
Journal of Machine Learning Research 19 (2018) 1-24 Submitted 1/18; Revised 7/18; Published 7/18

Deep Hidden Physics Models:

Deep Learning of Nonlinear Partial Differential Equations

Maziar Raissi maziar raissi@brown.edu

Division of Applied Mathematics

Brown University

Providence, RI, 02912, USA

Editor: Manfred Opper

Abstract

We put forth a deep learning approach for discovering nonlinear partial differential equa-
tions from scattered and potentially noisy observations in space and time. Specifically, we
approximate the unknown solution as well as the nonlinear dynamics by two deep neu-
ral networks. The first network acts as a prior on the unknown solution and essentially
enables us to avoid numerical differentiations which are inherently ill-conditioned and un-
stable. The second network represents the nonlinear dynamics and helps us distill the
mechanisms that govern the evolution of a given spatiotemporal data-set. We test the
effectiveness of our approach for several benchmark problems spanning a number of scien-
tific domains and demonstrate how the proposed framework can help us accurately learn
the underlying dynamics and forecast future states of the system. In particular, we study
the Burgers’, Korteweg-de Vries (KdV), Kuramoto-Sivashinsky, nonlinear Schrödinger, and
Navier-Stokes equations.

Keywords: Systems Identification, Data-driven Scientific Discovery, Physics Informed
Machine Learning, Predictive Modeling, Nonlinear Dynamics, Big Data

1. Introduction

Recent advances in machine learning in addition to new data recordings and sensor technolo-
gies have the potential to revolutionize our understanding of the physical world in modern
application areas such as neuroscience, epidemiology, finance, and dynamic network analy-
sis where first-principles derivations may be intractable (Rudy et al., 2017). In particular,
many concepts from statistical learning can be integrated with classical methods in ap-
plied mathematics to help us discover sufficiently sophisticated and accurate mathematical
models of complex dynamical systems directly from data. This integration of nonlinear dy-
namics and machine learning opens the door for principled methods for model construction,
predictive modeling, nonlinear control, and reinforcement learning strategies. The literature
on data-driven discovery of dynamical systems (Crutchfield and McNamara, 1987) is vast
and encompasses equation-free modeling (Kevrekidis et al., 2003), artificial neural networks
(Raissi et al., 2018a; Gonzalez-Garcia et al., 1998; Anderson et al., 1996; Rico-Martinez
et al., 1992), nonlinear regression (Voss et al., 1999), empirical dynamic modeling (Sugi-
hara et al., 2012; Ye et al., 2015), modeling emergent behavior (Roberts, 2014), automated
inference of dynamics (Schmidt et al., 2011; Daniels and Nemenman, 2015a,b), normal form

c©2018 Maziar Raissi.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v19/18-046.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v19/18-046.html

Raissi

identification in climate (Majda et al., 2009), nonlinear Laplacian spectral analysis (Gian-
nakis and Majda, 2012), modeling emergent behavior (Roberts, 2014), Koopman analysis
(Mezić, 2005; Budǐsić et al., 2012; Mezić, 2013; Brunton et al., 2017), automated inference of
dynamics (Schmidt et al., 2011; Daniels and Nemenman, 2015a,b), and symbolic regression
(Bongard and Lipson, 2007; Schmidt and Lipson, 2009). More recently, sparsity (Tibshirani,
1996) has been used to determine the governing dynamical system (Brunton et al., 2016;
Mangan et al., 2016; Wang et al., 2011; Schaeffer et al., 2013; Ozoliņš et al., 2013; Mackey
et al., 2014; Brunton et al., 2014; Proctor et al., 2014; Bai et al., 2014; Tran and Ward, 2016).

Less well studied is how to discover closed form mathematical models of the physical
world expressed by partial differential equations from scattered data collected in space
and time. Inspired by recent developments in physics-informed deep learning (Raissi et al.,
2017c,d), we construct structured nonlinear regression models that can uncover the dynamic
dependencies in a given set of spatio-temporal data, and return a closed form model that can
be subsequently used to forecast future states. In contrast to recent approaches to systems
identification (Brunton et al., 2016; Rudy et al., 2017), here we do not need to have direct
access or approximations to temporal or spatial derivatives. Moreover, we are using a richer
class of function approximators to represent the nonlinear dynamics and consequently we
do not have to commit to a particular family of basis functions. Specifically, we consider
nonlinear partial differential equations of the general form

ut = N (t, x, u, ux, uxx, . . .), (1)

where N is a nonlinear function of time t, space x, solution u and its derivatives.1 Here,
the subscripts denote partial differentiation in either time t or space x.2 Given a set of
scattered and potentially noisy observations of the solution u, we are interested in learning
the nonlinear function N and consequently identifying an infinite dimensional dynamical
system (i.e., partial differential equation) that governs the evolution of the observed spatio-
temporal data.

For instance, let us assume that we would like to discover the Burger’s equation (Bas-
devant et al., 1986) in one space dimension ut = −uux + 0.1uxx. Although not pursued in
the current work, a viable approach (Rudy et al., 2017) to tackle this problem is to create
a dictionary of possible terms and write the following expansion

N (t, x, u, ux, uxx, . . .) = α0,0 + α1,0u+ α2,0u
2 + α3,0u

3 +

α0,1ux + α1,1uux + α2,1u
2ux + α3,1u

3ux +

α0,2uxx + α1,2uuxx + α2,2u
2uxx + α3,2u

3uxx +

α0,3uxxx + α1,3uuxxx + α2,3u
2uxxx + α3,3u

3uxxx.

1. The solution u = (u1, . . . , un) could be n dimensional in which case ux denotes the collection of all
element-wise first order derivatives ∂u1

∂x
, . . . ,

∂un

∂x
. Similarly, uxx includes all element-wise second order

derivatives ∂2u1

∂x2 , . . . ,
∂2un

∂x2 .
2. The space x = (x1, x2, . . . , xm) could be a vector of dimension m. In this case, ux denotes the collection

of all first order derivative ux1
, ux2

, . . . , uxm
and uxx represents the set of all second order derivatives

ux1x1
, ux1x2

, . . . , ux1xm
, . . . , uxmxm

.

2

Deep Hidden Physics Models

Given the aforementioned large collection of candidate terms for constructing the partial
differential equation, one could then use sparse regression techniques (Rudy et al., 2017)
to determine the coefficients αi,j and consequently the right-hand-side terms that are con-
tributing to the dynamics. A huge advantage of this approach is the interpretability of the
learned equations. However, there are two major drawbacks associated with this method.

First, it relies on numerical differentiation to compute the derivatives involved in equa-
tion (1). Derivatives are taken either using finite differences for clean data or with poly-
nomial interpolation in the presence of noise. Numerical approximations of derivatives are
inherently ill-conditioned and unstable (Baydin et al., 2015) even in the absence of noise
in the data. This is due to the introduction of truncation and round-off errors inflicted
by the limited precision of computations and the chosen value of the step size for finite
differencing. Thus, this approach requires far more data points than library functions. This
need for using a large number of points lies more in the numerical evaluation of derivatives
than in supplying sufficient data for the regression.

Second, in applying the algorithm (Rudy et al., 2017) outlined above we assume that
the chosen library is sufficiently rich to have a sparse representation of the time dynamics
of the dataset. However, when applying this approach to a dataset where the dynamics are
in fact unknown it is not unlikely that the basis chosen above is insufficient. Specially, in
higher dimensions (i.e., for input x or output u) the required number of terms to include in
the library increases exponentially. Moreover, an additional issue with this approach is that
it can only estimate parameters appearing as coefficients. For example, this method can-
not estimate parameters of a partial differential equation (e.g., the sine-Gordon equation)
involving a term like sin(αu(x)) with α being the unknown parameter, even if we include
sines and cosines in the dictionary of possible terms.

One could avoid the first drawback concerning numerical differentiation by assigning
prior distributions in the forms of Gaussian processes (Raissi et al., 2017b; Raissi and Kar-
niadakis, 2017; Raissi et al., 2017a, 2018b) or neural networks (Raissi et al., 2017c,d) to the
unknown solution u. Derivatives of the prior on u can now be evaluated at machine pre-
cision using symbolic or automatic differentiation (Baydin et al., 2015). This removes the
requirement for having or generating data on derivatives of the solution u. This is enabling
as it allows us to work with noisy observations of the solution u, scattered in space and
time. Moreover, this approach requires far fewer data points than the method proposed in
(Rudy et al., 2017) simply because, as explained above, the need for using a large number
of data points was due to the numerical evaluation of derivatives. The choice to place a
prior on the unknown solution u is motivated by modern techniques for solving forward
and inverse problems involving partial differential equations, where the unknown solution is
approximated either by a neural network (Raissi et al., 2017c,d; Raissi, 2018; Raissi et al.,
2018a) or a Gaussian process (Raissi et al., 2018b; Raissi and Karniadakis, 2017; Raissi
et al., 2017a,b; Raissi, 2017; Perdikaris et al., 2017; Raissi and Karniadakis, 2016).

The second drawback can be addressed in a similar fashion by approximating the nonlin-
ear function N (see equation 1) with a neural network. Representing the nonlinear function

3

Raissi

N by a deep neural network is the novelty of the current work. Deep neural networks are
a richer family of function approximators and consequently we do not have to commit to a
particular class of basis functions such as polynomials or sines and cosines. This expressive-
ness comes at the cost of losing interpretability of the learned dynamics. However, there
is nothing hindering the use of a particular class of basis functions in order obtain more
interpretable equations (Raissi et al., 2017d).

2. Solution methodology

We proceed by approximating both the solution u and the nonlinear function N with two
deep neural networks3 and define a deep hidden physics model f to be given by

f := ut −N (t, x, u, ux, uxx, . . .). (2)

We obtain the derivatives of the neural network u with respect to time t and space x by
applying the chain rule for differentiating compositions of functions using automatic dif-
ferentiation (Baydin et al., 2015). It is worth emphasizing that automatic differentiation
is different from, and in several aspects superior to, numerical or symbolic differentiation;
two commonly encountered techniques of computing derivatives. Numerical differentiation
entails the finite difference approximation of derivatives using values of the original function
evaluated at some sample points. Due to the introduction of truncation and round-off er-
rors inflicted by the limited precision of computations and the chosen value of the step size
for finite differencing, numerical approximations of derivatives are inherently ill-conditioned
and unstable (Baydin et al., 2015). Symbolic differentiation uses expression manipulation
in computer algebra systems such as Mathematica, Maxima, and Maple. Symbolic meth-
ods require models to be defined as closed-form expressions, ruling out or severely limiting
algorithmic control flow and expressivity (Baydin et al., 2015).

Without proper introduction, one might assume that automatic differentiation is either
a type of numerical or symbolic differentiation (Baydin et al., 2015). Confusion can arise
because automatic differentiation does in fact provide numerical values of derivatives (as
opposed to derivative expressions) and it does so by using symbolic rules of differentiation
(but keeping track of derivative values as opposed to the resulting expressions), giving it
a two-sided nature that is partly symbolic and partly numerical (Baydin et al., 2015). In
its most basic description (Baydin et al., 2015), automatic differentiation relies on the fact
that all numerical computations are ultimately compositions of a finite set of elementary
operations for which derivatives are known. Combining the derivatives of the constituent
operations through the chain rule gives the derivative of the overall composition. This allows
accurate evaluation of derivatives at machine precision with ideal asymptotic efficiency and
only a small constant factor of overhead. In particular, to compute the derivatives involved
in equation (2) we rely on Tensorflow (Abadi et al., 2016) which is a popular and relatively
well documented open source software library for automatic differentiation and deep learn-
ing computations. In TensorFlow, before a model is run, its computational graph is defined

3. Representing the solution u by a deep neural network is inspired by recent developments in physics-

informed deep learning (Raissi et al., 2017c,d), while approximating the nonlinear function N by another
network is the novelty of this work.

4

Deep Hidden Physics Models

statically rather than dynamically as for instance in PyTorch (Paszke et al., 2017). This is
an important feature as it allows us to create and compile the entire computational graph
for a deep hidden physics model (2) only once and keep it fixed throughout the training
procedure. This leads to significant reduction in the computational cost of the proposed
framework.

Parameters of the neural networks u and N can be learned by minimizing the sum of
squared errors loss function

SSE :=
N
∑

i=1

(

|u(ti, xi)− ui|2 + |f(ti, xi)|2
)

, (3)

where {ti, xi, ui}Ni=1 denote the training data on u. The term |u(ti, xi)− ui|2 tries to fit the
data by adjusting the parameters of the neural network u while the term |f(ti, xi)|2 learns
the parameters of the network N by trying to satisfy the partial differential equation (1) at
the collocation points (ti, xi). Training the parameters of the neural networks u and N can
be performed simultaneously by minimizing the sum of squared error (3) or in a sequential
fashion by training u first and N second.

How can we make sure that the algorithm presented above results in an acceptable
function N ? One answer would be to solve the learned equations and compare the result-
ing solution to the solution of the exact partial differential equation. However, it should
be pointed out that the learned function N is a black-box function; i.e., we do not know
its functional form. Consequently, none of the classical partial differential equation solvers
such as finite differences, finite elements or spectral methods are applicable here. Therefore,
to solve the learned equations we have no other choice than to resort to modern black-box
solvers such as physic informed neural networks (PINNs) introduced in (Raissi et al., 2017c).
The steps involved in PINNs as solvers4 are similar to equations (1), (2), and (3) with the
nonlinear function N being known and the data residing on the boundary of the domain.

In the following, to keep the paper self-contained, we briefly explain the PINNs algorithm
(Raissi et al., 2017c) for solving non-linear partial differential equations in as few sentences
as possible. The PINNs algorithm is very general and for a more detailed exposure we
refer the interested reader to (Raissi et al., 2017c). However, for pedagogical purposes, we
explain the algorithm by applying it to the problem of solving the Burgers’ equation (see
section 3.1) as an example accompanied by periodic boundary conditions; i.e.,

ut + uux − 0.1uxx = 0, x ∈ [−8, 8],
u(0, x) = − sin(πx/8),
u(t,−8) = u(t, 8),
ux(t,−8) = ux(t, 8).

We approximate the unknown solution u(t, x) to the Burgers’ equation by a deep neural
network. Consequently, the corresponding physic informed neural network (PINN) takes

4. PINNs have also been used in (Raissi et al., 2017d) to solve inverse problems involving nonlinear partial
differential equations in cases where the physics of the problem are well understood and the nonlinear
function N is known up to a set of parameters.

5

Raissi

the form

f := ut + uux − 0.1uxx.

To be precise, for the cases studied in the current work, the physic informed neural network
f(t, x) has a form similar to f := N (u, ux, uxx) for some pre-trained (see equation 3) neural
network N with its parameters being kept fixed. We acquire the required derivatives to
compute the residual network f by applying the chain rule for differentiating compositions
of functions using automatic differentiation (Baydin et al., 2015). The shared parameters
between the neural networks u(t, x) and f(t, x) can be learned by minimizing the mean
squared errors loss function

MSE =MSE0 +MSEb +MSEf ,

where

MSE0 =
1
N0

∑N0

i=1 |u(0, xi0)− ui0|2,
MSEb =

1
Nb

∑Nb

i=1

(

|u(tib,−8)− u(tib, 8)|2 + |ux(tib,−8)− ux(t
i
b, 8)|2

)

,

MSEf = 1
Nf

∑Nf

i=1 |f(tif , xif)|2.

Here, {xi0, hi0}N0

i=1 denote the initial data generated in this example by the initial function

− sin(πx/8), {tib}
Nb

i=1 correspond to the collocation points on the boundary, and {tif , xif}
Nf

i=1

represents the collocation points on the residual network f(t, x). Consequently, MSE0 cor-
responds to the loss on the initial data, MSEb enforces the periodic boundary conditions,
andMSEf penalizes the Burgers’ equation for not being satisfied on the collocation points.
This example encapsulates all of the important ingredients of the PINNs algorithm (Raissi
et al., 2017c) and can be straightforwardly generalized to arbitrary partial differential equa-
tions where the boundary conditions should be treated on a case by case basis (see Raissi
et al., 2017c).

3. Results

The proposed framework provides a universal treatment of nonlinear partial differential
equations of fundamentally different nature. This generality will be demonstrated by ap-
plying the algorithm to a wide range of canonical problems spanning a number of scientific
domains including the Burgers’, Korteweg-de Vries (KdV), Kuramoto-Sivashinsky, non-
linear Schrödinger, and Navier-Stokes equations. These examples are motivated by the
pioneering work of Rudy et al. (2017). All data and codes used in this manuscript are
publicly available on GitHub at https://github.com/maziarraissi/DeepHPMs.

3.1 Burgers’ equation

Let us start with the Burgers’ equation arising in various areas of engineering and applied
mathematics, including fluid mechanics, nonlinear acoustics, gas dynamics, and traffic flow
(Basdevant et al., 1986). In one space dimension, the Burgers’ equation reads as

ut = −uux + 0.1uxx. (4)

6

https://github.com/maziarraissi/DeepHPMs

Deep Hidden Physics Models

To obtain a set of training and test data, we simulate the Burger’s equation (4) using
conventional spectral methods. Specifically, starting from an initial condition u(0, x) =
− sin(πx/8), x ∈ [−8, 8] and assuming periodic boundary conditions, we integrate equation
(4) up to the final time t = 10. We use the Chebfun package (Driscoll et al., 2014) with
a spectral Fourier discretization with 256 modes and a fourth-order explicit Runge-Kutta
temporal integrator with time-step size 10−4. The solution is saved every ∆t = 0.05 to give
us a total of 201 snapshots. Out of this data-set, we generate a smaller training subset,
scattered in space and time, by randomly sub-sampling 10000 data points from time t = 0
to t = 6.7. We call the portion of the domain from time t = 0 to t = 6.7 the training portion.
The rest of the domain from time t = 6.7 to the final time t = 10 will be referred to as the
test portion. Using this terminology, we are in fact sub-sampling from the original dataset
only in the training portion of the domain. Given the training data, we are interested in
learning N as a function of the solution u and its derivatives up to the 2nd order5; i.e.,

ut = N (u, ux, uxx). (5)

We represent the solution u by a 5-layer deep neural network with 50 neurons per hidden
layer. Furthermore, we let N to be a neural network with 2 hidden layers and 100 neurons
per hidden layer. As for the activation functions, we use sin(x). In general, the choice
of a neural network’s architecture (e.g., number of layers/neurons and form of activation
functions) is crucial and in many cases still remains an art that relies on one’s ability to bal-
ance the trade off between expressivity and trainability of the neural network (Raghu et al.,
2016). Our empirical findings so far indicate that deeper and wider networks are usually
more expressive (i.e., they can capture a larger class of functions) but are often more costly
to train (i.e., a feed-forward evaluation of the neural network takes more time and the opti-
mizer requires more iterations to converge). Moreover, the sinusoid (i.e., sin(x)) activation
function seems to be numerically more stable than tanh(x), at least while computing the
residual neural network f (see equation 2). However, these observations should be inter-
preted as conjectures rather than as firm results6. In this work, we have tried to choose the
neural networks’ architectures in a consistent fashion throughout the manuscript. Conse-
quently, there might exist other architectures that improve some of the results reported in
the current work.

The neural networks u and N are trained by minimizing the sum of squared errors loss
of equation (3). To illustrate the effectiveness of our approach, we solve the learned partial
differential equation (5), along with periodic boundary conditions and the same initial con-
dition as the one used to generate the original dataset, using the PINNs algorithm (Raissi
et al., 2017c). The original dataset alongside the resulting solution of the learned partial
differential equation are depicted in figure 1. This figure indicates that our algorithm is able
to accurately identify the underlying partial differential equation with a relative L2-error of
4.78e-03. It should be highlighted that the training data are collected in roughly two-thirds
of the domain between times t = 0 and t = 6.7. The algorithm is thus extrapolating from

5. A detailed study of the choice of the order will be provided later in this section.
6. We encourage the interested reader to check out the codes corresponding to this paper on GitHub

at https://github.com/maziarraissi/DeepHPMs and experiment with different choices for the neural
networks’ architectures.

7

https://github.com/maziarraissi/DeepHPMs

Raissi

0.0 2.5 5.0 7.5 10.0

t

−5

0

5
x

Exact Dynamics

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0

t

−5

0

5

x

Learned Dynamics

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

Figure 1: Burgers equation: A solution to the Burger’s equation (left panel) is compared
to the corresponding solution of the learned partial differential equation (right
panel). The identified system correctly captures the form of the dynamics and
accurately reproduces the solution with a relative L2-error of 4.78e-03. It should
be emphasized that the training data are collected in roughly two-thirds of the
domain between times t = 0 and t = 6.7 represented by the white vertical lines.
The algorithm is thus extrapolating from time t = 6.7 onwards. The relative
L2-error on the training portion of the domain is 3.89e-03.

Clean data 1% noise 2% noise 5% noise

Relative L2-error 4.78e-03 2.64e-02 1.09e-01 4.56e-01

Table 1: Burgers’ equation: Relative L2-error between solutions of the Burgers’ equation
and the learned partial differential equation as a function of noise corruption level
in the data. Here, the total number of training data as well as the neural network
architectures are kept fixed.

time t = 6.7 onwards. The relative L2-error on the training portion of the domain is 3.89e-03.

Furthermore, we performed a systematic study of the reported results in figure 1 with
respect to noise levels in the data by keeping the total number of training observations as
well as the neural network architectures fixed to the settings described above. In particular,
we added white noise with magnitude equal to one, two, and five percent of the standard
deviation of the solution function. The results of this study are summarized in table 1. The
key observation here is that less noise in the data enhances the performance of the algo-
rithm. Our experience so far indicates that the negative consequences of more noise in the
data can be remedied to some extent by obtaining more data. Another fundamental point
to make is that the choice of the neural network architectures, i.e., activation functions
and number of layers/neurons, is of great importance. However, in many cases of practical
interest, this choice still remains an art, and systematic studies with respect to the neural
network architectures often fail to reveal consistent patterns (Raissi et al., 2017c,d, 2018a).
We usually observe some variability and non monotonic trends in systematic studies per-
taining to the network architectures. In this regard, there exist a series of open questions

8

Deep Hidden Physics Models

0.0 2.5 5.0 7.5 10.0

t

−5

0

5
x

Exact Dynamics

0.0

0.2

0.4

0.6

0.8

1.0

0.0 2.5 5.0 7.5 10.0

t

−5

0

5

x

Learned Dynamics

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Burgers equation: A solution to the Burger’s equation (left panel) is compared
to the corresponding solution of the learned partial differential equation (right
panel). The identified system correctly captures the form of the dynamics and
accurately reproduces the solution with a relative L2-error of 3.44e-02. It should
be highlighted that the algorithm is trained on a dataset totally different from
the one used in this figure.

mandating further investigations. For instance, how common techniques such as batch nor-
malization, drop out, and L1/L2 regularization (Goodfellow et al., 2016) could enhance the
robustness of the proposed algorithm with respect to the neural network architectures as
well as noise in the data.

To further scrutinize the performance of the algorithm, let us change the initial con-
dition to − exp(−(x + 2)2) and solve the Burgers’ equation (4) using a classical partial
differential equation solver. In particular, the new data-set (Rudy et al., 2017) contains
101 time snapshots of a solution to the Burgers’ equation (4) with a Gaussian initial con-
dition, propagating into a traveling wave. The snapshots are ∆t = 0.1 apart and stretch
from time t = 0 to t = 10. The spatial discretization of each snapshot involves a uniform
grid with 256 cells. We compare the resulting solution to the one obtained by solving the
learned partial differential equation (5) using the PINNs algorithm (Raissi et al., 2017c).
It is worth emphasizing that the algorithm is trained on the dataset depicted in figure 1
and is being tested on a totally different dataset as shown in figure 2. The surprising re-
sult reported in figure 2 is a strong indication that the algorithm is capable of accurately
identifying the underlying partial differential equation. The algorithm has not seen even
a single observation of the dataset shown in figure 2 during model training and is yet ca-
pable of achieving a relatively accurate approximation of the true solution. The identified
system reproduces the solution to the Burgers’ equation with a relative L2-error of 3.44e-02.

However, the aforementioned result seems to be sensitive to making the nonlinear func-
tion N of equation (5) depend on either time t or space x, or both. For instance, if we look
for equations of the form ut = N (x, u, ux, uxx), the relative L2-error between the exact and
the learned solutions corresponding to figure 2 increases to 4.25e-01. Similarly, if we look
for equations of the form ut = N (t, u, ux, uxx), the relative L2-error increases to 2.58e-01.

9

Raissi

0.0 2.5 5.0 7.5 10.0

t

−5

0

5
x

Exact Dynamics

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0

t

−5

0

5

x

Learned Dynamics

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

Figure 3: Burgers equation: A solution to the Burger’s equation (left panel) is compared
to the corresponding solution of the learned partial differential equation (right
panel). The algorithm fails to generalize to the new test data. The relative L2-
error between the exact and the learned solutions is equal to 2.99e-01. Here, we
are training on the dataset presented in figure 2 and testing on the one depicted
in figure 1. In other words, we are swapping the roles of these two datasets. This
observation suggests that the dynamics (see figure 1) generated by − sin(πx/8)
as the initial condition is a reacher one compared to the dynamics (see figure 2)
generated by exp(−(x + 2)2). This is also evident from a visual comparison of
the two datasets given in figures 1 and 2.

Moreover, if we make the nonlinear function N both time and space dependent the relative
L2-error increases even further to 1.46e+00. A possible explanation for this behavior could
be that some of the dynamics in the training data is now being explained by time t or
space x. This makes the algorithm over-fit to the training data and consequently harder
for it to generalize to datasets it has never seen before. Based on our experience more data
seems to help resolve this issue. Another interesting observation is that if we train on the
dataset presented in figure 2 and test on the one depicted in figure 1, i.e., swap the roles of
these two datasets, the algorithm fails to generalize to the new test data. To be precise, as
depicted in figure 3, the relative L2-error between the exact and the learned solutions is now
equal to 2.99e-01. This observation suggests that the dynamics (see figure 1) generated by
− sin(πx/8) as the initial condition is a richer one compared to the dynamics (see figure 2)
generated by exp(−(x+ 2)2). This is also evident from a visual comparison of the datasets
given in figures 1 and 2.

Let us now take a closer look at equation (5) and ask: what would happen if we included
derivatives of higher order than two in our formulation? As will be demonstrated in the
following, the algorithm proposed in the current work is capable of handling such cases,
however, this is a fundamental question worthy of a moment of reflection. The choice of
the order of the partial differential equation (5) determines the form and the number of
boundary conditions needed to end up with a well-posed problem. For instance, in the one
dimensional setting of equation (5) including a third order derivative requires three bound-
ary conditions, namely u(t,−8) = u(t, 8), ux(t,−8) = ux(t, 8), and uxx(t,−8) = uxx(t, 8),

10

Deep Hidden Physics Models

1st order 2nd order 3rd order 4th order

Relative L2-error 1.14e+00 1.29e-02 3.42e-02 5.54e-02

Table 2: Burgers’ equation: Relative L2-error between solutions of the Burgers’ equation
and the learned partial differential equation as a function of the highest order of
spatial derivatives included in our formulation. For instance, the case correspond-
ing to the 3rd order means that we are looking for a nonlinear function N such
that ut = N (u, ux, uxx, uxxx). Here, the total number of training data as well as
the neural network architectures are kept fixed and the data are assumed to be
noiseless.

assuming period boundary conditions. Consequently, in cases of practical interest, the
available information on the boundary of the domain could help us determine the order
of the partial differential equation we are try to identify. With this in mind, let us study
the robustness of our framework with respect to the highest order of the derivatives in-
cluded in equation (5). As for the boundary conditions, we use u(t,−8) = u(t, 8) and
ux(t,−8) = ux(t, 8) when solving the identified partial differential equation regardless of
the initial choice of its order. The results are summarized in table 2. The first column of
table 2 demonstrates that a single first order derivative is clearly not enough to capture the
second order dynamics of the Burgers’ equation. Moreover, the method seems to be gener-
ally robust with respect to the number and order of derivatives included in the nonlinear
function N . Therefore, in addition to any information residing on the domain boundary,
studies such as table 2, albeit for training or validation datasets, could help us choose the
best order for the underlying partial differential equation. In this case, table 2 suggests the
order of the equation to be two.

In addition, it must be stated that including higher order derivatives comes at the cost
of reducing the speed of the algorithm due to the growth in the complexity of the resulting
computational graph for the corresponding deep hidden physics model (see equation 2).
Also, another drawback is that higher order derivatives are usually less accurate specially
if one uses single precision floating-point system (float32) rather than double precision
(float64). It is true that automatic differentiation enables us to evaluate derivatives at
machine precision, however, for float32 the machine epsilon is approximately 1.19e-07. For
improved performance in terms of speed of the algorithm and constrained by usual GPU
(graphics processing unit) platforms we often end up using float32 which boils down to
committing an error of approximately 1.19e-07 while computing the required derivatives.
The aforementioned issues do not seem to be too serious since computer infrastructure (both
hardware and software) for deep learning is constantly improving.

3.2 The KdV equation

As a mathematical model of waves on shallow water surfaces one could consider the Korteweg-
de Vries (KdV) equation. The KdV equation reads as

ut = −uux − uxxx. (6)

11

Raissi

0 10 20 30 40

t

−20

−10

0

10

20

x

Exact Dynamics

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

0 10 20 30 40

t

−20

−10

0

10

20

x

Learned Dynamics

−0.5

0.0

0.5

1.0

1.5

2.0

Figure 4: The KdV equation: A solution to the KdV equation (left panel) is compared
to the corresponding solution of the learned partial differential equation (right
panel). The identified system correctly captures the form of the dynamics and
accurately reproduces the solution with a relative L2-error of 6.28e-02. It should
be emphasized that the training data are collected in roughly two-thirds of the
domain between times t = 0 and t = 26.8 represented by the white vertical lines.
The algorithm is thus extrapolating from time t = 26.8 onwards. The relative
L2-error on the training portion of the domain is 3.78e-02.

To obtain a set of training data we simulate the KdV equation (6) using conventional spec-
tral methods. In particular, we start from an initial condition u(0, x) = − sin(πx/20), x ∈
[−20, 20] and assume periodic boundary conditions. We integrate equation (6) up to the
final time t = 40. We use the Chebfun package (Driscoll et al., 2014) with a spectral Fourier
discretization with 512 modes and a fourth-order explicit Runge-Kutta temporal integrator
with time-step size 10−4. The solution is saved every ∆t = 0.2 to give us a total of 201
snapshots. Out of this data-set, we generate a smaller training subset, scattered in space
and time, by randomly sub-sampling 10000 data points from time t = 0 to t = 26.8. In
other words, we are sub-sampling from the original dataset only in the training portion of
the domain from time t = 0 to t = 26.8. Given the training data, we are interested in
learning N as a function of the solution u and its derivatives up to the 3rd order7; i.e.,

ut = N (u, ux, uxx, uxxx). (7)

We represent the solution u by a 5-layer deep neural network with 50 neurons per hidden
layer. Furthermore, we let N to be a neural network with 2 hidden layers and 100 neurons
per hidden layer. As for the activation functions, we use sin(x). These two networks are
trained by minimizing the sum of squared errors loss of equation (3). To illustrate the
effectiveness of our approach, we solve the learned partial differential equation (7) using
the PINNs algorithm (Raissi et al., 2017c). We assume periodic boundary conditions and
the same initial condition as the one used to generate the original dataset. The resulting
solution of the learned partial differential equation as well as the exact solution of the KdV
equation are depicted in figure 4. This figure indicates that our algorithm is capable of
accurately identifying the underlying partial differential equation with a relative L2-error of

7. A detailed study of the choice of the order is provided in section 3.1 for the Burgers’ equation.

12

Deep Hidden Physics Models

0 10 20 30 40

t

−20

−10

0

10

20

x

Exact Dynamics

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

0 10 20 30 40

t

−20

−10

0

10

20

x

Learned Dynamics

−0.5

0.0

0.5

1.0

1.5

2.0

Figure 5: The KdV equation: A solution to the KdV equation (left panel) is compared
to the corresponding solution of the learned partial differential equation (right
panel). The identified system correctly captures the form of the dynamics and
accurately reproduces the solution with a relative L2-error of 3.44e-02. It should
be highlighted that the algorithm is trained on a dataset different from the one
shown in this figure.

6.28e-02. It should be highlighted that the training data are collected in roughly two-thirds
of the domain between times t = 0 and t = 26.8. The algorithm is thus extrapolating from
time t = 26.8 onwards. The corresponding relative L2-error on the training portion of the
domain is 3.78e-02.

To test the algorithm even further, let us change the initial condition to cos(−πx/20)
and solve the KdV equation (6) using the conventional spectral method outlined above. We
compare the resulting solution to the one obtained by solving the learned partial differential
equation (5) using the PINNs algorithm (Raissi et al., 2017c). It is worth emphasizing that
the algorithm is trained on the dataset depicted in figure 4 and is being tested on a different
dataset as shown in figure 5. The surprising result reported in figure 5 strongly indicates
that the algorithm is accurately learning the underlying partial differential equation; i.e.,
the nonlinear function N . The algorithm hasn’t seen the dataset shown in figure 5 during
model training and is yet capable of achieving a relatively accurate approximation of the
true solution. To be precise, the identified system reproduces the solution to the KdV
equation with a relative L2-error of 3.44e-02.

3.3 Kuramoto-Sivashinsky equation

As a canonical model of a pattern forming system with spatio-temporal chaotic behavior
we consider the Kuramoto-Sivashinsky equation. In one space dimension the Kuramoto-
Sivashinsky equation reads as

ut = −uux − uxx − uxxxx. (8)

We generate a dataset containing a direct numerical solution of the Kuramoto-Sivashinsky
(8) equation with 512 spatial points and 251 snapshots. To be precise, assuming peri-
odic boundary conditions, we start from the initial condition u(0, x) = − sin(πx/10), x ∈

13

Raissi

0 20 40

t

−10

−5

0

5

10

x

Exact Dynamics

−3

−2

−1

0

1

2

3

0 20 40

t

−10

−5

0

5

10

x

Learned Dynamics

−2

−1

0

1

2

3

Figure 6: Kuramoto-Sivashinsky equation: A solution to the Kuramoto-Sivashinsky equa-
tion (left panel) is compared to the corresponding solution of the learned partial
differential equation (right panel). The identified system correctly captures the
form of the dynamics and reproduces the solution with a relative L2-error of
7.63e-02.

[−10, 10] and integrate equation (8) up to the final time t = 50. We employ the Chebfun
package (Driscoll et al., 2014) with a spectral Fourier discretization with 512 modes and a
fourth-order explicit Runge-Kutta temporal integrator with time-step size 10−5. The snap-
shots are saved every ∆t = 0.2. From this dataset, we create a smaller training subset,
scattered in space and time, by randomly sub-sampling 10000 data points from time t = 0
to the final time t = 50.0. Given the resulting training data, we are interested in learning
N as a function of the solution u and its derivatives up to the 4rd order8; i.e.,

ut = N (u, ux, uxx, uxxx, uxxxx). (9)

We let the solution u to be represented by a 5-layer deep neural network with 50 neurons per
hidden layer. Furthermore, we approximate the nonlinear function N by a neural network
with 2 hidden layers and 100 neurons per hidden layer. As for the activation functions, we
use sin(x). These two networks are trained by minimizing the sum of squared errors loss of
equation (3). To demonstrate the effectiveness of our approach, we solve the learned partial
differential equation (9) using the PINNs algorithm (Raissi et al., 2017c). We assume the
same initial and boundary conditions as the ones used to generate the original dataset. The
resulting solution of the learned partial differential equation alongside the exact solution
of the Kuramoto-Sivashinsky equation are depicted in figure 6. This figure indicates that
our algorithm is capable of identifying the underlying partial differential equation with a
relative L2-error of 7.63e-02. Here and in the rest of the current manuscript, the test and
training datasets appear to be the same. However, it should be emphasized that during
test time the only pieces of information given to the PINNs algorithm are the initial and
boundary data in addition to the learned function N . This means that results such as figure
6 are sufficient to clearly communicate the message that the algorithm has approximately
learned the correct equations. Moreover, whether a particular dataset is rich enough so that

8. A detailed study of the choice of the order is provided in section 3.1 for the Burgers’ equation.

14

Deep Hidden Physics Models

0 25 50 75 100

t

0

25

50

75

100

x

Exact Dynamics

−3

−2

−1

0

1

2

3

0 25 50 75 100

t

0

25

50

75

100

x

Learned Dynamics

−2

−1

0

1

2

Figure 7: Kuramoto-Sivashinsky equation: A solution to the Kuramoto-Sivashinsky equa-
tion is depicted in the left panel. The corresponding solution of the learned
partial differential equation is shown in the right panel. This problem remains
stubbornly unsolved in the face of the algorithm proposed in the current work.
In fact, the identified system reproduces the solution with a relative L2-error of
4.17e-01, which is unsatisfactorily large.

the algorithm generalizes to other datasets generated by different initial conditions is a fun-
damentally different question which has been extensively studied so far in the manuscript
using the Burgers’ and KdV examples.

However, it must be mentioned that we are avoiding the regimes where the Kuramoto-
Sivashinsky equation becomes chaotic. For instance, by changing the domain to [0, 32π]
and the initial condition to cos(x/16)(1 + sin(x/16)) and by integrating the Kuramoto-
Sivashinsky equation (8) up to the final time t = 100, one could end up with a relatively
complicated solution as depicted in the left panel of figure 7. This problem remains stub-
bornly unsolved in the face of the algorithm proposed in the current work as well as the
PINNs framework introduced in (Raissi et al., 2017c,d). In fact, the identified system (see
figure 7) reproduces the solution with a relative L2-error of 4.17e-01, which is unsatisfacto-
rily large. According to our empirical findings, making the neural network for u(t, x) more
expressive does not seem to help resolve this issue. As a matter of fact, it is not difficult for a
plain vanilla neural network to approximate the function depicted in the left panel of figure
7. However, as we compute the derivatives required in equation (2), minimizing the loss
function (3) becomes a challenge. More precisely, the optimizer does not seem to converge
to the right values for the parameters of the neural networks (see figure 7). Understanding
what makes this problem hard to solve should be at the core of future extensions of this
line of research. One possible explanation could be that the resulting optimization problem
inherits the complicated nature of the underlying partial differential equation. Moreover,
it could indeed be the case that the algorithm proposed in the current work is learning the
underlying dynamics correctly while the PINNs algorithm (Raissi et al., 2017c) is failing to
solve the learned partial differential equation. The PINNs algorithm (Raissi et al., 2017c) as
a solver is admittedly not yet mature but is currently our only option. Devising black-box

15

Raissi

solvers for partial differential equations is still in its infancy and more collaborative work is
needed to set the foundations in this field.

3.4 Nonlinear Schrödinger equation

The one-dimensional nonlinear Schrödinger equation is a classical field equation that is used
to study nonlinear wave propagation in optical fibers and/or waveguides, Bose-Einstein con-
densates, and plasma waves. This example aims to highlight the ability of our framework to
handle complex-valued solutions as well as different types of nonlinearities in the governing
partial differential equations. The nonlinear Schrödinger equation is given by

ψt = 0.5iψxx + i|ψ|2ψ. (10)

Let u denote the real part of ψ and v the imaginary part. Then, the nonlinear Schrödinger
equation can be equivalently written as a system of partial differential equations

ut = −0.5vxx − (u2 + v2)v,
vt = 0.5uxx + (u2 + v2)u.

(11)

In order to assess the performance of our method, we simulate equation (10) using con-
ventional spectral methods to create a high-resolution data set. Specifically, starting from
an initial state ψ(0, x) = 2 sech(x) and assuming periodic boundary conditions ψ(t,−5) =
ψ(t, 5) and ψx(t,−5) = ψx(t, 5), we integrate equation (10) up to a final time t = π/2
using the Chebfun package (Driscoll et al., 2014). We are in fact using a spectral Fourier
discretization with 512 modes and a fourth-order explicit Runge-Kutta temporal integrator
with time-step ∆t = π/2 · 10−6. The solution is saved approximately every ∆t = 0.0031 to
give us a total of 501 snapshots. Out of this data-set, we generate a smaller training subset,
scattered in space and time, by randomly sub-sampling 10000 data points from time t = 0
up to the final time t = π/2. Given the resulting training data, we are interested in learning
two nonlinear functions N1 and N2 as functions of the solutions u, v and their derivatives
up to the 2nd order9; i.e.,

ut = N1(u, v, ux, vx, uxx, vxx),
vt = N2(u, v, ux, vx, uxx, vxx).

(12)

We represent the solutions u and v by two 5-layer deep neural networks with 50 neurons per
hidden layer. Furthermore, we let N1 and N2 to be two neural networks with 2 hidden layers
and 100 neurons per hidden layer. As for the activation functions, we use sin(x). These four
networks are trained by minimizing a sum of squared errors loss function similar to equation
(3). To illustrate the effectiveness of our approach, we solve the learned partial differential
equation (12), along with periodic boundary conditions and the same initial condition as the
one used to generate the original dataset, using the PINNs algorithm (Raissi et al., 2017c).
The original dataset (in absolute values, i.e., |ψ| =

√
u2 + v2) alongside the resulting solution

(also in absolute values) of the learned partial differential equation are depicted in figure 8.
This figure indicates that our algorithm is able to accurately identify the underlying partial
differential equation with a relative L2-error of 6.28e-03.

9. A detailed study of the choice of the order is provided in section 3.1 for the Burgers’ equation.

16

Deep Hidden Physics Models

0.0 0.5 1.0 1.5

t

−4

−2

0

2

4

x

Exact Dynamics

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0 0.5 1.0 1.5

t

−4

−2

0

2

4

x

Learned Dynamics

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 8: Nonlinear Schrödinger equation: Absolute value of a solution to the nonlinear
Schrödinger equation (left panel) is compared to the absolute value of the corre-
sponding solution of the learned partial differential equation (right panel). The
identified system correctly captures the form of the dynamics and accurately re-
produces the absolute value of the solution with a relative L2-error of 6.28e-03.

Figure 9: Navier-Stokes equation: A snapshot of the vorticity field of a solution to the
Navier-Stokes equations for the fluid flow past a cylinder. The dashed red box in
this panel specifies the sampling region.

3.5 Navier-Stokes equation

Let us consider the Navier-Stokes equation in two dimensions10 (2D) given explicitly by

wt = −uwx − vwy + 0.01(wxx + wyy), (13)

where w denotes the vorticity, u the x-component of the velocity field, and v the y-
component. To generate a training dataset for this problem we follow the exact same
instructions as the ones provided in (Kutz et al., 2016; Rudy et al., 2017). Specifically,

10. It is straightforward to generalize the proposed framework to the Navier-Stokes equation in three dimen-
sions (3D).

17

Raissi

2 4 6

t

−1

0

1
x

Exact Dynamics

−3

−2

−1

0

1

2

2 4 6

t

−1

0

1

x

Learned Dynamics

−3

−2

−1

0

1

2

Figure 10: Navier-Stokes equation: A randomly picked snapshot of a solution to the Navier-
Stokes equation (left panel) is compared to the corresponding snapshot of the
solution of the learned partial differential equation (right panel). The identified
system correctly captures the form of the dynamics and accurately reproduces
the solution with a relative L2-error of 5.79e-03 in space and time.

we simulate the Navier-Stokes equations describing the two-dimensional fluid flow past a
circular cylinder at Reynolds number 100 using the Immersed Boundary Projection Method
(Taira and Colonius, 2007; Colonius and Taira, 2008). This approach utilizes a multi-domain
scheme with four nested domains, each successive grid being twice as large as the previous
one. Length and time are nondimensionalized so that the cylinder has unit diameter and
the flow has unit velocity. Data is collected on the finest domain with dimensions 9× 4 at
a grid resolution of 449 × 199. The flow solver uses a 3rd-order Runge Kutta integration
scheme with a time step of ∆t = 0.02, which has been verified to yield well-resolved and
converged flow fields. After simulation converges to steady periodic vortex shedding, 151
flow snapshots are saved every ∆t = 0.02. We use a small portion of the resulting data-set
for model training. In particular, we subsample 50000 data points, scattered in space and
time, in the rectangular region (dashed red box) downstream of the cylinder as shown in
figure 9.

Given the training data, we are interested in learning N as a function of the stream-wise
u and transverse v velocity components in addition to the vorticity w and its derivatives up
to the 2nd order11; i.e.,

wt = N (u, v, w,wx, wxx). (14)

We represent the solution w by a 5-layer deep neural network with 200 neurons per hidden
layer. Furthermore, we let N to be a neural network with 2 hidden layers and 100 neurons
per hidden layer. As for the activation functions, we use sin(x). These two networks are
trained by minimizing the sum of squared errors loss

SSE :=
N
∑

i=1

(

|w(ti, xi, yi)− wi|2 + |f(ti, xi, yi)|2
)

,

11. A detailed study of the choice of the order is provided in this section 4 for the Burgers’ equation.

18

Deep Hidden Physics Models

where {ti, xi, ui, vi, wi}Ni=1 denote the training data on u and f(ti, xi, yi) is given by

f(ti, xi, yi) := wt(t
i, xi, yi)−N (ui, vi, w(ti, xi, yi), wx(t

i, xi, yi), wxx(t
i, xi, yi)).

To illustrate the effectiveness of our approach, we solve the learned partial differential
equation (14), in the region specified in figure 9 by the dashed red box, using the PINNs
algorithm (Raissi et al., 2017c). We use the exact solution to provide us with the required
Dirichlet boundary conditions as well as the initial condition needed to solve the learned
partial differential equation (14). A randomly picked snapshot of the vorticity field in the
original dataset alongside the corresponding snapshot of the solution of the learned partial
differential equation are depicted in figure 10. This figure indicates that our algorithm
is able to accurately identify the underlying partial differential equation with a relative
L2-error of 5.79e-03 in space and time.

4. Summary and Discussion

We have presented a deep learning approach for extracting nonlinear partial differential
equations from spatio-temporal datasets. The proposed algorithm leverages recent devel-
opments in automatic differentiation to construct efficient algorithms for learning infinite
dimensional dynamical systems using deep neural networks. In order to validate the per-
formance of our approach we had no other choice than to rely on black-box solvers (see
Raissi et al., 2017c). This signifies the importance of developing general purpose partial
differential equation solvers. Developing these types of solvers is still in its infancy and more
collaborative work is needed to bring them to the maturity level of conventional methods
such as finite elements, finite differences, and spectral methods which have been around for
more than half a century or so.

There exist a series of open questions mandating further investigations. For instance,
many real-world partial differential equations depend on parameters and, when the pa-
rameters are varied, they may go through bifurcations (e.g., the Reynold number for the
Navier-Stokes equations). Here, the goal would be to collect data from the underlying
dynamics corresponding to various parameter values, and infer the parameterized partial
differential equation. Another exciting avenue of future research would be to apply convolu-
tional architectures (Goodfellow et al., 2016) for mitigating the complexity associated with
partial differential equations with very high-dimensional inputs. These types of equations
appear routinely in dynamic programming, optimal control, or reinforcement learning. We
envision that the proposed framework, as outlined in the current work, can be straightfor-
wardly extended to such high-dimensional cases. Early evidence of this claim can be found
in (Raissi, 2018), where the author devises an algorithm that is scalable to high-dimensions
and is capable of circumventing the tyranny of numerical discretization. In addition, the
approach advocated in the current work is also highly scalable to the big data regimes
encountered while studying such high-dimensional cases simply because the data can be
processed in mini-batches.

Moreover, a quick glance at the list of nonlinear partial differential equations onWikipedia
reveals that many of these equations take the form specified in equation (1). However, a

19

Raissi

handful of them do not take this form, including the Boussinesq type equation utt − uxx −
2α(uux)x − βuxxtt = 0. It would be interesting to extend the framework outlined in the
current work to incorporate all such cases. In addition, it would be an exciting continuation
of the current work to extend the proposed methodology to stochastic partial differential
equations. In fact, independent realizations of the underlying noise process (e.g., Brownian
motion) could act as training data (Raissi, 2018). In the end, it is not always clear what
measurements of a dynamical system to take. Even if we did know, collecting these mea-
surements might be prohibitively expensive. It is well-known that time-delay coordinates
of a single variable can act as additional variables. It might be interesting to investigate
this idea for the infinite dimensional setting of partial differential equations. In terms of
applications, it would be intriguing to see how the proposed framework would perform on
Geostationary Operational Environmental Satellites (GOES) data (e.g., sea surface tem-
perature data) which could be retrieved from https://podaac.jpl.nasa.gov/.

Acknowledgments

This work received support by the DARPA EQUiPS grant N66001-15-2-4055 and the
AFOSR grant FA9550-17-1-0013. All data and codes used in this manuscript are publicly
available on GitHub at https://github.com/maziarraissi/DeepHPMs.

References

Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467,
2016.

JS Anderson, IG Kevrekidis, and R Rico-Martinez. A comparison of recurrent training
algorithms for time series analysis and system identification. Computers & chemical
engineering, 20:S751–S756, 1996.

Zhe Bai, Thakshila Wimalajeewa, Zachary Berger, Guannan Wang, Mark Glauser, and
Pramod K Varshney. Low-dimensional approach for reconstruction of airfoil data via
compressive sensing. AIAA Journal, 2014.

Cea Basdevant, M Deville, P Haldenwang, JM Lacroix, J Ouazzani, R Peyret, Paolo Or-
landi, and AT Patera. Spectral and finite difference solutions of the Burgers equation.
Computers & fluids, 14(1):23–41, 1986.

Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark
Siskind. Automatic differentiation in machine learning: a survey. arXiv preprint
arXiv:1502.05767, 2015.

Josh Bongard and Hod Lipson. Automated reverse engineering of nonlinear dynamical
systems. Proceedings of the National Academy of Sciences, 104(24):9943–9948, 2007.

20

https://podaac.jpl.nasa.gov/
https://github.com/maziarraissi/DeepHPMs

Deep Hidden Physics Models

Steven L Brunton, Jonathan H Tu, Ido Bright, and J Nathan Kutz. Compressive sensing
and low-rank libraries for classification of bifurcation regimes in nonlinear dynamical
systems. SIAM Journal on Applied Dynamical Systems, 13(4):1716–1732, 2014.

Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations
from data by sparse identification of nonlinear dynamical systems. Proceedings of the
National Academy of Sciences, 113(15):3932–3937, 2016.

Steven L Brunton, Bingni W Brunton, Joshua L Proctor, Eurika Kaiser, and J Nathan
Kutz. Chaos as an intermittently forced linear system. Nature Communications, 8, 2017.

Marko Budǐsić, Ryan Mohr, and Igor Mezić. Applied koopmanism a. Chaos: An Interdis-
ciplinary Journal of Nonlinear Science, 22(4):047510, 2012.

Tim Colonius and Kunihiko Taira. A fast immersed boundary method using a nullspace
approach and multi-domain far-field boundary conditions. Computer Methods in Applied
Mechanics and Engineering, 197(25):2131–2146, 2008.

James P Crutchfield and Bruce S McNamara. Equations of motion from a data series.
Complex systems, 1(417-452):121, 1987.

Bryan C Daniels and Ilya Nemenman. Automated adaptive inference of phenomenological
dynamical models. Nature communications, 6, 2015a.

Bryan C Daniels and Ilya Nemenman. Efficient inference of parsimonious phenomenological
models of cellular dynamics using s-systems and alternating regression. PloS one, 10(3):
e0119821, 2015b.

Tobin A Driscoll, Nicholas Hale, and Lloyd N Trefethen. Chebfun guide, 2014.

Dimitrios Giannakis and Andrew J Majda. Nonlinear laplacian spectral analysis for time
series with intermittency and low-frequency variability. Proceedings of the National
Academy of Sciences, 109(7):2222–2227, 2012.

R Gonzalez-Garcia, R Rico-Martinez, and IG Kevrekidis. Identification of distributed pa-
rameter systems: A neural net based approach. Computers & chemical engineering, 22:
S965–S968, 1998.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Ioannis G Kevrekidis, C William Gear, James M Hyman, Panagiotis G Kevrekidid, Olof
Runborg, Constantinos Theodoropoulos, et al. Equation-free, coarse-grained multiscale
computation: Enabling mocroscopic simulators to perform system-level analysis. Com-
munications in Mathematical Sciences, 1(4):715–762, 2003.

J Nathan Kutz, Steven L Brunton, Bingni W Brunton, and Joshua L Proctor. Dynamic
Mode Decomposition: Data-Driven Modeling of Complex Systems, volume 149. SIAM,
2016.

Alan Mackey, Hayden Schaeffer, and Stanley Osher. On the compressive spectral method.
Multiscale Modeling & Simulation, 12(4):1800–1827, 2014.

21

Raissi

Andrew J Majda, Christian Franzke, and Daan Crommelin. Normal forms for reduced
stochastic climate models. Proceedings of the National Academy of Sciences, 106(10):
3649–3653, 2009.

Niall M Mangan, Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Inferring
biological networks by sparse identification of nonlinear dynamics. IEEE Transactions
on Molecular, Biological and Multi-Scale Communications, 2(1):52–63, 2016.

Igor Mezić. Spectral properties of dynamical systems, model reduction and decompositions.
Nonlinear Dynamics, 41(1):309–325, 2005.

Igor Mezić. Analysis of fluid flows via spectral properties of the koopman operator. Annual
Review of Fluid Mechanics, 45:357–378, 2013.

Vidvuds Ozoliņš, Rongjie Lai, Russel Caflisch, and Stanley Osher. Compressed modes for
variational problems in mathematics and physics. Proceedings of the National Academy
of Sciences, 110(46):18368–18373, 2013.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic dif-
ferentiation in pytorch. 2017.

Paris Perdikaris, Maziar Raissi, Andreas Damianou, ND Lawrence, and George Em Karni-
adakis. Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling.
Proc. R. Soc. A, 473(2198):20160751, 2017.

Joshua L Proctor, Steven L Brunton, Bingni W Brunton, and JN Kutz. Exploiting spar-
sity and equation-free architectures in complex systems. The European Physical Journal
Special Topics, 223(13):2665–2684, 2014.

M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein. On the expressive
power of deep neural networks. arXiv preprint arXiv:1606.05336, 2016.

Maziar Raissi. Parametric gaussian process regression for big data. arXiv preprint
arXiv:1704.03144, 2017.

Maziar Raissi. Forward-backward stochastic neural networks: Deep learning of high-
dimensional partial differential equations. arXiv preprint arXiv:1804.07010, 2018.

Maziar Raissi and George Karniadakis. Deep multi-fidelity Gaussian processes. arXiv
preprint arXiv:1604.07484, 2016.

Maziar Raissi and George Em Karniadakis. Hidden physics models: Machine learning of
nonlinear partial differential equations. Journal of Computational Physics, 2017.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Inferring solutions of differ-
ential equations using noisy multi-fidelity data. Journal of Computational Physics, 335:
736–746, 2017a.

22

Deep Hidden Physics Models

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Machine learning of linear
differential equations using Gaussian processes. Journal of Computational Physics, 348:
683 – 693, 2017b. ISSN 0021-9991. doi: http://dx.doi.org/10.1016/j.jcp.2017.07.050.
URL http://www.sciencedirect.com/science/article/pii/S0021999117305582.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learn-
ing (part i): Data-driven solutions of nonlinear partial differential equations. arXiv
preprint arXiv:1711.10561, 2017c.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learn-
ing (part ii): Data-driven discovery of nonlinear partial differential equations. arXiv
preprint arXiv:1711.10566, 2017d.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Multistep neural networks for
data-driven discovery of nonlinear dynamical systems. arXiv preprint arXiv:1801.01236,
2018a.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Numerical gaussian pro-
cesses for time-dependent and nonlinear partial differential equations. SIAM Journal on
Scientific Computing, 40(1):A172–A198, 2018b.

R Rico-Martinez, K Krischer, IG Kevrekidis, MC Kube, and JL Hudson. Discrete-vs.
continuous-time nonlinear signal processing of cu electrodissolution data. Chemical En-
gineering Communications, 118(1):25–48, 1992.

Anthony John Roberts. Model emergent dynamics in complex systems. SIAM, 2014.

Samuel H. Rudy, Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Data-driven
discovery of partial differential equations. Science Advances, 3(4), 2017. doi: 10.1126/
sciadv.1602614. URL http://advances.sciencemag.org/content/3/4/e1602614.

Hayden Schaeffer, Russel Caflisch, Cory D Hauck, and Stanley Osher. Sparse dynamics for
partial differential equations. Proceedings of the National Academy of Sciences, 110(17):
6634–6639, 2013.

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data.
science, 324(5923):81–85, 2009.

Michael D Schmidt, Ravishankar R Vallabhajosyula, Jerry W Jenkins, Jonathan E Hood,
Abhishek S Soni, John P Wikswo, and Hod Lipson. Automated refinement and inference
of analytical models for metabolic networks. Physical biology, 8(5):055011, 2011.

George Sugihara, Robert May, Hao Ye, Chih-hao Hsieh, Ethan Deyle, Michael Fogarty, and
Stephan Munch. Detecting causality in complex ecosystems. science, 338(6106):496–500,
2012.

Kunihiko Taira and Tim Colonius. The immersed boundary method: a projection approach.
Journal of Computational Physics, 225(2):2118–2137, 2007.

23

http://www.sciencedirect.com/science/article/pii/S0021999117305582
http://advances.sciencemag.org/content/3/4/e1602614

Raissi

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996.

Giang Tran and Rachel Ward. Exact recovery of chaotic systems from highly corrupted
data. arXiv preprint arXiv:1607.01067, 2016.

Henning U Voss, Paul Kolodner, Markus Abel, and Jürgen Kurths. Amplitude equations
from spatiotemporal binary-fluid convection data. Physical review letters, 83(17):3422,
1999.

Wen-XuWang, Rui Yang, Ying-Cheng Lai, Vassilios Kovanis, and Celso Grebogi. Predicting
catastrophes in nonlinear dynamical systems by compressive sensing. Physical Review
Letters, 106(15):154101, 2011.

Hao Ye, Richard J Beamish, Sarah M Glaser, Sue CH Grant, Chih-hao Hsieh, Laura J
Richards, Jon T Schnute, and George Sugihara. Equation-free mechanistic ecosystem
forecasting using empirical dynamic modeling. Proceedings of the National Academy of
Sciences, 112(13):E1569–E1576, 2015.

24

	Introduction
	Solution methodology
	Results
	Burgers' equation
	The KdV equation
	Kuramoto-Sivashinsky equation
	Nonlinear Schrödinger equation
	Navier-Stokes equation

	Summary and Discussion

