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ABSTRACT

This paper addresses the problem of classifying motion signals

acquired via wearable sensors for the recognition of human ac-

tivity. Automatic and accurate classi�cation of motion signals is

important in facilitating the development of an e�ective automated

health monitoring system for the elderlies. Thus, we gathered hip

motion signals from two di�erent waist mounted sensors and for

each individual sensor, we converted the motion signal into spectral

image sequence. We use these images as inputs to independently

train two Convolutional Neural Networks (CNN), one for each of

the generated image sequences from the two sensors. The outputs

of the trained CNNs are then fused together to predict the �nal

class of the human activity. We evaluate the performance of the

proposed method using the cross-subjects testing approach. Our

method achieves recognition accuracy (F1 score) of 0.87 on a pub-

licly available real-world human activity dataset. This performance

is superior to that reported by another state-of-the-art method on

the same dataset.
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1 INTRODUCTION

Human-centred monitoring systems are devices equipped with low-

powered and low-cost sensors which are mounted on the human

(e.g. wearable) or outside (e.g. cameras), for the collection of useful

data for human activities and behaviour analysis [12]. Often these

devices come with a wireless unit for data transmission to external

storage and/or analysis unit. The common area of application of
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these systems includes home monitoring for elderly or patients in

medicine [6], among others. In this paper, we focus on the analysis

of the signals obtained via waist-mounted wearable sensors as this

is commonly used to monitor the health status of older patients

withmovement assistive devices [1]. These sensors usually generate

complex hips motion signals which are di�cult to interpret without

expert intervention. To automatically interpret the sensor readings

in order to infer the kind of human activity that is been performed

by a user, a computationally e�cient modelling technique that will

provide a meaningful characterisation of the sensor data is required.

Recently, machine learning methods including Support Vector

Machines (SVM) [7] and Random Forest [11], have been proposed

for the characterisation and automated interpretation of the sensor

data. However, these methods usually require a hand-crafted fea-

tures extraction by an expert which often a�ects the recognition

accuracy [12]. Convolutional Neural Networks (CNN) [4] on the

other hand, is a form of deep neural network learning paradigm

that has the ability to learn complex patterns in data (including

images) without the need for prior feature extraction by an ex-

pert [12]. Inspired by the success of CNN in related applications,

we explore deep CNN as an alternative approach for recognising

human activities including climbing jumping, lying, running, sit-

ting, standing and walking using activity images generated from

the signals obtained via waist-mounted sensor devices. For brevity,

we will refer to our proposed approach as Deep Human Activity

Recognition (DHAR) henceforth.

2 RELATED WORK

The presences of sensors such as accelerometer and gyroscope in

many wearable devices have made it possible to collect body parts

motion data and to recognise various activities performed by hu-

mans [11]. The accelerometer measures the physical acceleration of

movable body parts, while the gyroscope is used to measure their

orientations. The signals from both sensors are commonly used for

HumanActivity Recognition (HAR) to di�erentiate among very sim-

ilar human activities [6]. Di�erent classi�ers have been proposed

for the analysis of the motion signals and classi�cation of the hu-

man activities. Ortiz Jorge [7] proposed the use of a waist-mounted

smartphone for HAR. The method employed features obtained by

computing the mean, correlation, and frequency skewness of the

raw signals generated by the accelerometer and gyroscope embed-

ded in the smartphone. These features were used to train an SVM

to classify six human activities. Although the method was able to

accurately classify dynamic activities (e.g. walking and climbing),

some static actions were misclassi�ed. Sztyler et al. [11] proposed

a method for HAR whereby the position of the wearable devices

on the human body can change depending on user preference. The

method combine frequency and gravity based features and used

random forest classi�er in order to determine the orientation of
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Figure 1: Samples of the activity images generated from tri-

axial accelerometer (top) and gyroscope (bottom) signals.

the device and to identify the human activity. Nair et al. [5] on the

other hand, employed a temporal CNN to directly classify human

activities on smartphone. The advantage of this method is that it

takes as input the raw sensor data without the need for the costly

pre-processing phase, which in e�ect, reduced the learning time

and improved the classi�cation performance. Similarly to the Nair

et al. [5] method, our proposed method (DHAR) employs CNN as

a classi�er for the activity classi�cation but in contrast, we used

activity image sequences that are generated from the accelerome-

ter and gyroscope signals as inputs. We trained two independent

CNN, one for each of the image sequence from the two sensors and

combined their outputs to �nally classify the human activities.

3 METHODOLOGY

3.1 Frequency Image Generation

For the DHAR modelling, we used the multi-sensor human activity

dataset described in section 4.1. We used only the data from the

waist mounted sensors as this is the most widely used position in

HAR [7] and besides, our current aim is to show the e�ectiveness of

deep CNN learning for HAR. Frequency-based features are shown

to be more e�ective compared to time-based features [8]. Hence, we

apply 512-points Fast Fourier Transform (FFT) to each signal of the

tri-axial accelerometer and gyroscope readings using a windows

size of 1 second with an overlap of 0.5 seconds. Window size of 1

second have been shown to be most e�ective in HAR as it can cover

one cycle of most of the repetitive dynamic activities (running,

climbing, jumping and walking) [7]. We then convert the results

of the FFT to 28 x 28 images, one for each axis of the tri-axial

accelerometer and gyroscope signals, respectively. Figure 1 shows

samples of the images for climbing down activity. We used these

image sequences as inputs to train the proposed DHAR model.

3.2 DHAR Modelling

Our proposed DHAR architecture is inspired by VGG-like net-

work [9] except that for DHAR relatively fewer convolutional layers

are enough for distinguishing di�erent activities. We independently

train two-set of �ve-layered CNN, using the activity images gen-

erated previously from the accelerometer and gyroscope signals.

We use this approach because of the expectation that the resulting

diversity in the decision-making process of the two CNN would

Figure 2: Block diagram of the proposed DHAR. Sensor #1:

Accelerometer and Sensor #2: Gyroscope

boost the generalisation performance of the DHAR and improve

the reliability of the activity classi�cation. Each CNN model con-

sists of two convolutional layers, composed of 32, 3 x 3 and 64,

3 x 3 �lters and Recti�ed Linear Unit (ReLU) activation function,

followed by a max-pooling layer composed of a 2 x 2 �lter and two

fully-connected layers of 128 and 8 neurons (as shown in Figure 2).

Inputs to the network are the two sets of activity images fed in-

dependently to the two CNNs and output are the 8 classes of the

human activities in the training data. While the convolutional and

max-pooling layers are used to learn the local spatial structure in

the training images, the fully-connected layers, on the other hand,

help to integrate global information from across the images and to

accurately classify the human activity. The continuous outputs of

the two CNNmodels are combined (fuse) together using soft voting

technique and the class with the highest vote is chosen as the �nal

output of the DHAR. In order to reduce the risk of over�tting, we

used dropout during the training process [10]. The dropout helps

to deactivate some of the neurons in the CNN at random during

training, thereby improving the generalisation ability of the CNN.

We used ADAM optimiser to train the CNN, because of its good

performance in deep neural network learning [2].

4 EXPERIMENTS AND DISCUSSION

4.1 Dataset

We use the publicly available RealWorld Human Activity Recogni-

tion (RWHAR) dataset [11]1 for the experimentation. The dataset

is developed from motion signals acquired from six sensors (ac-

celerometer, gyroscope, GPS, light, magnetometer, and audio) at

seven body positions (chest, forearm, head, shin, thigh, upper arm,

and waist) by attaching seven devices (smartphones and smart-

watches) at the said locations. These devices were synchronised

using the network provider time service and sensors like accelerom-

eter and gyroscope were sampled at 50Hz. Fifteen individuals were

involved in the data gathering study and each individual performed

eight activities (climbing stairs down and up, jumping, lying, stand-

ing, sitting, running/jogging, and walking). Each activity was per-

formed approximately for 10 minutes except for jumping that was

performed for approximately 1.7 minutes. Out of the 15 subjects

1RealWorld HAR dataset [online]. http://sensor.informatik.uni-mannheim.de/#dataset_
realworld [Last accessed 08.03.2019]
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Figure 3: Confusionmatrix of the recognised dynamic activ-

ities, showing cases where the DHAR misclassi�ed some of

the activities.

involved, 8 were male and 7 were female. Further details about this

dataset can be found in [11].

4.2 Experimental Setup

To facilitate the e�cient development and training of the DHAR

model, we used an open source machine learning library produced

by Google known as TensorFlow. We evaluate the proposed DHAR

using the dataset described in section 4.1. We used the activity data

consisting of 201328 image sequences from 12 individuals (person

#1 to #12) for training and reserved the remaining data consisting

of 47872 activity images from the other 3 di�erent individuals

(i.e. person #13 to #15) for testing, in order to evaluate the robustness

of the proposed DHAR on cross-subjects test cases. During the

experiments, we used cross-validation to select the optimal learning

rate and batch size for the CNN and sets the dropout to 0.5. We

assessed the performance of the DHAR on the test data using the

following metrics: precision, recall and F1 score [3]. While the

precision score measures the exactness of the DHAR results, the

recall, on the other hand, gives an indication of the completeness

of the DHAR outputs. The F1 score estimates the accuracy of the

DHAR by computing the harmonic mean of the precision and recall

scores [3].

4.3 Discussion

The experimental results for 5 dynamic activities (i.e. climbing

down, climbing up, jumping, running and walking) are presented

in Table 1. The table shows that the DHAR achieves an impressive

F1 score of 0.93 and 0.98 for jumping and running activities, respec-

tively, and a low score of 0.76 for the walking activity. Overall, the

DHAR achieves F1 score of 0.87 on average for the cross-subjects

test cases. This score is superior to the 0.78 reported by Sztyler

Table 1: Performance of the proposed DHAR on the cross-

subjects test data for the �ve dynamic activities.

Activity Precision Score Recall Score F1 Score

Climbing down 0.83 0.90 0.86

Climbing up 0.69 0.95 0.80

Jumping 0.96 0.90 0.93

Running 0.96 0.99 0.98

Walking 0.94 0.63 0.76

Average 0.88 0.87 0.87

et al. [11] which employs information from several on-body sen-

sors to recognise the same dynamic activities using the same dataset.

Figure 3 shows the confusion matrix of the results, highlighting

those dynamic activities that are misclassi�ed by the DHAR. We

observed that in some cases, walking is confused with climbing

activity. We investigate the cause of this confusion by viewing the

videos of the activities performed by the 3 persons (person #13-#15)

in the test set. We discover that the DHAR erroneously confused

walking with climbing activities, because some people in the test

cases perform both activities in a very similar way, thus generating

the same patterns of motion signals which are di�cult to di�eren-

tiate. Speci�cally, we observed in the activity video that person #15

performed the walking and climbing tasks in a very controlled and

robot-like manner, di�erently from the realistic way person #13 and

#14 performed the same activities in the video. Figure 4 shows the

confusion matrix of the results obtained with the data from person

#15 only. The �gure shows how the walking and climbing activi-

ties are signi�cantly overlapped, thus a�ecting the overall results

shown in Table 1. In the future, this problem can be addressed by

using another Inertial Measurement Unit (IMU) on a di�erent body

location in order to gather complementary motion signal with addi-

tional discriminatory information that can be used to di�erentiate

between similar and closely related human activities.

We also investigate and compare the performance of the DHAR

trained separately with only the data from an accelerometer, gyro-

scope and the combination of both, respectively. Figure 5 shows

the mean F1 scores for the DHAR on the three cases investigated.

As expected, the DHAR trained with the combined data from the

two di�erent sensors (as shown in Figure 2) achieves the highest F1

score of 0.870 ±0.090, followed by the DHAR trained with data from

the accelerometer only, which obtained a score of 0.850 ±0.092. The

lowest F1 score of 0.721 ±0.150 was achieved by the DHAR trained

with only the data from the gyroscope. These results show that

though gyroscope can provide information about the orientation

of a movable body part and accelerometer can measure the body

translation, the combination of data from both sensors is required

to accurately recognise dynamic activities.

Table 2 shows the experimental results for all the 8 activities

including the static and dynamic activities combined. The DHAR

achieved the overall F1 score of 0.78 on the cross-subjects test cases.

The table also shows that lying and running activities have the

highest F1 scores of 0.99 and 0.93, respectively, while sitting and

standing have the lowest scores of 0.47 and 0.55, respectively. The

low F1 scores for sitting and standing activities could be attributed

partly to the window size used during the FFT transformation of the
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Figure 4: Confusion matrix of the data from person #15

showing overlapping of walking and climbing activities.

This particular individual performed thewalking and climb-

ing activities in a very similar and controlled manner di�er-

ently from other participants in the same video, hence af-

fecting the overall performance.
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Figure 5: Comparison of the performance of the DHAR

trained separately with data from only an accelerometer

(Acc-DHAR), gyroscope (Gyro-DHAR) and the combination

of both (Acc_&_Gyro-DHAR).

raw sensor signals to activity images. Although a window size of 1

second is enough to cover one cycle of repetitive dynamic activities

such as running, however, for static activities such as sitting and

standing, a longer window period might be required in order to

capture useful information representing the postural transitions

between the activities that will help to di�erentiate them apart [7].

Future work will investigate the e�ect of di�erent window sizes on

the performance of DHAR in terms of accuracy and computational

cost, and the use of recurrent neural networks that can capture

temporal aspect as well.

5 CONCLUSION

In this paper, we showed the e�ectiveness of deep CNN for cross-

subjects human activity recognition using wearable sensors. We

achieved this by transforming raw hip motion signals obtained from

waist-mounted accelerometer and gyroscope sensors to activity

Table 2: Performance of the proposed DHAR on all 8 human

activities including the static and dynamic activities.

Activity Precision Score Recall Score F1 Score

Climbing down 0.79 0.90 0.84

Climbing up 0.71 0.95 0.81

Jumping 0.88 0.87 0.88

Lying 0.98 0.99 0.99

Running 0.89 0.98 0.93

Sitting 0.56 0.41 0.47

Standing 0.50 0.60 0.55

Walking 0.95 0.65 0.77

Average 0.78 0.79 0.78

images, and using these images to independently train two sets

of CNN. The outputs of the two CNN are ensemble together to

predict di�erent types of human activities including climbing down,

climbing up, jumping, lying, running, sitting, standing and walking.

We validated the performance of the proposed DHAR method on

publicly available real-world HAR dataset and showed that the

DHAR achieves an overall F1 score of 0.87 for dynamic activities

and 0.78 for both static and dynamic activities. This performance is

comparable to another state-of-the-art method which uses multiple

on-body sensors for motion information retrieval and hand-crafted

features for HAR. In addition to the applications demonstrated in

this paper, the proposed DHAR could be used for other non-invasive

human-centred monitoring systems that use cameras to directly

capture images depicting human activities.
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