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Abstract

In this paper, we propose a new deep hashing (DH) ap-
proach to learn compact binary codes for large scale visual
search. Unlike most existing binary codes learning meth-
ods which seek a single linear projection to map each sam-
ple into a binary vector, we develop a deep neural network
to seek multiple hierarchical non-linear transformations to
learn these binary codes, so that the nonlinear relationship
of samples can be well exploited. Our model is learned un-
der three constraints at the top layer of the deep network:
1) the loss between the original real-valued feature descrip-
tor and the learned binary vector is minimized, 2) the bina-
ry codes distribute evenly on each bit, and 3) different bits
are as independent as possible. To further improve the dis-
criminative power of the learned binary codes, we extend
DH into supervised DH (SDH) by including one discrimi-
native term into the objective function of DH which simulta-
neously maximizes the inter-class variations and minimizes
the intra-class variations of the learned binary codes. Ex-
perimental results show the superiority of the proposed ap-
proach over the state-of-the-arts.

1. Introduction

Large scale visual search has attracted great attention in
computer vision due to its wide potential applications in re-
cent years [4]. Hashing is a powerful technique for large-
scale visual search and a variety of hashing-based method-
s have been proposed [6, 7, 20, 34, 36]. The basic idea of
hashing-based approach is to construct a series of hash func-
tions to map each visual object into a binary feature vector
so that visually similar samples are mapped into similar bi-
nary codes.
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Figure 1. The basic idea of our proposed approach for compact
binary codes learning. Given a gallery image set, we develop a
deep neural network and learn the parameters of the network by
using three criterions for the codes obtained at the top layer of
the network: 1) minimizing loss between the original real-valued
feature and the learned binary vector; 2) binary codes distribute
evenly on each bit, and 3) each bit is as independent as possible.
The parameters of the networks are updated by back-propagation
based on the optimization objective function at the top layer.

Existing hashing-based methods can be classified into t-
wo categories: data-independent [1, 3, 11, 23] and data-
dependent [5, 6, 8, 15, 21, 34]. For the first category, ran-
dom projections are first employed to map samples into a
feature space and then binarization is performed. Represen-
tative methods in this category are locality sensitive hash-
ing (LSH) [1] and its kernelized or discriminative exten-
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sions [11, 16, 23]. For the second category, various sta-
tistical learning techniques are used to learn hashing func-
tions to map samples into binary codes. State-of-the-art
methods in this category include spectral hashing [36], bi-
nary reconstructive embedding (BRE) [15], iterative quan-
tization (ITQ) [6], 𝐾-means hashing (KMH) [8], minimal-
loss hashing (MLH) [21], and sequential projection learning
hashing (SPLH) [34]. However, most these data-dependent
hashing methods cannot well capture the nonlinear mani-
fold structure of samples. While several kernel-based hash-
ing methods [7, 19] have been proposed, they suffer from
the scalability problem.

In this paper, we propose a new deep hashing (DH)
method to learn compact binary codes for large scale visual
search. Figure 1 illustrates the basic idea of the proposed
approach. Unlike existing binary codes learning method-
s which seek a single linear projection to map each sam-
ple into a binary vector, we develop a deep neural network
to seek multiple hierarchical non-linear transformations to
learn these binary codes. Our model is learned under three
constraints at the top layer of the deep network: 1) the loss
between the original feature descriptor and the learned bina-
ry vector is minimized, 2) the binary codes distribute evenly
on each bit, and 3) different bits are as independent as pos-
sible. To further improve the discriminative power of the
learned binary codes, we extend DH into supervised DH
(SDH) by including one discriminative term into the objec-
tive function of DH which simultaneously maximizes the
inter-class variations and minimizes the intra-class varia-
tions of the learned binary codes. Experimental results on
three widely used datasets are presented to show the effica-
cy of the proposed approach.

2. Related Work

Learning-based Hashing: Existing learning-based
hashing methods can be classified into three categories: un-
supervised, semi-supervised and supervised. For the first
category, label information of the training set is not required
in the learning procedure. For example, Weiss et al. [36] p-
resented a spectral hashing method to obtain balanced bina-
ry codes by solving a spectral graph partitioning problem.
Gong et al. [6] developed an ITQ method by simultaneous-
ly maximizing the variance of each binary bit and minimiz-
ing the binarization loss. He et al. [8] developed a KMH
method by minimizing the hamming distance between the
quantized cells and the cluster centers. Heo et al. [9] pro-
posed a hypersphere-based hashing method by minimizing
the spherical distance between the original real-valued fea-
tures and the learned binary features. For the second cate-
gory, the pairwise label information is used to learn hashing
functions. For example, Wang et al. [33] developed a semi-
supervised hashing (SSH) method by minimizing the em-
pirical error for pairwise labeled training samples and max-

imizing the variance of both labeled and unlabeled training
samples. Kulis and Darrell [15] presented a BRE method
by minimizing the reconstruction error between the origi-
nal Euclidean distance and the learned hamming distance.
Norouzi and Fleet [21] presented a MLH method by mini-
mizing the loss between the learned Hamming distance and
the quantization error. For the third category, the class la-
bel information of each sample is used in hashing function
learning. For example, Stretcha et al. [27] developed a LDA
hashing by minimizing the intra-class variations and maxi-
mizing the inter-class variations of binary codes. Rastegar-
i et al. [25] proposed a discriminative hashing method by
learning multiple linear-SVMs with the large margin crite-
rion. While these hashing methods have achieved reason-
ably good performance in many applications, most of them
usually seek a single linear projection, which cannot well
capture the nonlinear structure of samples.

Deep Learning: Deep learning aims to learn hierarchi-
cal feature representations by building high-level features
from raw data. In recent years, a variety of deep learn-
ing algorithms have been proposed in computer vision and
machine learning [2, 10, 12, 18, 17, 24, 30], and some of
them have successfully applied to many visual analysis ap-
plications image classification [14], object detection [28],
action recognition [17], face verification [29], and visual
tracking [35]. Representative deep learning methods in-
clude deep stacked auto-encoder [17], deep convolutional
neural networks [12], and deep belief network [10]. While
deep learning has achieved great success in various visual
application, little progress of deep learning have been made
in hashing-based large scale visual search. To our knowl-
edge, semantic hashing [26] is the first work on using deep
learning techniques for hashing. They applied the stacked
Restricted Boltzmann Machine (RBM) learn compact bina-
ry codes for visual search. However, their model is complex
and requires pre-training, which is not efficient for practical
applications.

3. Proposed Approach

In this section, we first present some basic knowledge
of the learning-based hashing method and then detail our
proposed DH and SDH methods.

3.1. Hashing

Let X = [x1,x2, ⋅ ⋅ ⋅ ,x𝑁 ] ∈ ℝ
𝑑×𝑁 be the training set

which contains 𝑁 samples, where x𝑛 ∈ ℝ
𝑑 (1 ≤ 𝑛 ≤ 𝑁 )

is the 𝑛th sample in X. Learning-based hashing methods
aim to seek multiple hash functions to map and quantize
each sample into a compact binary vector. Assume there
are 𝐾 hashing functions to be learned, which map each x𝑛

into a 𝐾-bit binary codes vector b𝑛 = [b𝑛1, ⋅ ⋅ ⋅ ,b𝑛𝐾 ] ∈
{−1, 1}𝐾×1, and the 𝑘th binary bit b𝑛𝑘 of x𝑛 is computed



as follows:

b𝑛𝑘 = 𝑓𝑘(x𝑛) = sgn (𝑔𝑘(x𝑛)) = sgn(w𝑇
𝑘 x𝑛) (1)

where 𝑓𝑘 is the 𝑘th hashing function, and w𝑘 ∈ ℝ
𝑑 is the

projection in 𝑓𝑘, sgn(𝑣) returns 1 if 𝑣 > 0 and -1 otherwise.
Let W = [w1,w2, ⋅ ⋅ ⋅ ,w𝐾 ] ∈ ℝ

𝑑×𝐾 be the projec-
tion matrix. Then, the mapping of x𝑛 can be computed as:
𝑔(x𝑛) = W𝑇x𝑛, which can be further binarized to obtain
the binary codes as follows:

b𝑛 = sgn(W𝑇x𝑛) (2)

While a variety of learning-based hashing methods have
been proposed with different motivations in recent years [5,
6, 8, 15, 21, 34], most of them aim to learn the projection
matrix W with different objective functions and constraints.
However, most existing hashing methods only learn a single
projection matrix, which is in essence linear and cannot well
capture the nonlinear manifold of samples. While some
kernel-based hashing methods have been presented [7, 19],
they still suffer from the scalability problem because these
kernel-based methods cannot obtain the explicit nonlinear
mapping. In this work, we propose a deep learning ap-
proach to learn multiple nonlinear transformations to obtain
the compact binary codes.

3.2. Deep Hashing

As shown in Figure 1, for a given sample x𝑛, we obtain a
binary vector b𝑛 by passing it to a network which contains
multiple stacked layers of nonlinear transformations. As-
sume there are 𝑀 +1 layers in our deep network, and there
are 𝑝𝑚 units for the 𝑚th layer, where 𝑚 = 1, 2, ⋅ ⋅ ⋅ ,𝑀 .
For a given sample x𝑛 ∈ ℝ

𝑑, the output of the first lay-
er is: h𝑛 = 𝑠(W1x𝑛 + c1) ∈ ℝ

𝑝1

, where W1 ∈ ℝ
𝑝1×𝑑

is the projection matrix to be learned at the first layer of
the network, c1 ∈ ℝ

𝑝1

is the bias, and 𝑠(⋅) is a non-
linear activation function. The output of the first layer is
then considered as the input for the second layer, so that
h2
𝑛 = 𝑠(W2h1

𝑛 + c2) ∈ ℝ
𝑝2

, where W2 ∈ ℝ
𝑝2×𝑝1

and
c2 ∈ ℝ

𝑝2

are the projection matrix and bias vector for the
second layer, respectively. Similarly, the output for the 𝑚th
layer is: h𝑚

𝑛 = 𝑠(W𝑚h𝑚−1
𝑛 + c𝑚), and the output at the

top layer of our network is:

𝑔𝐷𝐻(x𝑛) = h𝑀
𝑛 = 𝑠(W𝑀h𝑀−1

𝑛 + c𝑀 ) (3)

where the mapping 𝑔𝐷𝐻 : ℝ𝑑 → ℝ
𝑝𝑀

is parameterized by
{W𝑚, c𝑚}𝑀𝑚=1, 1 ≤ 𝑚 ≤ 𝑀 .

Now, we perform hashing for the output h𝑀 at the top
layer of the network to obtain binary codes as follows:

b𝑛 = sgn(h𝑀
𝑛 ) (4)

Let B = [b1, . . . ,b𝑁 ] ∈ {−1, 1}𝐾×𝑁 and H𝑚 =
[h𝑚

1 ,h𝑚
2 , ⋅ ⋅ ⋅h𝑚

𝑁 ] ∈ ℝ
𝑝𝑚×𝑁 be the matrix representation

Algorithm 1: DH
Input: Training set X, network layer number 𝑀 ,

learning rate 𝜂, iterative number 𝑅, parameters
𝜆1, 𝜆2 and 𝜆3, and convergence error 𝜀.

Output: Parameters {W𝑚, c𝑚}𝑀𝑚=1.
Step 1 (Initialization):

Initialize W1 by getting the top 𝑝1

eigenvectors from the covariance matrix.
Initialize {W𝑚}𝑚=𝑀

𝑚=2 = I𝑝𝑚−1×𝑝𝑚

and {c𝑚}𝑚=𝑀
𝑚=1 = 1𝑝𝑚×1.

Step 2 (Optimization by back propagation):
for 𝑟 = 1, 2, ⋅ ⋅ ⋅ , 𝑅 do

Set H0 = X
for 𝑚 = 1, 2, ⋅ ⋅ ⋅ ,𝑀 do

Compute H𝑚 using the deep networks from (3).
end
for 𝑚 = 𝑀,𝑀 − 1, ⋅ ⋅ ⋅ , 1 do

Obtain the gradients according to (6)-(7).
end
for 𝑚 = 1, 2, ⋅ ⋅ ⋅ ,𝑀 do

Update W𝑚 and c𝑚 according to (10)-(11).
end
Calculate 𝐽𝑡 using (5).
If 𝑟 > 1 and ∣𝐽𝑟 − 𝐽𝑟−1∣ < 𝜀, go to Return.

end
Return: {W𝑚, c𝑚}𝑀𝑚=1.

of the binary codes vectors and the output of the 𝑚th lay-
er of the network, we formulate the following optimization
problem to learn the parameters of our network:

min
W,c

𝐽 = 𝐽1 − 𝜆1𝐽2 + 𝜆2𝐽3 + 𝜆3𝐽4

=
1

2
∥B−H𝑀∥2𝐹 − 𝜆1

2𝑁
tr((H𝑀H𝑀 )𝑇 )

+
𝜆2

2

𝑀∑

𝑚=1

∥W𝑚(W𝑚)𝑇 − I∥2𝐹

+
𝜆3

2
(∥W𝑚∥2𝐹 + ∥c𝑚∥22) (5)

The first term 𝐽1 aims to minimize the quantization loss
between the learned binary vectors and the original real-
valued vectors. The second term 𝐽2 aims to maximize the
variance of learned binary vectors to ensure balanced bit-
s. The third term 𝐽3 enforces a relaxed orthogonality con-
straint on those projection matrices so that the independence
of each transform is maximized. The last term 𝐽4 are regu-
larizers to control the scales of the parameters. 𝜆1, 𝜆2, and
𝜆3 are three parameters to balance the effect of different
terms.

To solve this optimization problem, we employ the
stochastic gradient descent method to learn parameters
{W𝑚, c𝑚}𝑀𝑚=1. The gradient of the objective function in
(5) with respect to different parameters are computed as fol-



lows:

∂𝐽

∂W𝑚
= Δ𝑚(H𝑚−1)𝑇

+ 𝜆2W
𝑚(W𝑚(W𝑚)𝑇 − I) + 𝜆3W

𝑚 (6)
∂𝐽

∂c𝑚
= Δ𝑚 + 𝜆3c

𝑚 (7)

where

Δ𝑀 = (−(B−H𝑀 )− 𝜆1H
𝑀 )⊙ 𝑠′(Z𝑀 ) (8)

Δ𝑚 = ((W𝑚+1
1 )𝑇Δ𝑚+1)⊙ 𝑠′(Z𝑚) (9)

Here ⊙ denotes element-wise multiplication, and Z𝑚 =
W𝑚H𝑚−1 + c𝑚.

The parameters are updated by using the following gra-
dient descent algorithm until convergence.

W𝑚 = W𝑚 − 𝜂
∂𝐽

∂W𝑚
(10)

c𝑚 = c𝑚 − 𝜂
∂𝐽

∂c𝑚
(11)

where 𝜂 is the step-size. Algorithm 1 summarizes the de-
tailed procedure of the proposed DH method.

3.3. Supervised Deep Hashing

Since DH is an unsupervised learning approach, it is de-
sirable to further improve its performance by using the la-
bel information of training samples. In this subsection, we
propose a supervised deep hashing (SDH) method which
extends DH into a supervised version to enhance the dis-
criminative power of DH. For each pair of training samples
(x𝑖,x𝑗), we know whether they are from the same class or
not. Hence, we can construct two sets 𝒮 or 𝒟 from the
training set, which represents the positive samples pairs and
the negative samples pairs in the training set, respectively.
Then, we formulate the following optimization problem for
our SDH method:

argmin
W,c

𝐽 =
1

2
∥B−H𝑀∥2𝐹

− 𝜆1

2
(tr(

1

𝑁
H𝑀 (H𝑀 )𝑇 ) + 𝛼tr(Σ𝐵 − Σ𝑊 ))

+
𝜆2

2

𝑀∑

𝑚=1

∥W𝑚(W𝑚)𝑇 − I∥2𝐹

+
𝜆3

2

𝑀∑

𝑚=1

(∥W𝑚∥2𝐹 + ∥c𝑚∥22) (12)

Algorithm 2: SDH
Input: Training set X, pairwise sample indices,

network layer number 𝑀 , learning rate 𝜂,
iterative number 𝑅, parameter 𝜆1, 𝜆2, 𝜆3 and 𝛼,
and convergence error 𝜖.

Output: Parameters {W𝑚, c𝑚}𝑀𝑚=1.
Step 1 (Initialization):

Initialize W1 by getting the top 𝑝1

eigenvectors from a semi-supervised hashing
method in [33].
Initialize {W𝑚}𝑚=𝑀

𝑚=2 = I𝑝𝑚−1×𝑝𝑚

and {c𝑚}𝑚=𝑀
𝑚=1 = 1𝑝𝑚×1.

Step 2 (Optimization by back propagation):
for 𝑟 = 1, 2, ⋅ ⋅ ⋅ , 𝑅 do

Set H0 = X, {H0
𝑠1,H

0
𝑠2} and {H0

𝑑1,H
0
𝑑2} for pairwise

samples in 𝒮 and 𝒟 respectively from set X
for 𝑚 = 1, 2, ⋅ ⋅ ⋅ ,𝑀 do

Compute H𝑚, H𝑚
𝑠1, H𝑚

𝑠2, H𝑚
𝑑1, and H𝑚

𝑑2 using the
deep networks.

end
for 𝑚 = 𝑀,𝑀 − 1, ⋅ ⋅ ⋅ , 1 do

Obtain the gradients according to (15)-(16).
end
for 𝑚 = 1, 2, ⋅ ⋅ ⋅ ,𝑀 do

Update W𝑚 and c𝑚 according to (10)-(11).
end
Calculate 𝐽𝑡 using (12).
If 𝑟 > 1 and ∣𝐽𝑟 − 𝐽𝑟−1∣ < 𝜀, go to Return.

end
Return: {W𝑚, c𝑚}𝑀𝑚=1.

where

Σ𝑊 =
1

𝑁𝑆

∑

(x𝑖,x𝑗)∈𝒮
(h𝑀

𝑖 − h𝑀
𝑗 )(h𝑀

𝑖 − h𝑀
𝑗 )𝑇

=
1

𝑁𝑆
tr((H𝑀

𝑠1 −H𝑀
𝑠2)(H

𝑀
𝑠1 −H𝑀

𝑠2)
𝑇 ) (13)

Σ𝐵 =
1

𝑁𝐷

∑

(x𝑖,x𝑗)∈𝒟
(h𝑀

𝑖 − h𝑀
𝑗 )(h𝑀

𝑖 − h𝑀
𝑗 )𝑇

=
1

𝑁𝐷
tr((H𝑀

𝑑1 −H𝑀
𝑑2)(H

𝑀
𝑑1 −H𝑀

𝑑2)
𝑇 ) (14)

𝑁𝑆 and 𝑁𝐷 are the number of neighbor and non-neighbor
pairs1, {H𝑚

𝑠1,H
𝑚
𝑠2}𝑀𝑚=1 are the hidden representation of

sample pairs in 𝒮 and {H𝑚
𝑑1,H

𝑚
𝑑2}𝑀𝑚=1 in 𝒟. The objective

of 𝐽2 is to minimize the intra-class variations and maximize
the inter-class variations, 𝛼 is the parameter to balance these
two parts in this term. The aims of 𝐽1, 𝐽3, and 𝐽4 are the
same as those of the DH method.

Similar to DH, we also use the stochastic gradient de-
scent method to learn parameters {W𝑚, c𝑚}𝑀𝑚=1 in SDH.

1In our experiments, we randomly sampled 1000 positive and 1000
negative pairs from the training set to learn the SDH model.



Table 1. Results on the CIFAR-10 dataset. Results on the top section are from unsupervised methods and those on the bottom section
are from the supervised methods. The first two columns show the Hamming ranking results evaluated by mAP and precision@N (where
N=1000). The right column shows the Hamming look-up results when the Hamming radius 𝑟 = 2. Hamming look-up for 𝐾 = 64 is not
evaluated because this evaluation is impractical for longer codes.

Method
Hamming ranking (mAP, %) precision (%) @ sample = 500 precision (%) @ r=2
16 32 64 16 32 64 16 32

PCA-ITQ [6] 15.67 16.20 16.64 22.46 25.30 27.09 22.60 14.99
KMH [8] 13.59 13.93 14.46 20.28 21.97 22.80 22.08 5.72
Spherical [9] 13.98 14.58 15.38 20.13 22.33 25.19 20.96 12.50
SH [36] 12.55 12.42 12.56 18.83 19.72 20.16 18.52 20.60
Semantic [26] 12.95 14.09 13.89 14.79 17.87 18.27 11.49 13.78
PCAH [34] 12.91 12.60 12.10 18.89 19.35 18.73 21.29 2.68
LSH [1] 12.55 13.76 15.07 16.21 19.10 22.25 16.73 7.07
DH 16.17 16.62 16.96 23.79 26.00 27.70 23.33 15.77
SPLH [34] 17.61 20.20 20.98 25.32 29.43 32.22 23.05 30.47
MLH [21] 18.37 20.49 21.89 24.43 29.60 33.01 23.52 28.72
BRE [15] 14.42 15.14 15.88 20.68 22.86 25.14 20.89 20.29
SDH 18.80 20.83 22.51 26.32 30.42 33.60 23.26 31.48

The gradient of the objective function in (12) with respect
to these parameters can be computed as follows:

∂𝐽

∂W𝑚
= Δ𝑚H𝑚−1 +

𝛼

𝜆1
(Δ𝑚

𝑠1H
𝑚−1
𝑠1

− Δ𝑚
𝑠2H

𝑚−1
𝑠2 −Δ𝑚

𝑑1H
𝑚−1
𝑑1

+ Δ𝑚
𝑑2H

𝑚−1
𝑑2 ) + 𝜆3W

𝑚

+ 𝜆2W
𝑚(W𝑚(W𝑚)𝑇 − I) (15)

∂𝐽

∂c𝑚
= Δ𝑚 +

𝛼

𝜆1
(Δ𝑚

𝑠1 −Δ𝑚
𝑠2

− Δ𝑚
𝑑1 +Δ𝑚

𝑑2) + 𝜆3c
𝑚 (16)

where the Δ terms for the top layer can be computed as
follows:

Δ𝑀
𝑠1 =

1

𝑁𝑆
(H𝑀

𝑠1 −H𝑀
𝑠2)⊙ 𝑠′(Z𝑀

𝑠1) (17)

Δ𝑚
𝑠2 =

1

𝑁𝑆
(H𝑀

𝑠1 −H𝑀
𝑠2)⊙ 𝑠′(Z𝑀

𝑠1) (18)

Δ𝑀
𝑑1 =

1

𝑁𝐷
(H𝑀

𝑑1 −H𝑀
𝑑2)⊙ 𝑠′(Z𝑀

𝑑1) (19)

Δ𝑚
𝑑2 =

1

𝑁𝐷
(H𝑀

𝑑1 −H𝑀
𝑑2)⊙ 𝑠′(Z𝑀

𝑑1) (20)

For the hidden layer, they can be computed as follows:

Δ𝑚
𝑠1 = ((W𝑚+1)𝑇Δ𝑚+1

𝑠1 )⊙ 𝑠′(Z𝑚
𝑠1) (21)

Δ𝑚
𝑠2 = ((W𝑚+1)𝑇Δ𝑚+1

𝑠2 )⊙ 𝑠′(Z𝑚
𝑠2) (22)

Δ𝑚
𝑑1 = ((W𝑚+1)𝑇Δ𝑚+1

𝑑1 )⊙ 𝑠′(Z𝑚
𝑑1) (23)

Δ𝑚
𝑑2 = ((W𝑚+1)𝑇Δ𝑚+1

𝑑2 )⊙ 𝑠′(Z𝑚
𝑑2) (24)

Algorithm 2 summarizes the detailed procedure of the
proposed SDH method.

4. Experiments

We conduct experiments on three widely used datasets to
evaluate our proposed DH and SDH methods for compact

binary codes learning and compare them with several state-
of-the-art methods. The following describes the details of
the experiments and results.

4.1. Results on CIFAR-10

The CIFAR-10 dataset [13] contains 60000 color im-
ages from 10 object classes, which are from the Tiny image
dataset [31]. The size of each image is 32 × 32. Follow-
ing the same setting in [34], We randomly sampled 1000
samples, 100 per class, as the query data, and used the re-
maining 59000 images as the gallery set. Each image was
represented as a 512-D GIST feature vector [22].

For our DH and SDH methods, we trained our deep mod-
el with 3 layers by setting 𝑀 = 2, where the dimensions
for these layers were empirically set as [60 → 30 → 16],
[80 → 50 → 32], and [100 → 80 → 64] for the 16, 32
and 64 bits experiments, respectively. The parameters 𝜆1,
𝜆2 and 𝜆3 were empirically set as 100, 0.001 and 0.001, re-
spectively. We used the hyperbolic tangent function as the
non-linear activation function in our models. The parameter
𝛼 for SDH was empirically set as 1.

We compared our methods with nine state-of-the-art
hashing methods, where six of them are unsupervised and
the other three are supervised. The six unsupervised meth-
ods include PCA-ITQ [6], KMH [8], Spherical [9], SH [36],
PCAH [34] and LSH [1]. The three supervised methods are
SPLH [34], MLH [21], and BRE [15]. For all of these nine
compared methods, we employed the implementations of
these compared methods provided by the original authors
and used the default parameters recommended by the corre-
sponding papers. Semantic [26]

We used the following three evaluation metrics to mea-
sure the performance of different methods: 1) mean aver-
age precision (mAP): which computes the area under the
precision-recall curve and evaluates the overall performance
of different hashing algorithms; 2) precision at 𝑁 samples:
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Figure 2. Recall vs. precision curve on the CIFAR dataset. The first row shows the results of unsupervised hashing methods and the second
row for supervised hashing methods at 16, 32 and 64 bits, respectively.

DH ITQ KMH Spherical SDH SPLH

Figure 3. Top retrieved 6 images of 4 queries returned by different hashing methods on the CIFAR dataset. The image on the first column
is the query sample. From left to right are the retrieved images by DH, ITQ, KMH, Spherical, SDH and SPLH when 64-bit binary codes
are used for search.

which is the percentage of true neighbors among top 𝑁 re-
trieved samples; and 3) Hamming look-up result when the
hamming radius is set as 𝑟: which measures the precision
over all the points in the buckets that fall within a hamming
radius of 𝑟 = 2 provided that a failed search would have
zero precision. We repeated the experiments 10 times and
took the average as the final result.

Table 1 shows the search results of different hashing
methods on the CIFAR-10 dataset. Figure 2 shows the re-

call vs. precision curves for different methods on 16, 32 and
64 bits, respectively. As can be seen, our DH method out-
performs the other compared unsupervised hashing method-
s, and our SDH outperforms the other compared supervised
hashing methods, respectively. In addition, we also com-
pare our model with the Semantic hashing [26] technique
which also uses a deep model. Our method performs much
better than the Semantic Hashing since our model not only
minimize the reconstruction cost but also ensures balanced
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Figure 4. Recall vs. precision curve on the MNIST dataset for unsupervised hashing methods at 16, 32 and 64 bits, respectively.

Table 2. Results on the MNIST dataset. The top section are the unsupervised methods and the bottom section are the supervised methods.
The first two columns show the Hamming ranking results evaluated by mAP and precision@N where N=1000, and the last column shows
the Hamming look-up results when the Hamming radius 𝑟 = 2.

Method
Hamming ranking (mAP, %) precision (%) @ sample = 500 precision (%) @ r=2
16 32 64 16 32 64 16 32

PCA-ITQ [6] 41.18 43.82 45.37 66.39 74.04 77.42 65.73 73.14
KMH [8] 32.12 33.29 35.78 60.43 67.19 72.65 61.88 68.85
Spherical [9] 25.81 30.77 34.75 49.48 61.27 69.85 51.71 64.26
SH [36] 26.64 25.72 24.10 56.29 61.29 61.98 57.52 65.31
PCAH [34] 27.33 24.85 21.47 56.56 59.99 57.97 36.36 65.54
LSH [1] 20.88 25.83 31.71 37.77 50.16 61.73 25.10 55.61
DH 43.14 44.97 46.74 67.89 74.72 78.63 66.10 73.29
SPLH [34] 44.20 48.29 48.34 62.98 67.89 67.99 63.71 74.06
BRE [15] 33.34 35.09 36.80 60.72 68.86 73.08 34.09 64.21
SDH 46.75 51.01 52.50 65.19 70.18 72.33 63.92 77.07

bits and independence of each transformation.
Figure 3 presents some example query images and the

retrieved neighbors on the CIFAR-10 dataset when 64 bits
were used to learn binary codes for different hashing meth-
ods. We see that our DH and SDH methods shows better
search performance because higher semantic relevance can
be obtained in the top retrieved samples.

4.2. Results on MNIST

The MNIST dataset2 consists of 70000 handwritten digit
images from 10 classes (labeled from 0 to 9). The size of
each image is 28 × 28. We randomly sampled 1000 sam-
ples, 100 per class, as the query data, and used the remain-
ing 69000 images as the gallery set. Each image was rep-
resented as a 784-D gray-scale feature vector by using its
intensity [22]. We followed the same setting in the CIFAR-
10 dataset and also used the same three evaluation metrics
to compare different hashing methods. Table 2 shows the
search results of different hashing methods on the MNIST
dataset. Figure 4 shows the recall vs. precision curves for
different unsupervised hashing methods on 16, 32 and 64
bits, respectively. As can be seen, our DH method outper-
forms the other compared unsupervised hashing methods,
and our SDH outperforms the other compared supervised
hashing methods, respectively.

2http://yann.lecun.com/exdb/mnist/.

4.3. Results on LabelMe22k

The LabelMe dataset [32] consists of 22000 object im-
ages, where each image was represented as 512-D GIST
feature. For each sample, a maximum of 50 semantic neigh-
bors were provided as the ground truths for evaluation. Fol-
lowing the same evaluation protocol in [15], we randomly
sampled 2000 images as the query data and used the re-
maining 20000 images are the gallery set. We measure the
recall at the top 𝑁 ranked samples to evaluate the differen-
t methods, which is defined as the fraction of retrieved true
neighbors to the total number of true neighbors. Table 3 that
the search results and Figure 5 shows the Recall@N result-
s of different hashing methods on the LabelMe22k dataset,
respectively. We see that our DH achieved very competitive
results with the state-of-the-art unsupervised hashing meth-
ods and SDH outperforms the compared supervised hashing
methods, respectively.

4.4. Computational Time

Lastly, we investigated the computational time of our
proposed DH and SDH methods, and compared them with
those of other hashing methods. Our PC is configured with
a 3.40GHz CPU and 24.0 GB RAM. Table 4 shows the
training and test time of different hashing methods on the
CIFAR-10 dataset when 16-bit binary codes are used for e-
valuation, where the test time is computed for each query
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Figure 5. Recall@N results for the LabelMe22k dataset. The first row shows the results of unsupervised methods and the second row for
the supervised methods at 16, 32 and 64 bits, respectively.

Table 3. Recall@N results on the LabelMe22k database when
N=1000. On the top section are the unsupervised methods and
on the bottom section are the semi-supervised ones.

Method
Recall @ 𝑁 = 1000

16 32 64
PCA-ITQ [6] 31.29 34.54 37.97
KMH [8] 30.58 32.65 34.31
Spherical [9] 26.51 29.96 35.04
SH [36] 22.04 24.09 24.28
PCAH [34] 23.11 20.06 18.49
LSH [1] 22.01 28.22 32.42
DH 32.60 35.51 38.42
SPLH [34] 32.29 36.90 37.82
MLH [21] 32.05 37.21 36.66
BRE [15] 28.46 33.02 38.30
SDH 33.79 39.10 42.98

image. We see that the training time of our methods are
higher than previous hashing methods, and the test time are
comparable to the existing methods.

5. Conclusion

In this paper, we have proposed two hashing method-
s called deep hashing (DH) and supervised deep hashing
(SDH) for compact binary codes learning. Experimental re-
sults on three widely used datasets showed the effectiveness
of the proposed methods. How to apply our proposed meth-
ods to other vision applications such as object recognition
and visual tracking seems an interesting future work.

Table 4. Computational time of different hashing methods on the
CIFAR-10 dataset.

Method Training (seconds) Test (microseconds)
PCA-ITQ [6] 5.0 2.6
KMH [8] 72.4 29.0
Spherical [9] 6.7 6.5
SH [36] 0.7 6.9
Semantic [26] 0.0023 43.1
PCAH [34] 0.7 0.06
LSH [1] 0.1 0.08
DH 27.5 4.1
SPLH [34] 8.0 2.5
MLH [21] 1770.0 2.5
BRE [15] 37.6 4.3
SDH 54.8 4.8
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