score) [159], drug-likeness score (QED) [160], molec-

ular weight (MW), log partition coefficient (logP), penal-

ized logP, and topological polar surface area (TPSA). For

non-molecular graph generation, on the other side, a con-

siderable number of approaches employ distribution-related

metrics such as Kullback-Leibler Divergence (KLD) orMax-

imum Mean Discrepancy (MMD) on several graph statistics

like degrees, clustering coefficients, orbit counts, and the

spectra of the graphs from the eigenvalues of the normalized

graph Laplacian. NLL, validity, novelty, and uniqueness are

also among other metrics adopted to evaluate non-molecular

approaches.

XI. CURRENT TRENDS AND FUTURE DIRECTIONS

In this section, we first discuss current trends of techniques

and applications of deep graph generators and then suggest

some potential future research directions.

A. CURRENT TRENDS

Due to the recent rise of deep learning-based graph gener-

ation methods, we are gradually witnessing the formation

of some trends, revealing new research orientations. These

trends include both the employed generation techniques and

the applications for which these generators can be used.

In this regard, Figure 15 demonstrates the utilization of the

five categories’ techniques by the most prominent reviewed

DGGs during the past three years. This chart indicates a

notable increase in the number of proposed autoregressive

methods. It also unveils the inclination of researchers towards
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FIGURE 15. The number of the proposed DGGs (based on the methods
referenced in Table 1) over time for each category.

applying flow-based techniques as a new approach for the

graph generation task.

Moreover, Figure 16 shows that molecular applications

have been important for modern graph generators and they

still retain their importance in this field of research. Besides,

due to the growing need for efficient design of drug

molecules, it seems that employing DGGs to generate molec-

ular graphs will continue to attract the attention of many

researchers in the coming years. On the other hand, DGGs

were initially less used in non-molecular applications, but

each year more and more of them are designed to gener-

ate non-molecular graphs. One reason is the fact that these

approaches have recently taken more steps towards scalabil-

ity with the increase in the number of proposed autoregressive

generators as discussed in Section VIII. However, in order

to apply DGGs in generating more substantial non-molecular

graphs such as social networks, which usually contain thou-

sands of nodes, these methods need to be even more scalable.

Wewill further discuss this issue as a future research direction

in the following section.

FIGURE 16. The number of the proposed DGGs (based on the methods
referenced in Table 1) over time utilized in molecular and non-molecular
applications.

TABLE 9. Acronyms with their extended names.

B. FUTURE DIRECTIONS

Although several deep graph generation models have been

proposed in the past few years, due to the emergence of

this field and its short history, a number of open problems

remain. In this subsection, considering both the aforemen-

tioned trends in the deep graph generation area and the current

inclination of deep learning research, we suggest the follow-

ing future directions.
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TABLE 10. A set of publicly available source codes. O.A. = Original Authors.

1) SCALABILITY

Most of the proposed graph generation methods are only

applicable to small graphs with a maximum of a few tens

of nodes. Therefore, designing molecular graphs, which are

mostly small in size, is the most prominent application of

DGGs so far. Although some initial steps [25], [30], [34]

have been taken towards scalability of generator models,

much more effort is necessary to make them applicable in a

wider range of real-world applications, such as social network

modeling.

2) NODE ORDERING

Each graph with n nodes can be represented under n! dif-

ferent node orderings. Therefore, it becomes intractable for

VOLUME 9, 2021 106697



F. Faez et al.: Deep Graph Generators: Survey

likelihood-based DGGs to calculate the exact likelihood as

the graph size increases. To address this issue, some approx-

imate approaches such as using approximate graph match-

ing algorithms [51] or maximizing a lower bound of the

likelihood by only considering subsets of node orderings

(i.e., fixed [33], [34], uniform random [33], BFS [25], or a

family of canonical orderings [30]), have been proposed.

However, it is still necessary to provide more effective

solutions for the node ordering problem, as a result of

which, the generators can generate larger samples with higher

quality.

3) INTERPRETABILITY

As mentioned earlier, DGGs are utilized in critical applica-

tions such as designing drugmolecules, which directly affects

public health. Therefore, the more transparent the generation

procedure, the better control is exercised on the desirability

of generated samples, which prevents additional trials and

errors by limiting the number of candidate solutions. Hence,

it is of great importance to make graph generation methods

more interpretable. As of now, deep generative methods in

areas such as image [161]–[163] and text [164]–[166] have

slowly moved towards being more interpretable. However,

only a few attempts [55], [56], [102] have recently been made

in graph generation, making model interpretability a notable

future research prospect.

4) DYNAMIC GRAPHS

While existing DGGs focus on generating static graphs, most

of the graphs are inherently dynamic, meaning that they

change over time by earning/losing nodes or connections,

or even their attributes may alter. For example, in a social

network, some users may join/leave the network, or the

relationships between existing users may change over time.

Therefore, generating dynamic graphs would play a key role

in predicting how networks evolve. However, dynamicity is

almost not addressed in the current generative approaches,

making it a potentially challenging problem to explore in the

further.

5) CONDITIONAL GRAPH GENERATION

When generating new graphs, in most cases, one aims to

discover structures with desired characteristics. While condi-

tional generation is relatively well investigated in image [19],

[125], [167], [168] and text [169]–[171] domains, it is compa-

rably less explored in the field of graph generation. For exam-

ple, in molecular graph generation, the generated molecules

must satisfy some validity constraints or hold desired chem-

ical properties. However, only a limited number of proposed

methods adopt a conditional approach by whether incorporat-

ing conditional codes into the generation process [42], [51],

enforcing the existence of favourable substructures in the

output graph [42] or performing the generation conditioned

on an input molecule to ensure the structural similarity [37].

Meanwhile, the majority of methods do not formulate the

problem as conditional generation and address the issue by

employing other techniques like property optimization in

some latent continuous space [38], [39], [57]–[59] or inject-

ing validity constraints, whether at the training [26], [53]

or the inference time [26], [35]. Nevertheless, this issue has

been even less studied in the non-molecular graph generation

models, and only a few of them have partially addressed the

problem [61], [67]. Therefore, focusing more on conditional

graph generation problems, especially those that have not yet

been explored, such as class conditioned generation, is an

important future research direction.

XII. CONCLUSION

In this article, we surveyed the emerging field of deep

learning-based graph generation. For this purpose, we classi-

fied the existingmethods into five general categories.We then

provided a detailed and comparative review of the approaches

in each category.We further summarized the categories’ char-

acteristics and compared them from multiple points of view.

Next, we summarized the implementation details, including

datasets, evaluation metrics, and available source codes, and

discussed the current applications and possible future ones.

Finally, we reviewed current trends both in techniques and

applications and suggested future research directions accord-

ing to the current trends and challenges. We believe this

article provides the readers a comprehensive insight to the

field of graph generation research.

APPENDIX A

ACRONYM

Table 9 summarizes the acronyms and nomenclature used in

this survey.

APPENDIX B

SOURCE CODES

Table 10 summarizes the set of publicly available source

codes for deep learning-based graph generation approaches

discussed in the survey.
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