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ABSTRACT

We present Deep Graph Infomax (DGI), a general approach for learning node
representations within graph-structured data in an unsupervised manner. DGI re-
lies on maximizing mutual information between patch representations and corre-
sponding high-level summaries of graphs—both derived using established graph
convolutional network architectures. The learnt patch representations summarize
subgraphs centered around nodes of interest, and can thus be reused for down-
stream node-wise learning tasks. In contrast to most prior approaches to unsuper-
vised learning with GCNs, DGI does not rely on random walk objectives, and is
readily applicable to both transductive and inductive learning setups. We demon-
strate competitive performance on a variety of node classification benchmarks,
which at times even exceeds the performance of supervised learning.

1 INTRODUCTION

Generalizing neural networks to graph-structured inputs is one of the current major challenges of
machine learning (Bronstein et al., 2017; Hamilton et al., 2017b; Battaglia et al., 2018). While
significant strides have recently been made, notably with graph convolutional networks (Kipf &
Welling, 2016a; Gilmer et al., 2017; Veličković et al., 2018), most successful methods use supervised
learning, which is often not possible as most graph data in the wild is unlabeled. In addition, it
is often desirable to discover novel or interesting structure from large-scale graphs, and as such,
unsupervised graph learning is essential for many important tasks.

Currently, the dominant algorithms for unsupervised representation learning with graph-structured
data rely on random walk-based objectives (Grover & Leskovec, 2016; Perozzi et al., 2014; Tang
et al., 2015; Hamilton et al., 2017a), sometimes further simplified to reconstruct adjacency informa-
tion (Kipf & Welling, 2016b; Duran & Niepert, 2017). The underlying intuition is to train an encoder
network so that nodes that are “close” in the input graph are also “close” in the representation space.

While powerful—and related to traditional metrics such as the personalized PageRank score (Jeh
& Widom, 2003)—random walk methods suffer from known limitations. Most prominently, the
random-walk objective is known to over-emphasize proximity information at the expense of struc-
tural information (Ribeiro et al., 2017), and performance is highly dependent on hyperparameter
choice (Grover & Leskovec, 2016; Perozzi et al., 2014). Moreover, with the introduction of stronger
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encoder models based on graph convolutions (Gilmer et al., 2017), it is unclear whether random-
walk objectives actually provide any useful signal, as these encoders already enforce an inductive
bias that neighboring nodes have similar representations.

In this work, we propose an alternative objective for unsupervised graph learning that is based upon
mutual information, rather than random walks. Recently, scalable estimation of mutual information
was made both possible and practical through Mutual Information Neural Estimation (MINE, Bel-
ghazi et al., 2018), which relies on training a statistics network as a classifier of samples coming
from the joint distribution of two random variables and their product of marginals. Following on
MINE, Hjelm et al. (2018) introduced Deep InfoMax (DIM) for learning representations of high-
dimensional data. DIM trains an encoder model to maximize the mutual information between a
high-level “global” representation and “local” parts of the input (such as patches of an image). This
encourages the encoder to carry the type of information that is present in all locations (and thus are
globally relevant), such as would be the case of a class label.

DIM relies heavily on convolutional neural network structure in the context of image data, and to our
knowledge, no work has applied mutual information maximization to graph-structured inputs. Here,
we adapt ideas from DIM to the graph domain, which can be thought of as having a more general
type of structure than the ones captured by convolutional neural networks. In the following sections,
we introduce our method called Deep Graph Infomax (DGI). We demonstrate that the representation
learned by DGI is consistently competitive on both transductive and inductive classification tasks,
often outperforming both supervised and unsupervised strong baselines in our experiments.

2 RELATED WORK

Contrastive methods. An important approach for unsupervised learning of representations is to
train an encoder to be contrastive between representations that capture statistical dependencies of
interest and those that do not. For example, a contrastive approach may employ a scoring function,
training the encoder to increase the score on “real” input (a.k.a, positive examples) and decrease the
score on “fake” input (a.k.a., negative samples). Contrastive methods are central to many popular
word-embedding methods (Collobert & Weston, 2008; Mnih & Kavukcuoglu, 2013; Mikolov et al.,
2013), but they are found in many unsupervised algorithms for learning representations of graph-
structured input as well. There are many ways to score a representation, but in the graph literature
the most common techniques use classification (Perozzi et al., 2014; Grover & Leskovec, 2016;
Kipf & Welling, 2016b; Hamilton et al., 2017b), though other scoring functions are used (Duran
& Niepert, 2017; Bojchevski & Günnemann, 2018). DGI is also contrastive in this respect, as our
objective is based on classifying local-global pairs and negative-sampled counterparts.

Sampling strategies. A key implementation detail to contrastive methods is how to draw posi-
tive and negative samples. The prior work above on unsupervised graph representation learning
relies on a local contrastive loss (enforcing proximal nodes to have similar embeddings). Positive
samples typically correspond to pairs of nodes that appear together within short random walks in
the graph—from a language modelling perspective, effectively treating nodes as words and random
walks as sentences. Recent work by Bojchevski & Günnemann (2018) uses node-anchored sam-
pling as an alternative. The negative sampling for these methods is primarily based on sampling
of random pairs, with recent work adapting this approach to use a curriculum-based negative sam-
pling scheme (with progressively “closer” negative examples; Ying et al., 2018a) or introducing an
adversary to select the negative examples (Bose et al., 2018).

Predictive coding. Contrastive predictive coding (CPC, Oord et al., 2018) is another method for
learning deep representations based on mutual information maximization. Like the models above,
CPC is also contrastive, in this case using an estimate of the conditional density (in the form of noise
contrastive estimation, Gutmann & Hyvärinen, 2010) as the scoring function. However, unlike our
approach, CPC and the graph methods above are all predictive: the contrastive objective effectively
trains a predictor between structurally-specified parts of the input (e.g., between neighboring node
pairs or between a node and its neighborhood). Our approach differs in that we contrast global /
local parts of a graph simultaneously, where the global variable is computed from all local variables.

To the best of our knowledge, the sole prior works that instead focuses on contrasting “global”
and “local” representations on graphs do so via (auto-)encoding objectives on the adjacency matrix
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(Wang et al., 2016) and incorporation of community-level constraints into node embeddings (Wang
et al., 2017). Both methods rely on matrix factorization-style losses and are thus not scalable to
larger graphs.

3 DGI METHODOLOGY

In this section, we will present the Deep Graph Infomax method in a top-down fashion: starting
with an abstract overview of our specific unsupervised learning setup, followed by an exposition of
the objective function optimized by our method, and concluding by enumerating all the steps of our
procedure in a single-graph setting.

3.1 GRAPH-BASED UNSUPERVISED LEARNING

We assume a generic graph-based unsupervised machine learning setup: we are provided with a set
of node features, X = {~x1, ~x2, . . . , ~xN}, where N is the number of nodes in the graph and ~xi ∈ R

F

represents the features of node i. We are also provided with relational information between these
nodes in the form of an adjacency matrix, A ∈ R

N×N . While A may consist of arbitrary real
numbers (or even arbitrary edge features), in all our experiments we will assume the graphs to be
unweighted, i.e. Aij = 1 if there exists an edge i → j in the graph and Aij = 0 otherwise.

Our objective is to learn an encoder, E : RN×F × R
N×N → R

N×F ′

, such that E(X,A) = H =

{~h1,~h2, . . . ,~hN} represents high-level representations ~hi ∈ R
F ′

for each node i. These represen-
tations may then be retrieved and used for downstream tasks, such as node classification.

Here we will focus on graph convolutional encoders—a flexible class of node embedding architec-
tures, which generate node representations by repeated aggregation over local node neighborhoods

(Gilmer et al., 2017). A key consequence is that the produced node embeddings, ~hi, summarize a
patch of the graph centered around node i rather than just the node itself. In what follows, we will

often refer to ~hi as patch representations to emphasize this point.

3.2 LOCAL-GLOBAL MUTUAL INFORMATION MAXIMIZATION

Our approach to learning the encoder relies on maximizing local mutual information—that is, we
seek to obtain node (i.e., local) representations that capture the global information content of the
entire graph, represented by a summary vector, ~s.

In order to obtain the graph-level summary vectors, ~s, we leverage a readout function, R : RN×F →
R

F , and use it to summarize the obtained patch representations into a graph-level representation;
i.e., ~s = R(E(X,A)).

As a proxy for maximizing the local mutual information, we employ a discriminator, D : RF ×

R
F → R, such that D(~hi, ~s) represents the probability scores assigned to this patch-summary pair

(should be higher for patches contained within the summary).

Negative samples for D are provided by pairing the summary ~s from (X,A) with patch represen-

tations
~̃
hj of an alternative graph, (X̃, Ã). In a multi-graph setting, such graphs may be obtained

as other elements of a training set. However, for a single graph, an explicit (stochastic) corruption
function, C : RN×F × R

N×N → R
M×F × R

M×M is required to obtain a negative example from

the original graph, i.e. (X̃, Ã) = C(X,A). The choice of the negative sampling procedure will
govern the specific kinds of structural information that is desirable to be captured as a byproduct of
this maximization.

For the objective, we follow the intuitions from Deep InfoMax (DIM, Hjelm et al., 2018) and use a
noise-contrastive type objective with a standard binary cross-entropy (BCE) loss between the sam-
ples from the joint (positive examples) and the product of marginals (negative examples). Following
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their work, we use the following objective1:

L =
1

N +M




N∑

i=1

E(X,A)

[
logD

(
~hi, ~s

)]
+

M∑

j=1

E(X̃,Ã)

[
log

(
1−D

(
~̃
hj , ~s

))]
 (1)

This approach effectively maximizes mutual information between ~hi and ~s, based on the Jensen-
Shannon divergence2 between the joint and the product of marginals.

As all of the derived patch representations are driven to preserve mutual information with the global
graph summary, this allows for discovering and preserving similarities on the patch-level—for ex-
ample, distant nodes with similar structural roles (which are known to be a strong predictor for
many node classification tasks; Donnat et al., 2018). Note that this is a “reversed” version of the
argument given by Hjelm et al. (2018): for node classification, our aim is for the patches to establish
links to similar patches across the graph, rather than enforcing the summary to contain all of these
similarities (however, both of these effects should in principle occur simultaneously).

3.3 THEORETICAL MOTIVATION

We now provide some intuition that connects the classification error of our discriminator to mutual
information maximization on graph representations.

Lemma 1. Let {X(k)}
|X|
k=1 be a set of node representations drawn from an empirical probability dis-

tribution of graphs, p(X), with finite number of elements, |X|, such that p(X(k)) = p(X(k′)) ∀k, k′.
Let R(·) be a deterministic readout function on graphs and ~s(k) = R(X(k)) be the summary vector
of the k-th graph, with marginal distribution p(~s). The optimal classifier between the joint distri-
bution p(X, ~s) and the product of marginals p(X)p(~s), assuming class balance, has an error rate

upper bounded by Err∗ = 1
2

∑|X|
k=1 p(~s

(k))2. This upper bound is achieved if R is injective.

Proof. Denote by Q(k) the set of all graphs in the input set that are mapped to ~s(k) by R, i.e.

Q(k) = {X(j) | R(X(j)) = ~s(k)}. As R(·) is deterministic, samples from the joint, (X(k), ~s(k)) are

drawn from the product of marginals with probability p(~s(k))p(X(k)), which decomposes into:

p(~s(k))
∑

~s

p(X(k), ~s) = p(~s(k))p(X(k)|~s(k))p(~s(k)) =
p(X(k))∑

X′∈Q(k) p(X′)
p(~s(k))2 (2)

For convenience, let ρ(k) = p(X(k))∑
X′∈Q(k) p(X′) . As, by definition, X(k) ∈ Q(k), it holds that ρ(k) ≤ 1.

This probability ratio is maximized at 1 when Q(k) = {X(k)}, i.e. when R is injective for X(k).
The probability of drawing any sample of the joint from the product of marginals is then bounded

above by
∑|X|

k=1 p(~s
(k))2. As the probability of drawing (X(k), ~s(k)) from the joint is ρ(k)p(~s(k)) ≥

ρ(k)p(~s(k))2, we know that classifying these samples as coming from the joint has a lower error
than classifying them as coming from the product of marginals. The error rate of such a classifier is
then the probability of drawing a sample from the joint as a sample from product of marginals under

the mixture probability, which we can bound by Err ≤ 1
2

∑|X|
k=1 p(~s

(k))2, with the upper bound

achieved, as above, when R(·) is injective for all elements of {X(k)}.

It may be useful to note that 1
2|X| ≤ Err∗ ≤ 1

2 . The first result is obtained via a trivial application

of Jensen’s inequality, while the other extreme is reached only in the edge case of a constant readout
function (when every example from the joint is also an example from the product of marginals, so
no classifier performs better than chance).

Corollary 1. From now on, assume that the readout function used, R, is injective. Assume the
number of allowable states in the space of ~s, |~s|, is greater than or equal to |X|. Then, for ~s⋆, the

1Note that Hjelm et al. (2018) use a softplus version of the binary cross-entropy.
2The “GAN” distance defined here—as per Goodfellow et al. (2014) and Nowozin et al. (2016)—and

Jensen-Shannon divergence can be related by DGAN = 2DJS − log 4. Therefore, any parameters that op-
timize one also optimize the other.
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optimal summary under the classification error of an optimal classifier between the joint and the
product of marginals, it holds that |~s⋆| = |X|.

Proof. By injectivity of R, we know that ~s⋆ = argmin~s Err
∗. As the upper error bound, Err∗,

is a simple geometric sum, we know that this is minimized when p(~s(k)) is uniform. As R(·) is
deterministic, this implies that each potential summary state would need to be used at least once.
Combined with the condition |~s| ≥ |X|, we conclude that the optimum has |~s⋆| = |X|.

Theorem 1. ~s⋆ = argmax~s MI(X;~s), where MI is mutual information.

Proof. This follows from the fact that the mutual information is invariant under invertible trans-
forms. As |~s⋆| = |X| and R is injective, it has an inverse function, R−1. It follows then that, for
any ~s, MI(X;~s) ≤ H(X) = MI(X;X) = MI(X;R(X)) = MI(X;~s⋆), where H is entropy.

Theorem 1 shows that for finite input sets and suitable deterministic functions, minimizing the clas-
sification error in the discriminator can be used to maximize the mutual information between the
input and output. However, as was shown in Hjelm et al. (2018), this objective alone is not enough
to learn useful representations. As in their work, we discriminate between the global summary
vector and local high-level representations.

Theorem 2. Let X
(k)
i = {~xj}j∈n(X(k),i) be the neighborhood of the node i in the k-th graph that

collectively maps to its high-level features, ~hi = E(X
(k)
i ), where n is the neighborhood function that

returns the set of neighborhood indices of node i for graph X
(k), and E is a deterministic encoder

function. Let us assume that |Xi| = |X| = |~s| ≥ |~hi|. Then, the ~hi that minimizes the classification

error between p(~hi, ~s) and p(~hi)p(~s) also maximizes MI(X
(k)
i ;~hi).

Proof. Given our assumption of |Xi| = |~s|, there exists an inverse Xi = R−1(~s), and therefore
~hi = E(R−1(~s)), i.e. there exists a deterministic function (E ◦ R−1) mapping ~s to ~hi. The optimal

classifier between the joint p(~hi, ~s) and the product of marginals p(~hi)p(~s) then has (by Lemma 1)

an error rate upper bound of Err∗ = 1
2

∑|X|
k=1 p(

~h
(k)
i )2. Therefore (as in Corollary 1), for the optimal

~hi, |~hi| = |Xi|, which by the same arguments as in Theorem 1 maximizes the mutual information

between the neighborhood and high-level features, MI(X
(k)
i ;~hi).

This motivates our use of a classifier between samples from the joint and the product of marginals,
and using the binary cross-entropy (BCE) loss to optimize this classifier is well-understood in the
context of neural network optimization.

3.4 OVERVIEW OF DGI

Assuming the single-graph setup (i.e., (X,A) provided as input), we will now summarize the steps
of the Deep Graph Infomax procedure:

1. Sample a negative example by using the corruption function: (X̃, Ã) ∼ C(X,A).

2. Obtain patch representations, ~hi for the input graph by passing it through the encoder:

H = E(X,A) = {~h1,~h2, . . . ,~hN}.

3. Obtain patch representations,
~̃
hj for the negative example by passing it through the encoder:

H̃ = E(X̃, Ã) = {
~̃
h1,

~̃
h2, . . . ,

~̃
hM}.

4. Summarize the input graph by passing its patch representations through the readout func-
tion: ~s = R(H).

5. Update parameters of E , R and D by applying gradient descent to maximize Equation 1.

This algorithm is fully summarized by Figure 1.
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~xi

~̃xj

(X,A)

(X̃, Ã)

~hi

~̃
hj

(H,A)

(H̃, Ã)

E

C

E

~s

R

D

D

+

−

Figure 1: A high-level overview of Deep Graph Infomax. Refer to Section 3.4 for more details.

Table 1: Summary of the datasets used in our experiments.

Dataset Task Nodes Edges Features Classes Train/Val/Test Nodes

Cora Transductive 2,708 5,429 1,433 7 140/500/1,000
Citeseer Transductive 3,327 4,732 3,703 6 120/500/1,000
Pubmed Transductive 19,717 44,338 500 3 60/500/1,000
Reddit Inductive 231,443 11,606,919 602 41 151,708/23,699/55,334

PPI Inductive
56,944

818,716 50
121 44,906/6,514/5,524

(24 graphs) (multilbl.) (20/2/2 graphs)

4 CLASSIFICATION PERFORMANCE

We have assessed the benefits of the representation learnt by the DGI encoder on a variety of node
classification tasks (transductive as well as inductive), obtaining competitive results. In each case,
DGI was used to learn patch representations in a fully unsupervised manner, followed by evaluating
the node-level classification utility of these representations. This was performed by directly using
these representations to train and test a simple linear (logistic regression) classifier.

4.1 DATASETS

We follow the experimental setup described in Kipf & Welling (2016a) and Hamilton et al. (2017a)
on the following benchmark tasks: (1) classifying research papers into topics on the Cora, Cite-
seer and Pubmed citation networks (Sen et al., 2008); (2) predicting the community structure of a
social network modeled with Reddit posts; and (3) classifying protein roles within protein-protein
interaction (PPI) networks (Zitnik & Leskovec, 2017), requiring generalisation to unseen networks.

Further information on the datasets may be found in Table 1 and Appendix A.

4.2 EXPERIMENTAL SETUP

For each of three experimental settings (transductive learning, inductive learning on large graphs,
and multiple graphs), we employed distinct encoders and corruption functions appropriate to that
setting (described below).

Transductive learning. For the transductive learning tasks (Cora, Citeseer and Pubmed), our en-
coder is a one-layer Graph Convolutional Network (GCN) model (Kipf & Welling, 2016a), with the
following propagation rule:

E(X,A) = σ
(
D̂

− 1
2 ÂD̂

− 1
2XΘ

)
(3)

where Â = A + IN is the adjacency matrix with inserted self-loops and D̂ is its corresponding

degree matrix; i.e. D̂ii =
∑

j Âij . For the nonlinearity, σ, we have applied the parametric ReLU
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~h1
~h2

~h3

~s

Figure 2: The DGI setup on large graphs (such as Reddit). Summary vectors, ~s, are obtained by

combining several subsampled patch representations, ~hi (here obtained by sampling three and two
neighbors in the first and second level, respectively).

(PReLU) function (He et al., 2015), and Θ ∈ R
F×F ′

is a learnable linear transformation applied
to every node, with F ′ = 512 features being computed (specially, F ′ = 256 on Pubmed due to
memory limitations).

The corruption function used in this setting is designed to encourage the representations to prop-
erly encode structural similarities of different nodes in the graph; for this purpose, C preserves the

original adjacency matrix (Ã = A), whereas the corrupted features, X̃, are obtained by row-wise
shuffling of X. That is, the corrupted graph consists of exactly the same nodes as the original graph,
but they are located in different places in the graph, and will therefore receive different patch repre-
sentations. We demonstrate DGI is stable to other choices of corruption functions in Appendix C,
but we find those that preserve the graph structure result in the strongest features.

Inductive learning on large graphs. For inductive learning, we may no longer use the GCN update
rule in our encoder (as the learned filters rely on a fixed and known adjacency matrix); instead, we
apply the mean-pooling propagation rule, as used by GraphSAGE-GCN (Hamilton et al., 2017a):

MP(X,A) = D̂
−1

ÂXΘ (4)

with parameters defined as in Equation 3. Note that multiplying by D̂
−1 actually performs a normal-

ized sum (hence the mean-pooling). While Equation 4 explicitly specifies the adjacency and degree
matrices, they are not needed: identical inductive behaviour may be observed by a constant attention
mechanism across the node’s neighbors, as used by the Const-GAT model (Veličković et al., 2018).

For Reddit, our encoder is a three-layer mean-pooling model with skip connections (He et al., 2016):

M̃P(X,A) = σ (XΘ
′‖MP(X,A)) E(X,A) = M̃P3(M̃P2(M̃P1(X,A),A),A) (5)

where ‖ is featurewise concatenation (i.e. the central node and its neighborhood are handled sepa-
rately). We compute F ′ = 512 features in each MP layer, with the PReLU activation for σ.

Given the large scale of the dataset, it will not fit into GPU memory entirely. Therefore, we use
the subsampling approach of Hamilton et al. (2017a), where a minibatch of nodes is first selected,
and then a subgraph centered around each of them is obtained by sampling node neighborhoods
with replacement. Specifically, we sample 10, 10 and 25 neighbors at the first, second and third
level, respectively—thus, each subsampled patch has 1 + 10 + 100 + 2500 = 2611 nodes. Only the

computations necessary for deriving the central node i’s patch representation, ~hi, are performed.
These representations are then used to derive the summary vector, ~s, for the minibatch (Figure 2).
We used minibatches of 256 nodes throughout training.

To define our corruption function in this setting, we use a similar approach as in the transductive
tasks, but treat each subsampled patch as a separate graph to be corrupted (i.e., we row-wise shuffle
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the feature matrices within a subsampled patch). Note that this may very likely cause the central
node’s features to be swapped out for a sampled neighbor’s features, further encouraging diversity
in the negative samples. The patch representation obtained in the central node is then submitted to
the discriminator.

Inductive learning on multiple graphs. For the PPI dataset, inspired by previous successful super-
vised architectures (Veličković et al., 2018), our encoder is a three-layer mean-pooling model with
dense skip connections (He et al., 2016; Huang et al., 2017):

H1 = σ (MP1(X,A)) (6)

H2 = σ (MP2(H1 +XWskip,A)) (7)

E(X,A) = σ (MP3(H2 +H1 +XWskip,A)) (8)

where Wskip is a learnable projection matrix, and MP is as defined in Equation 4. We compute
F ′ = 512 features in each MP layer, using the PReLU activation for σ.

In this multiple-graph setting, we opted to use randomly sampled training graphs as negative exam-
ples (i.e., our corruption function simply samples a different graph from the training set). We found
this method to be the most stable, considering that over 40% of the nodes have all-zero features in
this dataset. To further expand the pool of negative examples, we also apply dropout (Srivastava
et al., 2014) to the input features of the sampled graph. We found it beneficial to standardize the
learnt embeddings across the training set prior to providing them to the logistic regression model.

Readout, discriminator, and additional training details. Across all three experimental settings,
we employed identical readout functions and discriminator architectures.

For the readout function, we use a simple averaging of all the nodes’ features:

R(H) = σ

(
1

N

N∑

i=1

~hi

)
(9)

where σ is the logistic sigmoid nonlinearity. While we have found this readout to perform the best
across all our experiments, we assume that its power will diminish with the increase in graph size,
and in those cases, more sophisticated readout architectures such as set2vec (Vinyals et al., 2015) or
DiffPool (Ying et al., 2018b) are likely to be more appropriate.

The discriminator scores summary-patch representation pairs by applying a simple bilinear scoring
function (similar to the scoring used by Oord et al. (2018)):

D(~hi, ~s) = σ
(
~hT
i W~s

)
(10)

Here, W is a learnable scoring matrix and σ is the logistic sigmoid nonlinearity, used to convert

scores into probabilities of (~hi, ~s) being a positive example.

All models are initialized using Glorot initialization (Glorot & Bengio, 2010) and trained to maxi-
mize the mutual information provided in Equation 1 on the available nodes (all nodes for the trans-
ductive, and training nodes only in the inductive setup) using the Adam SGD optimizer (Kingma
& Ba, 2014) with an initial learning rate of 0.001 (specially, 10−5 on Reddit). On the transduc-
tive datasets, we use an early stopping strategy on the observed training loss, with a patience of 20
epochs3. On the inductive datasets we train for a fixed number of epochs (150 on Reddit, 20 on PPI).

4.3 RESULTS

The results of our comparative evaluation experiments are summarized in Table 2.

For the transductive tasks, we report the mean classification accuracy (with standard deviation) on
the test nodes of our method after 50 runs of training (followed by logistic regression), and reuse the
metrics already reported in Kipf & Welling (2016a) for the performance of DeepWalk and GCN, as
well as Label Propagation (LP) (Zhu et al., 2003) and Planetoid (Yang et al., 2016)—a representative
supervised random walk method. Specially, we provide results for training the logistic regression
on raw input features, as well as DeepWalk with the input features concatenated.

3 A reference DGI implementation may be found at https://github.com/PetarV-/DGI.
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Table 2: Summary of results in terms of classification accuracies (on transductive tasks) or micro-
averaged F1 scores (on inductive tasks). In the first column, we highlight the kind of data available
to each method during training (X: features, A: adjacency matrix, Y: labels). “GCN” corresponds
to a two-layer DGI encoder trained in a supervised manner.

Transductive

Available data Method Cora Citeseer Pubmed

X Raw features 47.9 ± 0.4% 49.3 ± 0.2% 69.1 ± 0.3%
A,Y LP (Zhu et al., 2003) 68.0% 45.3% 63.0%
A DeepWalk (Perozzi et al., 2014) 67.2% 43.2% 65.3%
X,A DeepWalk + features 70.7 ± 0.6% 51.4 ± 0.5% 74.3 ± 0.9%

X,A Random-Init (ours) 69.3 ± 1.4% 61.9 ± 1.6% 69.6 ± 1.9%
X,A DGI (ours) 82.3 ± 0.6% 71.8 ± 0.7% 76.8 ± 0.6%

X,A,Y GCN (Kipf & Welling, 2016a) 81.5% 70.3% 79.0%
X,A,Y Planetoid (Yang et al., 2016) 75.7% 64.7% 77.2%

Inductive

Available data Method Reddit PPI

X Raw features 0.585 0.422
A DeepWalk (Perozzi et al., 2014) 0.324 —
X,A DeepWalk + features 0.691 —

X,A GraphSAGE-GCN (Hamilton et al., 2017a) 0.908 0.465
X,A GraphSAGE-mean (Hamilton et al., 2017a) 0.897 0.486
X,A GraphSAGE-LSTM (Hamilton et al., 2017a) 0.907 0.482
X,A GraphSAGE-pool (Hamilton et al., 2017a) 0.892 0.502

X,A Random-Init (ours) 0.933 ± 0.001 0.626 ± 0.002
X,A DGI (ours) 0.940 ± 0.001 0.638 ± 0.002

X,A,Y FastGCN (Chen et al., 2018) 0.937 —
X,A,Y Avg. pooling (Zhang et al., 2018) 0.958 ± 0.001 0.969 ± 0.002

For the inductive tasks, we report the micro-averaged F1 score on the (unseen) test nodes, aver-
aged after 50 runs of training, and reuse the metrics already reported in Hamilton et al. (2017a) for
the other techniques. Specifically, as our setup is unsupervised, we compare against the unsuper-
vised GraphSAGE approaches. We also provide supervised results for two related architectures—
FastGCN (Chen et al., 2018) and Avg. pooling (Zhang et al., 2018).

Our results demonstrate strong performance being achieved across all five datasets. We particularly
note that the DGI approach is competitive with the results reported for the GCN model with the
supervised loss, even exceeding its performance on the Cora and Citeseer datasets. We assume that
these benefits stem from the fact that, indirectly, the DGI approach allows for every node to have
access to structural properties of the entire graph, whereas the supervised GCN is limited to only
two-layer neighborhoods (by the extreme sparsity of the training signal and the corresponding threat
of overfitting). It should be noted that, while we are capable of outperforming equivalent supervised
encoder architectures, our performance still does not surpass the current supervised transductive
state of the art (which is held by methods such as GraphSGAN (Ding et al., 2018)). We further ob-
serve that the DGI method successfully outperformed all the competing unsupervised GraphSAGE
approaches on the Reddit and PPI datasets—thus verifying the potential of methods based on local
mutual information maximization in the inductive node classification domain. Our Reddit results are
competitive with the supervised state of the art, whereas on PPI the gap is still large—we believe this
can be attributed to the extreme sparsity of available node features (over 40% of the nodes having
all-zero features), that our encoder heavily relies on.

We note that a randomly initialized graph convolutional network may already extract highly useful
features and represents a strong baseline—a well-known fact, considering its links to the Weisfeiler-
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Figure 3: t-SNE embeddings of the nodes in the Cora dataset from the raw features (left), features
from a randomly initialized DGI model (middle), and a learned DGI model (right). The clusters of
the learned DGI model’s embeddings are clearly defined, with a Silhouette score of 0.234.

Lehman graph isomorphism test (Weisfeiler & Lehman, 1968), that have already been highlighted
and analyzed by Kipf & Welling (2016a) and Hamilton et al. (2017a). As such, we also provide, as
Random-Init, the logistic regression performance on embeddings obtained from a randomly initial-
ized encoder. Besides demonstrating that DGI is able to further improve on this strong baseline, it
particularly reveals that, on the inductive datasets, previous random walk-based negative sampling
methods may have been ineffective for learning appropriate features for the classification task.

Lastly, it should be noted that deeper encoders correspond to more pronounced mixing between
recovered patch representations, reducing the effective variability of our positive/negative examples’
pool. We believe that this is the reason why shallower architectures performed better on some of the
datasets. While we cannot say that these trends will hold in general, with the DGI loss function we
generally found benefits from employing wider, rather than deeper models.

5 QUALITATIVE ANALYSIS

We performed a diverse set of analyses on the embeddings learnt by the DGI algorithm in order to
better understand the properties of DGI. We focus our analysis exclusively on the Cora dataset (as it
has the smallest number of nodes, significantly aiding clarity).

A standard set of “evolving” t-SNE plots (Maaten & Hinton, 2008) of the embeddings is given in
Figure 3. As expected given the quantitative results, the learnt embeddings’ 2D projections ex-
hibit discernible clustering in the 2D projected space (especially compared to the raw features and
Random-Init), which respects the seven topic classes of Cora. The projection obtains a Silhouette
score (Rousseeuw, 1987) of 0.234, which compares favorably with the previous reported score of
0.158 for Embedding Propagation (Duran & Niepert, 2017).

We ran further analyses, revealing insights into DGI’s mechanism of learning, isolating biased em-
bedding dimensions for pushing the negative example scores down and using the remainder to en-
code useful information about positive examples. We leverage these insights to retain competitive
performance to the supervised GCN even after half the dimensions are removed from the patch rep-
resentations provided by the encoder. These—and several other—qualitative and ablation studies
can be found in Appendix B.

6 CONCLUSIONS

We have presented Deep Graph Infomax (DGI), a new approach for learning unsupervised represen-
tations on graph-structured data. By leveraging local mutual information maximization across the
graph’s patch representations, obtained by powerful graph convolutional architectures, we are able
to obtain node embeddings that are mindful of the global structural properties of the graph. This
enables competitive performance across a variety of both transductive and inductive classification
tasks, at times even outperforming relevant supervised architectures.
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Figure 4: Discriminator scores, D
(
~hi, ~s

)
, attributed to each node in the Cora dataset shown over a

t-SNE of the DGI algorithm. Shown for both the original graph (left) and a negative sample (right).

A FURTHER DATASET DETAILS

Transductive learning. We utilize three standard citation network benchmark datasets—Cora, Cite-
seer and Pubmed (Sen et al., 2008)—and closely follow the transductive experimental setup of Yang
et al. (2016). In all of these datasets, nodes correspond to documents and edges to (undirected)
citations. Node features correspond to elements of a bag-of-words representation of a document.
Each node has a class label. We allow for only 20 nodes per class to be used for training—however,
honouring the transductive setup, the unsupervised learning algorithm has access to all of the nodes’
feature vectors. The predictive power of the learned representations is evaluated on 1000 test nodes.

Inductive learning on large graphs. We use a large graph dataset (231,443 nodes and 11,606,919
edges) of Reddit posts created during September 2014 (derived and preprocessed as in Hamilton
et al. (2017a)). The objective is to predict the posts’ community (“subreddit”), based on the GloVe
embeddings of their content and comments (Pennington et al., 2014), as well as metrics such as score
or number of comments. Posts are linked together in the graph if the same user has commented on
both. Reusing the inductive setup of Hamilton et al. (2017a), posts made in the first 20 days of
the month are used for training, while the remaining posts are used for validation or testing and are
invisible to the training algorithm.

Inductive learning on multiple graphs. We make use of a protein-protein interaction (PPI) dataset
that consists of graphs corresponding to different human tissues (Zitnik & Leskovec, 2017). The
dataset contains 20 graphs for training, 2 for validation and 2 for testing. Critically, testing graphs
remain completely unobserved during training. To construct the graphs, we used the preprocessed
data provided by Hamilton et al. (2017a). Each node has 50 features that are composed of positional
gene sets, motif gene sets and immunological signatures. There are 121 labels for each node set
from gene ontology, collected from the Molecular Signatures Database (Subramanian et al., 2005),
and a node can possess several labels simultaneously.

B FURTHER QUALITATIVE ANALYSIS

Visualizing discriminator scores. After obtaining the t-SNE visualizations, we turned our attention
to the discriminator—and visualized the scores it attached to various nodes, for both the positive
and a (randomly sampled) negative example (Figure 4). From here we can make an interesting
observation—within the “clusters” of the learnt embeddings on the positive Cora graph, only a
handful of “hot” nodes are selected to receive high discriminator scores. This suggests that there
may be a clear distinction between embedding dimensions used for discrimination and classification,
which we more thoroughly investigate in the next paragraph. In addition, we may observe that, as
expected, the model is unable to find any strong structure within a negative example. Lastly, a few
negative examples achieve high discriminator scores—a phenomenon caused by the existence of
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Figure 5: The learnt embeddings of the highest-scored positive examples (upper half ), and the
lowest-scored negative examples (lower half ).
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Figure 6: Classification performance (in terms of test accuracy of logistic regression; left) and
discriminator performance (in terms of number of poorly discriminated positive/negative examples;
right) on the learnt DGI embeddings, after removing a certain number of dimensions from the
embedding—either starting with most distinguishing (p ↑) or least distinguishing (p ↓).

low-degree nodes in Cora (making the probability of a node ending up in an identical context it had
in the positive graph non-negligible).

Impact and role of embedding dimensions. Guided by the previous result, we have visualized the
embeddings for the top-scoring positive and negative examples (Figure 5). The analysis revealed
existence of distinct dimensions in which both the positive and negative examples are strongly bi-
ased. We hypothesize that, given the random shuffling, the average expected activation of a negative
example is zero, and therefore strong biases are required to “push” the example down in the discrim-
inator. The positive examples may then use the remaining dimensions to both counteract this bias
and encode patch similarity. To substantiate this claim, we order the 512 dimensions based on how
distinguishable the positive and negative examples are in them (using p-values obtained from a t-test
as a proxy). We then remove these dimensions from the embedding, respecting this order—either
starting from the most distinguishable (p ↑) or least distinguishable dimensions (p ↓)—monitoring
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how this affects both classification and discriminator performance (Figure 6). The observed trends
largely support our hypothesis: if we start by removing the biased dimensions first (p ↓), the classi-
fication performance holds up for much longer (allowing us to remove over half of the embedding
dimensions while remaining competitive to the supervised GCN), and the positive examples mostly
remain correctly discriminated until well over half the dimensions are removed.

C ROBUSTNESS TO CHOICE OF CORRUPTION FUNCTION

Here, we consider alternatives to our corruption function, C, used to produce negative graphs. We
generally find that, for the node classification task, DGI is stable and robust to different strategies.
However, for learning graph features towards other kinds of tasks, the design of appropriate corrup-
tion strategies remains an area of open research.

Our corruption function described in Section 4.2 preserves the original adjacency matrix (Ã =

A) but corrupts the features, X̃, via row-wise shuffling of X. In this case, the negative graph is
constrained to be isomorphic to the positive graph, which should not have to be mandatory. We can
instead produce a negative graph by directly corrupting the adjacency matrix.

Therefore, we first consider an alternative corruption function C which preserves the features

(X̃ = X) but instead adds or removes edges from the adjacency matrix (Ã 6= A). This is done
by sampling, i.i.d., a switch parameter Σij , which determines whether to corrupt the adjacency ma-
trix at position (i, j). Assuming a given corruption rate, ρ, we may define C as performing the
following operations:

Σij ∼ Bernoulli(ρ) (11)

Ã = A⊕Σ (12)

where ⊕ is the XOR (exclusive OR) operation.

This alternative strategy produces a negative graph with the same features, but different connectivity.
Here, the corruption rate of ρ = 0 corresponds to an unchanged adjacency matrix (i.e. the positive
and negative graphs are identical in this case). In this regime, learning is impossible for the discrim-
inator, and the performance of DGI is in line with a randomly initialized DGI model. At higher rates
of noise, however, DGI produces competitive embeddings.

We also consider simultaneous feature shuffling (X̃ 6= X) and adjacency matrix perturbation

(Ã 6= A), both as described before. We find that DGI still learns useful features under this com-
pound corruption strategy—as expected, given that feature shuffling is already equivalent to an (iso-
morphic) adjacency matrix perturbation.

From both studies, we may observe that a certain lower bound on the positive graph perturbation rate
is required to obtain competitive node embeddings for the classification task on Cora. Furthermore,
the features learned for downstream node classification tasks are most powerful when the negative
graph has similar levels of connectivity to the positive graph.

The classification performance peaks when the graph is perturbed to a reasonably high level, but
remains sparse; i.e. the mixing between the separate 1-step patches is not substantial, and therefore
the pool of negative examples is still diverse enough. Classification performance is impacted only
marginally at higher rates of corruption—corresponding to dense negative graphs, and thus a less
rich negative example pool—but still considerably outperforming the unsupervised baselines we
have considered. This could be seen as further motivation for relying solely on feature shuffling,
without adjacency perturbations—given that feature shuffling is a trivial way to guarantee a diverse
set of negative examples, without incurring significant computational costs per epoch.

The results of this study are visualized in Figures 7 and 8.
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Figure 7: DGI also works under a corruption function that modifies only the adjacency matrix

(Ã 6= A) on the Cora dataset. The left range (ρ → 0) corresponds to no modifications of the
adjacency matrix—therein, performance approaches that of the randomly initialized DGI model.
As ρ increases, DGI produces more useful features, but ultimately fails to outperform the feature-
shuffling corruption function. N.B. log scale used for ρ.
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N
) perform the best. However, DGI still performs well even with large disruptions
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