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ABSTRACT Multi-spectral imaging (MSI) is a novel non-invasive tool for visualizing the entire span
of the eye, from the internal limiting membrane to the choroid. However, spatial misalignments can be
frequently observed in sequential MSI images because the eye saccade movement is usually faster than
the MSI image acquisition speed. Therefore, registering MSI images is necessary for computer-based
analysis of retinal degeneration via MSI. In this paper, we propose an early deep learning framework for
achieving an accurate registration of MSI images in a group-wise fashion. The framework contains three
parts: a template construction based on principal component analysis, a deformation field calculation, and a
spatial transformation. The framework is uniquely capable of resolving two key challenges, i.e., the ‘‘multi-
modal’’ characteristics in MSI images for the acquisition with different spectra and the requirement of joint
registration of the sequential images. Our experimental results demonstrate the superior performance of our
framework compared to several representative state-of-the-art techniques in both speed and accuracy.

INDEX TERMS Multi-spectral images, group-wise registration, deep learning, mono/multi-modal images.

I. INTRODUCTION

Ocular diseases, such as diabetic retinopathy, glaucoma, and
age-related macular degeneration, have long been consid-
ered the leading causes of vision impairment or blindness.
Ophthalmic fundus imaging has evolved to become a funda-
mental diagnostic tool for understanding ocular diseases [1]
to effectively prevent visual impairment. Furthermore, as an
advanced retinal imaging technique, multi-spectral imaging
has a great ability to help doctors identify, interpret, and
diagnose disease processes earlier than conventional imaging
modalities. This enhanced diagnostic capability is due to
the production of a series of monochrome slices throughout
the entire thickness of the retina through the use of multi-
ple wavelengths of light, as shown in Fig. 1. These images
include 11 wavelengths of green, yellow, amber, red, and
infrared ranging from 550 nm to 850 nm. The combined
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image obtained by combining different wavelengths of
monochromatic light slices is of great significance to the
diagnostic capabilities of ophthalmologists. For example,
the image obtained by the combination of red and green light
(550 nm + 620 nm) approximates the color fundus image.
In addition, due to the different information contained in
different spectra, the joint consideration of intra-subject infor-
mation from multiple monochromatic light slices by ophthal-
mologists has helped improve the diagnostic accuracy.

However, there are twomajor bottlenecks in practice: First,
the spatial misalignment of a sequence of images occurs
due to the eye saccade movement being faster than the MSI
image acquisition speed. Second, to track the condition of
the disease for diagnosis and treatment, the same subject
usually has to be scanned many times at different times.
Therefore, these fundus images acquired at different times
will produce some dislocation in space.Because it is difficult
to see the misalignment between multi-spectral slices with
the naked eye, we use the blood vessel image labeled by
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FIGURE 1. A representative sequence of MSI images from RHA arranged
in order of wavelength. From left to right and top to bottom, the images
are captured with short wavelengths of green (MSI-550), yellow
(MSI-580) and amber (MSI-590), followed by 4 wavelengths of red
(MSI-620, MSI-660, MSI-690 and MSI-740), 4 wavelengths of infrared
(MSI-760, MSI-780, MSI-810 and MSI-850), and the combination of red
and green light (550 nm + 620 nm).

FIGURE 2. An example sequence of blood vessel images labeled by an
ophthalmologist, in which the first 11 images are segmented blood vessel
images corresponding to the first 11 images of Fig. 1, the last image in the
third row is the average image calculated from the first 11 sequence
images and the two images from left to right in the fourth row are an
enlarged partial view of the MSI-740 nm blood vessel image and an
enlarged partial view of the average image.

an ophthalmologist to calculate the average image of the
MSI sequence images. As shown in Fig. 2, we can clearly
see that spatial misalignment does exist in sequential MSI
images. A computer-based algorithm of image registration
has the ability to register all the above sequence images
into a common space. Image registration is a key stage in
image fusion [2], building a smart healthcare system [3], etc.
The goal of image registration is to establish a one-to-one

correspondence map between the source image and the target
image. This mapwould greatly aid doctors in diagnosing ocu-
lar conditions by making full use of the benefits originating
from MSI data.

A variety of registration algorithms have been proposed
to deal with the spatial misalignment problem in different
ways, including image registration in the ophthalmic field
and general image registration. Existing retinal image reg-
istration methods [4], [5] display superior performance by
employing point correspondences. Additionally, some vessel-
based methods have been proposed [6], [7] that utilize retinal
vascular features as a basis to achieve image registration.
Unfortunately, these algorithms are only aimed at a pair of
retinal images of the samemodality, and the result of registra-
tion relies on the accuracy of vascular segmentation. In recent
years, there has been an increasing interest in simultaneously
aligning more than two images using a group-wise regis-
tration method to provide more useful information. Given
a group of moving images and a common template image,
this alignment involves mapping the moving images into a
common reference space where the coordinate space is that
of the template image. For group-wise registration in MSI,
a feature-point-matching-based framework [8] was proposed
to implement the joint alignment of multi-spectral images.
However, the method uses traditional machine learning meth-
ods, which are very expensive and time consuming compared
to deep learning methods.

The standard group-wise registration algorithms can be
further subdivided into two classes: mono-modal sequence
image-based methods and multi-modal sequence image-
based methods. For the registration of mono-modal sequence
images, some methods guided by templates have been pro-
posed to deal with the spatial misalignment problem. Sev-
eral template selection-based approaches [9], [10] have been
demonstrated to be effective in the group-wise registration of
brain images. These methods aim to select a real image in the
group as a reference template, the target image is warped, and
a series of intermediate templates may be traversed until the
final template is obtained. There are also some approaches
to take one image in the group as a template and register all
other images to this template in a pair-wise manner. However,
there is no standard for the selection of a template, and
the resulting transformations and subsequent data analysis
are easily biased towards the selected reference. Especially
for MSI images, the template selection based on a single
image will lose the function or structure information from
other wavelength slices because different spectral slices (pen-
etrating different light-absorbing species) may be associated
with different anatomical structures. Template generation-
based methods have also been presented in [11] and [12] to
construct simulated template images that are more similar
to the target images. The approach to mono-modal inter-
subject data [13] iteratively calculates the group mean image
and normalizes mutual information [14] as a pair-wise sim-
ilarity metric to compare every image in the group to the
average image. In [11], principal component analysis (PCA)
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is exploited to establish a statistical model of the simulated
deformation fields and generate multiple intermediate tem-
plates. These methods are not appropriate for multi-modal
data, as multi-modal data have different scales, ranges, and
contrast intensities.
Two recent works [15], [16] present effective strategies

to address the problem of group-wise registration of multi-
modal images by a hierarchical intensity-space subdivision
scheme, and the approach of conditional template entropy,
respectively. A significant drawback is that the performance
of these strategies relies on the intensity information from
a collection of images with manually identified landmarks.
In the present work, we model the registration function using
an encoder-decoder for extracting features from the template
and moving images without annotation information in order
to output deformation fields directly.
Because manual landmark and feature extraction in tra-

ditional method-based image registration is tedious and
time consuming, many deep learning-based methods have
been proposed that efficiently register images without iter-
ative optimization or parameter tuning during testing. These
methods include supervised-based approaches [17]–[19] and
the unsupervised registration framework [20], [21], which
uses a convolutional neural network to calculate the defor-
mation field. Additionally, recent work has explored the
unsupervised-based registration methods to learn similarity
metrics from a pair of multi-modal images [22], showing
their potential to outperform traditional methods in particular
applications. However, these frameworks are limited to bi-
modal images. That is, existing methods can only solve pair-
wise registration. Considering a set of mono/multi-modal
images, defining an effective similarity metric to guide global
matching across modalities with these approaches is hard.
In view of the successful applications of deep learning in
computer vision [23], [24]. The aim of our study is to use
deep learning to address the group-wise registration problem
of MSI that simultaneously aligns more than two images.
In this paper, we propose a deep group-wise registration

network based on the principle image with an unsupervised
CNN, which is suitable for the group-wise registration of
mono/multi-modal sequential fundus images. The proposed
network takes a group of moving images and an unbiased
template image based on PCA as inputs and outputs warped
moving images. Joint optimization is employed to handle
similarity measures corresponding to all images in a group.
The experimental results show that this approach achieves
good performance in group-wise registration. The main con-
tributions can be summarized as follows:
1) Instead of pair-wise registration, we employ joint opti-

mization by using a deep learning-based architecture to solve
the problem of group-wise registration.
2) To speed up the convergence during training and address

the bias of the template, we utilize an iteratively updated
representative template image based on PCA.
3) The proposed network is used to align multiple mono-

modal MSI images corresponding to the same wavelength

scanned at different times and to align multi-modal images
corresponding to different wavelengths.

4) To the best of our knowledge, this is the first universal
deep learning method for unsupervised deformable group-
wise registration of mono/multi-modal MSI data. The frame-
work is approximated as an encoder-decoder that improves
the registration accuracy and efficiency over existing regis-
tration methods and has great potential to be applied in real
applications.

II. METHODS

In group-wise registration, given a collection of moving
images M1,M2, . . . ,MN and a template image T , the goal
of group-wise registration is to register N moving images to
the template image such that all deformed moving images are
similar to the template image T . In this paper, we propose to
train an unsupervised deep CNN for group-wise registration
of mono/multi-modal MSI images. The proposed network,
depicted in Fig. 3, consists of a convolutional neural net-
work, template construction, and a spatial transformer. This
approach is based on the paradigm in which the similarity of
the group of images is measured with respect to an iteratively
updated template image. The following subsections introduce
these aspects and a possible architecture.

A. CONVOLUTIONAL ARCHITECTURE

As shown in Fig. 4, the convolutional architecture of the
group-wise registration network is based on U-net [25]. The
architecture for the deformation field (φi) consists of two
parts: an encoder and a decoder. Moving images are sequen-
tially paired with the template image as input to the encoder.
The encoder consists of 3×3 convolutions and 2×2 down-
sampling layers that learn features from the moving/template
images. We apply convolutions followed by rectified lin-
ear unit (ReLU) activations [26] and batch normalization
(BN) [27] with a stride of two. Every two convolutional layers
are followed by an average pooling layer that can retain
the most information and reduces the number of network
parameters during downsampling. In the decoding stage, each
step has a 2×2 deconvolution layer and two 3×3 convolution
layers followed by ReLUs and BN. Additionally, the registra-
tion is directly generated by concatenating skip connections
to the deconvolution that concatenates the high pixel features
extracted at the encoding stage to the new feature maps in
the decoding stage, and 1×1 kernels are applied to the last
convolutional layer. For the group-wise registration of multi-
modal images, because the moving and template images have
different modalities with significantly different spatial reso-
lutions, it is not necessarily optimal to have shared convo-
lutional weights. Thus, the convolutional weights applied to
the moving and template images are not shared, which adds
several additional free weights to optimize compared with the
task of mono-modal image registration.

B. TEMPLATE CONSTRUCTION

Given N images to be registered in a group, to find a
more representative template image, we adopt the idea of
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FIGURE 3. Overview of our proposed group-wise registration network. The input to the network consists of N moving images M1, M2 . . . , MN in
a group and the template image generated by PCA. The output of the network is N deformation fields, where each deformation field
corresponds to a moving image. The subsequent spatial transform uses bilinear interpolation to obtain dense spatial transformations for
registering 2D images by optimizing an image similarity metric.

FIGURE 4. Proposed convolutional architecture of the group-wise registration network. Moving images are sequentially paired with the
template image of size 512 × 512 as an input to the network. The number of channels is printed on the upper side of the cube, and the number
below the cube indicates the size of the feature map. Skip connections are applied to concatenate the feature maps extracted at the encoding
stage to the new feature maps. The output deformation field is the same size as the input image.

principal component analysis (PCA) combined with deep
learning to generate a template image containing the principal
components of the N images in the group, instead of using
the average image as a template. PCA is regarded as linear
dimensionality reduction using singular value decomposition
of the data to project them to a lower dimensional space while
retaining as many differences as possible. In our method,
the pixel coordinate of each image is sampled as a separate
observation, different images are taken as different variables
corresponding to an N -dimensional space, and PCA is used
to reduce the dimension to a one-dimensional subspace. The
eigenvectorV associatedwith the largest eigenvalue can serve
as the weightsw for the construction of the template image T .

V = (w1,w2,w3 . . . .wN ) (1)

T (x) =

N∑

i=1

VMi ◦ φi(x) (2)

Here, V is a linear combination of the variables and contains
all observations.

C. SPATIAL TRANSFORMATION FUNCTION

The optimal registration network parameters are found by
minimizing the differences betweenMi◦φi and T . We deploy
a differentiable spatial transformation operation based on spa-
tial transformer networks [28] to compute Mi ◦ φi. We warp
Mi with φi to Mi ◦ φi using a spatial transformation func-
tion, enabling the model to evaluate the similarity of each
warped moving image and template image. The spatial
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transformation operation with bilinear interpolation is formu-
lated as:

M ′
i = Mi ◦ φi

=
∑

x ′∈{x+φ(x)}
y′∈{y+φ(y)}

Mi(x
′, y′)(1 − |φ(x) − x ′|)(1 − |φ(y) − y′|)

(3)

where M ′
i is warped from Mi by φi, and for each pixel

(x,y), we compute a pixel location φ(x) and φ(y) in Mi.
{x + φ(x)} , {y+ φ(y)} denotes the 4-pixel neighborhood
around the location(x + φ(x), y + φ(y)). Variables x and y
indicate two directions in the 2D image space. To allow back-
propagation of the loss during optimization, similar to [28],
we compute the gradient of the spatial transformation with
respect to the location (x,y) by taking the partial derivatives
of Eq.( 3).

D. LOSS FUNCTION

In our proposed method, our network is trained by mini-
mizing the loss function to maximize the image similarity.
The loss layer evaluates the registration loss between the
template and each deformed moving image as formulated
in Eq.( 4).

L =
1

N

N∑

i=1

(−Lsim(T
pca,Mi ◦ φi) + Lsmooth(φi)) (4)

where the term Lsim measures the image similarity between
the template image T pca and each warped moving imageMi.
Particularly, the template image T pca is computed by princi-
pal component analysis of the current warped moving images
in a group. Lsmooth is the smoothness of the transformation
estimated by the registration network. In our experiments,
mutual information (MI) is used to calculate the similarity
between the images of different modalities. Lsim is defined
as:

Lsim = argmaxφi,Mi (H (T ) + H (Mi ◦ φi) − H (T ,Mi ◦ φi))

(5)

where the first two termsH (T ) andH (Mi◦φi) are themarginal
entropies of the marginal intensity distributions in the tem-
plate and warped moving images, respectively. The final term
denotes the joint entropy of the joint intensity distribution
between the template image and warped moving image. Each
warped moving image M ′

i gradually approximates the iter-
atively optimized template image by maximizing the image
similarity Lsim. The optimal deformation transformation is
obtained by maximizing Lsim, and the optimal weight of the
encoder-decoder network layers is obtaining by backprop-
agating the dissimilarity between the moving images and
the template image using stochastic gradient descent. Our
method iteratively updates the deformation fields based on
the gradient of the energy function L. In this way, we register
all images of the group in a common coordinate frame at

the end. To ensure the continuity of deformation, we set the
regularization term Lsmooth by constraining the smoothness
of the deformation field φi. The regularization is defined
as:

Lsmooth = λ1‖∇
2φ‖2 + λ2‖φ‖2 (6)

where∇2 represents the Laplacian operator, and λ1 and λ2 are
the weighting parameters that control the balance between the
image similarity measure and the regularization on the spatial
transformation.

III. EXPERIMENTS

A. DATASET

We demonstrate our method on the task of mono-modal
group-wise registration and multi-modal group-wise regis-
tration of MSI images. The experimental dataset is col-
lected from an Annidis RHA (Annidis Health Systems Corp
Ottawa, Canada). RHA is based on multi-spectral imaging.
Monochromatic LED lights produce 11 monochrome slices
for a comprehensive evaluation of the retina from shallow
to deep (RPE) and to the choroid. These images are of the
oculus dexter (OD) and oculus sinister (OS) of 27 healthy
subjects and 73 patients with fundus lesions. Thirty patients
were scanned for at least 4 sets of MSI images taken at
different times. They are provided in the dicom format with
a bit depth of 16 and a size of 2048 × 2048. All images
were resized to 512 × 512. All datasets were augmented
by adding three rotated (90◦, 180◦, 270◦) and two flipped
(left-right, up-down) variants for each image. For the group-
wise registration of multi-modal images, the dataset consists
of 990 sets of MSI sequence images. We split our dataset
into 890, 50 and 50 sets for training, validation, and testing,
respectively. Each set of sequence images comes from multi-
spectral images of 11 different wavelengths. For the group-
wise registration of mono-modal images, the dataset contains
a total of 2475 sets of sequence images, which are divided
into 2275, 100, and 100 sets for training, validation, and
testing, respectively. Each set of sequence images is produced
from multiple MSI images of the same wavelength scanned
at different times.

B. IMPLEMENTATION DETAILS

The network is implemented in PyTorch [29], and Adam
optimization [30] was used to train the network, with a learn-
ing rate of 0.001.We train networks to optimize the evaluation
results on the validation set and report the results on the
test set that we retain. The network is trained on two E5-
2630U4 CPUs and four NVIDIA Tesla V100 GPUs. Our
proposed network is trained separately on the mono/multi-
modal MSI datasets. For the group-wise registration of multi-
modal images from MSI, monochromatic slices of 11 dif-
ferent modes are used as a set of moving images. Addition-
ally, monochrome slices of the same wavelength acquired at
different times (in our experiments, scanned 4 times) were
used as the moving images for the group-wise registration
of mono-modal images. Their template images are a linear
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combination of moving images in a group that was obtained
by PCA. In training, the moving images are sequentially
paired with the template image as input to the network. These
moving images anatomically correspond to slices from the
same subject but acquired at different depths of the retina
at different times. We train the group-wise registration net-
work with different weight values through backpropagation
until convergence. Furthermore, the value of regularization
parameter λ affects the performance of the network when
using different λ to train the network separately. In our imple-
mentation, λ1 and λ2 are empirical values set to 0.5 and 0.01,
respectively. We train the network for 50 epoch.

IV. RESULTS

A. EVALUATION METRIC

We evaluate our registration performance using the Dice sim-
ilarity coefficient [31], the ratio of the labeled points with the
correct alignment over the threshold value [8] and the closest
point distance [32].

1) DICE SIMILARITY COEFFICIENT

For all test samples, we exploit expert-labeled anatomical
segmentations (vascular and optic), and the annotations in the
test scan are used for final quantitative evaluation only. Each
Dice score is computed using any two images in the group,
and the final averageDice score of each structure is calculated
over all subjects.We expect that the regions of any two images
after registration M ′

i ,M
′
j in a group correspond well to the

same anatomical structure overlap. LetPr
M ′
i
andPr

M ′
j
represent

the set of pixels of an anatomic structure. We denote the sets
inM ′

i andM
′
j as P

r
M ′
i
and Pr

M ′
j
, respectively. The Dice score of

two structures is defined as:

Dice = 2 ×

Pr
M ′
i

⋂
Pr
M ′
j

|Pr
M ′
i
| + |Pr

M ′
j
|

(7)

The closer the Dice value is to 1, the better the overlap of the
two structures, that is, the better the registration performance.
This evaluation measure evaluates the degree of matching
to individual anatomical regions as well as the total image
volume.

2) CLOSEST POINT DISTANCE

To avoid the use of the DSC of the vessel tree segmentation,
which will have an impact on the assessment results due
to the sensitivity of vascular segmentation, we also evaluate
the accuracy of the registration by measuring the closest
point distance. First, the ophthalmologist manually labels the
obvious vessel intersections based on all of the previously
labeled vessel tree images. Then, for each intersection in
each MSI image after registration, the closest point distance
algorithm searches for the nearest neighbor among the other
corresponding images in the group. Finally, the ratio of points
that are correctly matched is calculated through comparison
with the ground-truth.

3) RATIO OF REGISTRATION

For each test set of sequence images, the pathologist manually
picks 15 points in each MSI image and then annotates them
based on MRIcron [33]. We calculate the distance between
the manually labeled points in each MSI image after reg-
istration and the corresponding points in the other images
in the group. The registration is considered successful if
the distance divided by the radius of the retinal image after
preprocessing (257 pixels in our experiment) is less than the
set threshold (t). Then, the ratio of registration is obtained
based on the number of manually labeled points with correct
alignment over the threshold values. The ratio of registration
is defined as:

Ratio =
Q(d(M ′

i (Sk )), (M
′
j (Sk )) < t)

15C2
N

(8)

where Q denotes the number of points where the distance
between the corresponding points between any two images is
less than the threshold, M ′

i , and M
′
j are any two images after

registration, {Sk |k ∈ [1, 15]} represents the set of manually
labeled points and N is the number of images in a group.

B. TEMPLATE EVALUATION

To illustrate the importance of selecting representative tem-
plate images, especially the template of a set of multi-modal
images, two experiments are performed on MSI images of
different wavelengths. First, the average image and the PCA
image are separately used as a template for comparison of
sharpness changes during training. Second, the effect of tem-
plate images on the registration performance is studied with
respect to a single image, the average image, and the PCA
image in the group.
Fig. 5 shows the process of changing the template image

during the training of a group-wise registration experiment.
Conventional methods of group-wise registration use a very
fuzzy group mean image as the template, as shown in the top
row of Fig. 5. In contrast, our method begins with a clear PCA
image, as shown in the second row of Fig. 5, which is close to
the population center. The evolutions of the template image
using a conventional method and our proposed method are
provided in the top row and second row of Fig. 5, respectively.
At 30 epochs, the sharpness of the PCA template image is
already very high and far exceeds that of the average template
image. Clearly, the technique of combining PCA template
images with deep networks converges faster than that using
an average template image. The main reason for this fast
convergence is that the PCA-based template image jointly
considers the principal component information of a set of
MSI sequence images, making the template image a more
representative image.
Additionally, to emphasize the effectiveness of PCA-based

templates for group-wise registration, the proposed group-
wise registration network was compared to 6 other meth-
ods based on single template selection and on an average
image [34] in a multi-modal group-wise registration task. For
the template selection based on a single image in a group,
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FIGURE 5. The process of changing the template image during training. The top row shows how the template image
changes as the number of iterations increases when the proposed network uses the average image as a template. The
next row indicates the change in the template image when the PCA image is used as a template.

TABLE 1. The overlap evaluation results for different template-based
group-wise registrations of multi-modal images from MSI. Comparison of
the average Dice scores for the approaches based on a single image
(550 nm, 590 nm, 620 nm, 660 nm, and 740 nm), the average image, and
the PCA image in the group.

we exploit the MSI images acquired at 550 nm, 590 nm,
620 nm, 660 nm, and 740 nm as the template image and
register images acquired at other wavelengths to this tem-
plate image. Note that the shorter the wavelength is in these
wavelength-dependent MSI images, the higher the sharpness,
i.e., the 550 nm MSI image is the clearest. Particularly,
we delete the template construction from our PCA-based
group-wise registration network for the experiments based on
a single image and implement pair-wise registration.
By analyzing the average Dice scores shown in Table 1

and the registration correct rate distributions shown in Fig. 6,
we can clearly see that the average Dice scores of the regis-
tration based on template selection (550 nm, 590 nm, 620 nm,
660 nm, and 740 nm) is lower than those based on template
generation (average and PCA). At the same time, the accuracy
produced by the clearest template image of 550 nm is inferior
to that produced by the 620 nm and 660 nm images in the
template selection-based registration. Thus, if we choose a
template from an equally qualifiedMSI sequence image, even
the clearest one may produce sub-optimal results. There is
no standard to select the template image, which can cause
biased transformations, and the subsequent data analysis can
be easily biased towards the selected template. Additionally,
the proposed network based on PCA achieved the best result
because the PCA image considers the principal component

FIGURE 6. Accuracy of registration based on different templates
determined by measuring the closest point distance of labeled vessel tree
images. The x-axis denotes 7 different methods, while the y-axis is the
ratio of the correct registration at the intersection. The variance is
displayed above each blue rectangle.

information of a set of MSI sequence images fairly and
comprehensively.

C. PERFORMANCE EVALUATION

Due to the superior performance of global affine align-
ment [35] and SyN [36] in traditional registration tasks,
we compare the proposed method to these methods in reg-
istration experiments of MSI images. The proposed deep
learning-based registration algorithm is improved in time
and precision compared to traditional methods. We exploit
DIRNet [20] with MI, implementing pair-wise registration of
MSI images in a group for comparison with the proposed
group-wise registration network. We implement pair-wise
registration of MSI images based on affine alignment, SyN,
and DIRNet. Affine transformation and SyN implementation
depend on the ANTs [36] software package, with theMI sim-
ilarity measure. The proposed network is also compared with
the average mutual information (AMI) [34] in a group-wise
registration task that uses the average image as a template
image.
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TABLE 2. Overlap evaluation results for the group-wise registration of MSI images, and comparison of the average Dice scores for global affine
alignment, SyN, AMI, DIRNet and the proposed network, including the group-wise registration of multi-modal images from different wavelength fundus
images and the group-wise registration of mono-modal images from different acquisition times at the same wavelength.

FIGURE 7. Performance curves for group-wise registration of MSI. Comparison of average ratio global affine alignment,
SyN, DIRNet, AMI and our proposed network. The y-axis denotes the ratio of correct registration while the x-axis is the
threshold. (a) The group-wise registration of multi-modal images. (b) The group-wise registration of mono-modal images.

For the registration of multi-modal images from MSI,
the average Dice value before registration is particularly low
(0.236 ± 0.034) because of the structural specificity of the
fundus image. In particular, the distribution of the vascular
structure is not uniform. In Table 2, we can see from the
results of the two experiments that our proposed approach
achieved the best accuracy. This result indicates that the
proposed network outperforms the pair-wise registration in
a joint optimal manner. Furthermore, the proposed group-
wise registration network PCA-based method is superior to
the other baseline methods. Regarding AMI with the average
image as a template for the group-wise registration, AMI
performs comparably to the proposed network for mono-
modal fundus images. The template image in our method
interpreted as the PCA image usually yields a more accurate
registration result for multi-modal images.
In our experiments, the DSC values based on vessel seg-

mentation are generally low due to the complexity of the
vascular structure and the sensitivity of segmentation. For the
group-wise registration of multi-modal images, we further
evaluate the registration performance of the algorithm by
measuring the closest point distance of labeled vessel tree
images. From Fig. 8, it is not difficult to find a clear distinc-
tion between the registration accuracies for significant points
in the vessel tree obtained by different methods. Additionally,
we have two findings. First, group-wise registration outper-
forms pair-wise registration. The major reason is that differ-
ent spectral slices may be associated with different anatom-
ical structures. However, pair-wise registration relies on the

independent processes of pair-wise images rather than on the
joint information of MSI images, possibly leading to only a
fraction of the total information available within the group
of images being used in each pair-wise registration. Second,
the proposed PCA-based group-wise registration network is
far superior to AMI because of the large differences in the
appearance of multi-modal images. The group average image
is very blurry compared to PCA images.

We plot the corresponding point-match ratio measure
against different methods for the group-wise registration
of mono-modal images and multi-modal images, as shown
in Fig.7(a) and Fig.7(b), respectively. We can see that the
registration performance will gradually increase with a larger
threshold. However, our algorithm shows an improved accu-
racy result that is better than those of all the other methods.
This implies that the proposed PCA-based group-wise regis-
tration network improves the algorithm performance in regis-
tration. This improvement is conferred by the deep learning-
based joint optimization that iteratively updates the template
image.

D. COMPUTATIONAL COST EVALUATION

Because of the different experimental environments and pro-
gramming languages of the different methods, we roughly
compare the computational time of our method to those of
the other 4 classic registration methods in the testing stage,
as reported in Table 3. The runtime results were produced
on two CPUs and four GPUs. Pair-wise estimates of mutual
information, such as global affine alignment and SyN, exhibit
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TABLE 3. Computational cost of 5 different registration methods in the training and testing stages.

FIGURE 8. Accuracy of the registration of multi-modal images measured
using the closest point distance of labeled vessel tree images. The x-axis
denotes 5 different methods, while the y-axis is the ratio of the correct
registration at the intersection. The variance is displayed above each blue
rectangle.

a higher calculation time because all possible pairs of images
in the group need to be calculated. The deep learning-based
pair-wise registration algorithm DIRNet consistently outper-
forms the traditional affine transformation and SyN in reg-
istration accuracy and computation time. The extension to
group-wise registration leads to a dramatic performance drop
because more iterations are needed to optimize the registra-
tion results. As for AMI, it takes much time to converge due
to the ambiguity of the average template in the group-wise
registration of mono/multi-modal images. We can see that
our method requires approximately 3.2 minutes for the multi-
modal images and 1.4 minutes for the mono-modal images to
register a group of images. These times are faster than those
of the other methods used during testing. In the two sets of
experiments on mono-modal image and multi-modal image
registration, the registration time of the mono-modal images
is less due to the different numbers of moving images (mono:
4 images; multi: 11 images).

E. VISUALIZATION RESULTS

Additionally, the results of MSI registration are visually
illustrated. Taking the group-wise registration of multi-modal
images fromMSI as an example, Fig. 9 shows themean image
before and after registration by 5 different methods. We find
that the mean of the images before registration is blurry. The
mean of the registered images obtained by proposed group-
wise registration network is sharper than those obtained by
the other methods. This result means that the image can be
best aligned by our method.
As an example of result visualization, we randomly select

3 different wavelengths (580 nm, 620 nm, and 740 nm) of
MSI images with optic disc annotations to obtain the overlap

FIGURE 9. MSI registration results achieved by 7 different methods,
where the upper-left image is the image before registration, and the rest
of the images are images after registration by different methods. The top
row shows the mean image of all subjects in a group, and the boxes
represent magnifications of the local region.

of the discs. The comparison of the optic disc segmenta-
tions before and after registration for each method is shown
in Fig. 10.

V. DISCUSSION

A. COMPARISON WITH PREVIOUS STUDIES

In this work, we propose a novel registration method suit-
able for mono/multi-modal group-wise registration based
on a principal image with an unsupervised CNN. Com-
pared with previous deep learning-based pair-wise registra-
tion approaches [37], [38] that supervise iterative training,
the proposed method does not require a manually annotated
ground-truth. Compared with traditional group-wise regis-
tration approaches [12], [39], our method models an end-to-
end network that can automatically perform feature extraction
and deformation field calculations. Furthermore, compared
with the latest deep learning-based multi-modal registration
approaches [22] that use image synthesis to transform multi-
modal registration into mono-modal registration tasks, our
framework does not depend on other processes that simulta-
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FIGURE 10. Visualization of the registration results. The source images (MSI images acquired at 580 nm, 620 nm, and
740 nm) marked with the disc area are displayed in the blue box. Registration results obtained using Syn, affine, AMI,
DIRNet and the proposed network are shown in the red box. In particular, the overlap of the optic discs before
registration is shown at the upper left of the red box.

neously align multiple multi-modal images. The experimen-
tal results demonstrate the effectiveness of our method.

B. LIMITATIONS AND FUTURE WORK

Although our method achieves promising results, there are
still several limitations. First, some subjects could not be
included due to the incompleteness of the MSI sequence
data. To improve this, we may need more clinical data for
training. Additionally, the current network framework can
only simultaneously compute two images during the feature
extraction phase. We will jointly learn the characteristics of
all images by considering the spatial and timing relationships
among different modalities.

VI. CONCLUSION

In this work, we propose a novel registration method suitable
for the group-wise registration of mono/multi-modal images
from MSI based on a principal image with an unsuper-

vised CNN. Our proposed group-wise registration network
achieves accurate registration of MSI images in a group-wise
fashion, with a typical feedforward and backpropagation-
based deep learning setting. All images are well aligned
through the iterative updating of the representative tem-
plate image. Furthermore, our method models an end-to-
end network that can automatically perform feature extrac-
tion and deformation field calculations. By using such a
novel deep network implementing group-wise registration of
mono/multi-modal MSI images, the results outperform those
of the conventional learning-based group-wise registration
and deep learning-based pair-wise registration methods. Such
a model has very high potential for real-world applications.
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