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ABSTRACT Automatic recognition of human activities using wearable sensors remains a challenging

problem due to high variability in inter-person gait and movements. Moreover, finding the best on-body

location for a wearable sensor is also critical though it provides valuable context information that can be

used for accurate recognition. This article addresses the problem of classifying motion signals generated by

multiple wearable sensors for the recognition of human activity and localisation of the wearable sensors.

Unlike existing methods that used the raw accelerometer and gyroscope signals for extracting time and

frequency-based features for activity inference, we propose to create frequency images for the raw signals

and show this representation to be more robust. The frequency image sequences are generated from the

accelerometer and gyroscope signals from seven different body parts. These frequency images serve as the

input to our proposed two-stream Convolutional Neural Networks (CNN) for predicting the human activity

and the location of the sensor generating the activity signal. We show that the complementary information

collected by both accelerometer and gyroscope sensors can be leveraged to develop an effective classifier that

can accurately predict the performed human activity. We evaluate the performance of the proposed method

using the cross-subjects approach and show that it achieves an impressive F1-score of 0.90 on a publicly

available real-world human activity dataset. This performance is superior to that reported by another state-

of-the-art method on the same dataset. Moreover, we also experimented with the datasets from different body

locations to predict the best position for the underlying task. We show that shin and waist are the best places

on the body for placing sensors and this could help other researchers to collect higher quality activity data.

We plan to publicly release the generated frequency images from all sensor positions and activities and our

implementation code with the publication.

INDEX TERMS Human activity recognition, deep learning, sensor localisation, wearable sensors.

I. INTRODUCTION

The ubiquity and functionality of wearable devices such as

smartphones, smartwatches, and fitness wristbands equipped

with motion sensors (e.g. accelerometer and gyroscope) cre-

ate new opportunities for continuous monitoring of human

physical activities [1]. Since many human activities can be

reliably recognised based on the motion information, the

automatic and accurate classification of motion signals gen-

erated by the motion sensors can facilitate the development

of an effective automated human activity recogniser (HAR)

for human-centred monitoring systems [2]. The importance

of HAR in sectors such as healthcare, fitness, sports, and

The associate editor coordinating the review of this manuscript and

approving it for publication was Zahid Akhtar .

entertainment cannot be overemphasised [3]. For example,

HAR systems are used to monitor human activities to aid

medical diagnosis and assisting patients with impaired phys-

ical mobility [4]. Similarly, HAR systems are been incor-

porated in many home entertainment products such as the

Microsoft Kinect for the recognition of hand gestures and

body movements to enhance gaming experience [5].

Recently people (either for health or personal reasons)

have adopted the habit of carrying two or more wearable

devices such as smartwatch and smartphone. While the com-

plementary motion information gathered by these multiple

sensors can be combined to improve the accuracy of the

activity recogniser, the detection of the on-body position of

the sensors is important because the quality of automatic

activity recognition depends largely on the position of sensor
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providing the motion signals. This article deals with the

accurate recognition of both human activities and position

of the wearable device generating the motion information.

We explore the idea of converting raw motion signals into

frequency-based image sequences [6], [7] and developing a

cooperative two-stream convolutional neural network for the

prediction of the human actions and sensor location. The

contribution of this article includes:

• The design of a monolithic two-stream Convolutional

Neural Network (CNN) for predicting both human

actions and the different sensor locations referred to

as Deep Human Activity and Location Recognition

(DHALR). The device localisation allows examining the

impact of the position information on the accuracy of the

activity recognition.

• To the best of our knowledge, we contribute the first

approach for simultaneous recognition of both human

activity and sensor location using frequency images.

• Extensive experimentation that shows the effectiveness

of using the combination of complementary motion

information from multiple devices for improving the

recognition of activities in a real-world setting.

The rest of the paper is organised as follows: Section 2 pro-

vides the related work, Section 3 discusses the methodology,

Section 4 presents the dataset, Section 5 discusses the experi-

mental setup and Section 6 presents the discussion of results.

Section 7 concludes the paper.

II. RELATED WORK

The problem of human activity recognition using wearable

sensors involves the characterisation of the body parts motion

using sensory data [8]. The motion data usually comprises

of the physical acceleration and orientations of movable

body parts, measured using accelerometer and gyroscope,

respectively [9]. Machine learning methods such as Sup-

port Vector Machine (SVM) [10], Random Forest (RF) [11],

Long Short-Term Memory Network (LSTM) [12] and Con-

volutional Neural Networks (CNNs) [6] have been used to

develop the characterisation model. Ortiz Jorge [13] char-

acterised the motion data obtained with the sensors in a

waist-mounted smartphone to recognise six human activities.

The method employed SVM to analyse the hand-crafted fea-

tures develop from the motion data. The method accurately

recognised dynamic activities such as walking and climbing

but missed recognising most of the static actions like sit-

ting and standing. Catal et al. [14] employed an ensemble

approach that combined multiple classifiers to improve the

accuracy of human activity recognition. Themethod also used

hand-crafted features estimated from raw acceleration data.

Inoue et al. [15] on the other hand, avoided the costly fea-

ture engineering process mentioned in the previous methods,

by directly using the raw accelerometer data as input to train a

deep recurrent neural network for human activity recognition.

The study recorded an improved recognition performance and

lower learning time. Nair et al. [16] also proposed a method

TABLE 1. Main characteristics of the existing human activity recognition
methods and their comparison with our proposed DHALR method.

that used temporal CNN for recognising human activities

from raw motion signals acquired using smartphone sensors.

Lawal and Bano [6] proposed a CNN-based model for recog-

nising human activities. In contrast to previously mentioned

approaches, the method [6] used two sets of frequency image

sequences generated from the raw accelerometer and gyro-

scope signals, respectively as inputs. The method [6] trained

two independent CNN models, one for each set of the image

sequences, and then combine two CNN models outputs to

recognise the human activities. Similarly to [6], Jiang and

Yin [7] used deep CNN to recognise human activities by

converting the raw acceleration signals into signal images and

providing these images as inputs.

All the human activity recognition studies mentioned

above have been conducted using a single wearable device

without any consideration about the device location on the

user’s body. But the position information of the wearable

device can facilitate in improving the accuracy of the activ-

ity recognition [17]. Kunze et al. [18] proposed a method

for classifying patterns of sensor readings to recognise the

walking activity, and then analyse the characteristics of the

walking motion to localise the sensor position. A draw-

back of this method is that changes in the sensor posi-

tion cannot be detected unless the device wearer is in

motion. Sztyler et al. [11] proposed a method for analysing

the motion data obtained from several wearable devices using

random forest classifier. Themethod also incorporated a tech-

nique to detect the position of the wearable device producing

the motion signal. The method achieved high accuracy but

required a costly feature engineering process. In this article,

we extend our previous work in [6] by proposing a technique

that trains two-stream CNN using frequency-based activity

images developed from accelerometer and gyroscope motion

data, to perform human activity recognition. Unlike [6], in the

present work, we develop a strategy to simultaneously predict

both the human activity and locations of the wearable device

producing the activity signal. Moreover, while in [6] we used

motion data from a single waist-mounted wearable device for

the evaluation of the HAR, in this work, however, we use a

much larger dataset consisting of motion data obtained from

seven wearable devices positioned in seven different parts

of the body including the chest, forearm, head, shin, thigh,

upper-arm, and waist. Table 1 compares the main characteris-

tics of the state-of-the-art human activity recognitionmethods

with those of our proposed approach.
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FIGURE 1. Illustration of the set-up for our activity image generation. We generate frequency-based activity
images (right) from tri-axial accelerometer and gyroscope signals (centre). We collected synchronised motion data
from the following locations (left): a- head, b- chest, c- arm, d- waist, e- wrist, f- thigh and g- shin.

FIGURE 2. Samples of the frequency images obtained from the tri-axial accelerometer signals for different human
activities from seven different on-body locations. Note for each row, the same activity results in different motion signals
from different locations.

III. METHODOLOGY

The proposed DHALR method consists of two main parts,

namely, activity image generation and classifier modelling.

The tri-axial accelerometer and gyroscope signals are con-

verted into activity images (Sec. III-A) which forms the input

to our two-stream CNN classification network (Sec. III-B).

A. ACTIVITY IMAGE GENERATION

Frequency-based features are shown to be more effective

compared to time-based features [19] for HAR. Therefore,

we created frequency (activity) images from the raw tri-axial

accelerometer and gyroscope signals by applying Short-time

Fourier Transform (STFT) using a window size of one second

with an overlap of 0.5 seconds. STFT is commonly used

to determine the frequency content in local sections of a

signal that continuously changes over time. We used Matlab

Spectrogram function for obtaining the frequency images.

A window size of one second is most effective in HAR as

it can cover one cycle of most of the repetitive dynamic

activities (running, climbing, jumping and walking) [13].

A frequency image from each tri-axial signal is created by

applying the STFT to each 1-dimensional signal followed

by concatenating the three images to obtain a three-channel

image. These are then resized to 28 × 28 × 3 to be used

as input to our CNN model. The generated activity images

and implementation code are published online for research

purposes.1 Figure 1 shows the setup for collecting the signals

from the accelerometer and gyroscope and converting them

to their respective frequency images.

In this article, we used the multi-sensor multi-modal

human activity dataset from [11], described briefly in

section IV. We used accelerometer and gyroscope data from

all seven different sensor mounting locations (as shown in

Fig. 1). Figure 2 shows some samples of the frequency images

generated using the accelerometer signals obtained for the

five dynamic activities and all sensor positions.

1Activity Images for HAR [online]. https://isahalawal.github.io/
IsahALawal/datasets/
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FIGURE 3. The proposed cooperative two-stream CNN architecture which takes as input both accelerometer and
gyroscope frequency images and predicts the activity labels or location labels or both activity and location labels.

B. CLASSIFIER MODELLING

CNN is a type of deep neural network that is commonly

used for analysing imaging data [20]. CNN-based meth-

ods are shown to be more robust than hand-crafted feature

classification methods [21]. Unlike natural image classifica-

tion problem, frequency images are low-resolution simplistic

images with less natural texture information. These images

encode signals and need relatively fewer convolutional layers

for distinguishing between activities and locations. There-

fore, we designed a simplified two-stream VGG-like [22]

architecture for human activity and location recognition. The

proposed DHALR network architecture is shown in Figure. 3.

The network takes the two 28× 28× 3 dimensional tri-axial

accelerometer and tri-axial gyroscope frequency images as

input and predicts the activity or sensor location or both

activity and sensor location Y . We use both accelerometer

and gyroscope images as input because the related works

on sensor-based human activity recognition [6] showed that

combining the motion information from both accelerometer

and gyroscope improves the recognition accuracy.

The proposed DHALR consists of three cascaded convo-

lutional blocks, where block 1 is composed of 32, 3 × 3

filters, block 2 is composed of 64, 3× 3 filters and block 3 is

composed of 128, 3× 3 filters. Each convolution is followed

by the 2×2 max-pooling and dropout. The convolutional and

max-pooling layers are used to learn the local spatial structure

in the training images. The outputs of block 3 from the two

streams are concatenated, flattened and passed through two

fully connected layers, followed by a dropout and final dense

layer (with softmax) equal to the number of output predic-

tions required. The fully-connected layers help to integrate

global information from across the images and to accurately

classify the human activity or/and sensor location. Dropout

is a regularisation term added to avoid over-fitting during

training [23]. The dropout helps to deactivate some of the

nodes in the network at random during training, which helps

in improving its generalisation capability. We used ADAM

optimiser with a learning rate of 0.01 to train the network,

because of its good performance in deep neural network

learning [24].

IV. DATASET DESCRIPTION

To evaluate the performance of our proposed approach,

we use the RealWorldHumanActivity Recognition (RWHAR)

dataset presented in [11].2 Table 2 summarises the main

characteristics of the original dataset. The dataset consists

of motion signals from seven different body parts including

chest, forearm, head, shin, thigh, upper arm, and waist (as

indicated in Figure 1), that are gathered by using seven

wearable devices (mainly smartphones and smartwatches)

attached to the said positions. Each of the wearable devices

contains six different sensors which include accelerometer,

gyroscope, GPS, light, magnetometer, and audio, that were

used to collect the motion signals. Fifteen people (8 male

and 7 females) participated in the data collection process and

each participant adorned with the seven synchronised wear-

able devices were instructed to perform 8 different activities

which include climbing stairs down and up, jumping, lying,

standing, sitting, running/jogging, and walking for approxi-

mately ten minutes (except for jumping which was performed

for only 1.7 minutes due to exhaustive nature of the activity).

2RealWorld HAR dataset [online]. http://sensor.informatik.uni-
mannheim.de/#dataset_realworld [Last accessed 18.07.2020]
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TABLE 2. Summary of the main characteristics of the RealWorld Human Activity Recognition (RWHAR) dataset from [11] which is used for analysing and
validating our proposed DHALR method.

TABLE 3. Summary of the frequency (activity) images dataset created from RWHAR dataset. Total number of samples obtained for each activity and each
sensor position for the 15 participants are reported. the images.

During the activities, the readings from both accelerometer

and gyroscope sensors were sampled at 50Hz. We use the

accelerometerand gyroscpe data to develop frequency-based

activity images for the different activities for our experiments

as discussed in Sec. III-A. We generated a total of 885,360

frequency-based activity images for five dynamic activities

over all the sensor positions. Table 3 shows the distribution

of the activity images. For each activity, we obtain 15,180

frequency images from each sensor position and sensor type

(accelerometer or gyroscope), except for jumping where

we obtained 2,520 images. In total, we obtained 855,360

frequency images across all dynamics activities and sensor

positions. We plan to publicly release these activity images

to support benchmarking and future researches in this area.

V. EXPERIMENTAL SETUP

Wedevelop the proposedDHALRusing Tensorflow, an open-

source machine learning library produced by Google [25].

We evaluate the performance of the proposed method

using a cross-subject validation approach, whereby we train

the human activity recogniser with activity data obtained

from 12 specific individuals in the dataset and then evaluate it

with data from other 3 different people that were not present

in the training set. We measure the accuracy of the DHALR

on the evaluation set using precision, recall, and F1-score per-

formance metrics. The F1-score ∈ [0, 1], gives an estimation

of the accuracy of the DHALR by computing the harmonic

mean of the precision and recall scores. An F1-score that

is close to 1 is desirable as it indicates a high recognition

performance. We adopted these metrics as they are the stan-

dard measures used for estimating the goodness of pattern

recognition models [26].

We compare the performance of the DHALR against

other classical CNN architectures such as LeNet5 [27] and

ResNet50 [28]. We also compare the best results of the

DHALR with those reported by Sztyler et al. [11], and Lawal

and Bano [6]; other state-of-the-art methods using the same

dataset. All our experiments were conducted on a PC having

the following specifications: AMD Fx-8370,8-core processor

@ 4.0GHz, 32GB of RAM, Nvidia GeForce GTX1050 6GB

GPU,and Microsoft Windows 10 operating system.

VI. RESULTS AND DISCUSSION

Weconducted six extensive experiments such that each exper-

iment was designed with specific goals including finding the

best sensor location for activity recognition, comparison with

existing activity recognition methods and validation of the

robustness of the proposedDHALR against other CNN-based

methods. The specifications of each experiment are sum-

marised in Table 4 and discussed below are the obtained

results.

A. EXPERIMENT 1: SENSOR POSITION INFERENCE

INDEPENDENT OF THE ACTIVITY

This experiment aims to demonstrate the ability of the pro-

posed DHALR to predict the correct position of the sen-

sors based on the pattern in the activity data generated.

Thus, we train the DHALR with the activity data (both
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TABLE 4. Details of the six experiments performed for the evaluation of the proposed DHALR method. For each experiment, its goal, network input and
predictions are mentioned along with the Figures and (or) Tables numbers displaying the results.

TABLE 5. Experiment 1: DHALR results in predicting the sensor positions
independent of the activity.

accelerometer and gyroscope) from all the seven sensor posi-

tions and evaluate it using the evaluation set. We record

the performance of the DHALR in terms of the achieved

precision, recall and F1-scores. Table 5 shows the results

obtained by the DHALR in predicting the different positions

of the sensors. The DHALR achieves an impressive F1-score

of at most 0.99 for most of the sensor positions except for

thigh, where it obtains an F1-score of 0.84. Figure 4 shows

the confusion matrix of the DHALR prediction. The values in

the diagonal indicate the accuracy of the prediction, while the

values below and above the diagonal in the figure show the

error incurred. Overall, these results show that the patterns

of the activity data produced by the sensors positioned on

the seven body parts are distinctly different and can easily

be differentiated.

B. EXPERIMENT 2: ACTIVITY INFERENCE INDEPENDENT

OF THE SENSOR POSITION

We perform this experiment to evaluate the ability of the

DHALR to predict human activities independent of the posi-

tion of the sensor producing the activity data. We train

the DHALR with the activity data generated by all the

seven wearable sensors combined, and we deploy it to

predict the following activities: climbing up/down, Jump-

ing, Running and Walking. Table 6 shows the results on

FIGURE 4. Experiment 1: Confusion matrix showing the DHALR sensor
position prediction. The values in the diagonal indicate the
accuracy (recall) of the prediction.

the evaluation set. The DHALR achieved a significantly

high F1-score of 0.95 and 0.89 for running and jump-

ing activities compared to climbing down, climbing up

and walking activities that resulted in the F1-scores of

0.75, 0.71 and 0.68, respectively, irrespective of the sen-

sor position. The confusion matrix of the results is shown

in Figure 5, which highlights cases where some activities

are not correctly recognised. For example, walking is erro-

neously confused with climbing down/up activities. This is

partly because some of the participants walking and climb-

ing gaits are very similar, thus generating similar motion

signals that are difficult to differentiate. We showed in

Sec. VI-E, that by using complementary activity data, the

confusion between walking and climbing activities can be

improved.
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TABLE 6. Experiment 2: DHALR results in predicting the activities
independent of the sensor positions.

FIGURE 5. Experiment 2: Confusion matrix of the DHALR results using all
the sensor position data.

C. EXPERIMENT 3: ACTIVITY RECOGNITION AGAINST

SENSOR POSITION

Next, we are interested in finding the best sensor position

for accurately recognising the various activities. Therefore,

we conducted this experiment to understand how the different

sensor positions affect the DHALR accuracy. We train the

DHALR with all the activity data from the seven sensor

positions, one sensor position at a time. We evaluate and

record the performance of the DHALR in predicting the

activities in the evaluation set. Table 7 shows the F1-scores

of the DHALR for all the activities against the different

sensor positions. We observe that the DHALR performance

for each activity varies across all the sensor positions, which

indicates that there is no single optimal sensor position for all

of the activities. However, we noted that when the sensor is

positioned on the waist or shin, the DHALR perform much

better for all the activities with a mean F1-score of 0.86 and

0.88, respectively. Thus we can consider the shin and Waist,

as the best sensor positions for predicting dynamic activities.

Also, we observe from Table 7 that the activity recognition

performance for the thigh sensor is particularly low which

is in line with our findings of experiment 1 (section VI-A).

We investigate the cause of this low score by viewing the

videos of the data collection setup for all the participants.

We discover that unlike the other six on-body devices, the

one marked as the thigh is loosely placed in the front pocket

of the participants’ trouser. Thus, during the execution of the

physical activities, the wavering movement of the device can

cause the embedded accelerometer and gyroscope sensors to

generate erroneous motion signals that are different from the

real signals depicting the actual activities been performed.

D. EXPERIMENT 4: PERFORMANCE IMPROVEMENT BY

COMPLIMENTARY ACTIVITY DATA

In this experiment, we combine the activity data from the

shin and waist-mounted sensors to train the DHALR.We per-

form this experiment to show that by using complementary

activity data from the best sensor positions (discussed in

section VI-C), the recognition accuracy of the DHALR can

be improved. We evaluate the performance of the trained

DHALR using the evaluation set and record the obtained

F1-scores. The DHALR achieved an improved performance

with a mean F1-score of 0.90 for all the five activities pre-

dicted. Table 8 compares the performances of the DHALR

when trained with activity data from all the seven sensors

independent of their position, from waist-mounted sensor

only, and from both waist and shin mounted sensors. Note

that in most existing human activity recognition [13], waist is

considered an ideal position as it is closer to the centre ofmass

of the human body. We observed from Table 8 that jointly

using activity data from waist and shin mounted sensors

increases the recognition accuracy (F1-score) from 0.80 to

0.90; an impressive 10% improvement. Moreover, combining

the activity data from both sensors also helps to provide

additional discriminatory information about closely related

activities such as walking and climbing, thereby aiding the

DHALR to reduce the confusion between these two activities.

This reduction in the confusion of the walking and climbing

activities by the DHALR can be seen by comparing the

improved confusion matrix in Figure 6 with that of Figure 5.

E. EXPERIMENT 5: SIMULTANEOUS ACTIVITY AND

SENSOR POSITION RECOGNITION

We perform this experiment to evaluate the ability of the

DHALR to simultaneously predict both the activity and the

position of the sensor producing the activity signal. Given

the five activities and seven sensor positions, the DHALR

is expected to predict thirty-four different combinations of

both activity and sensor positions. From a pattern recognition

perspective, this is a difficult multi-label problem. Thus we

train the DHALR with the activity data from all the sensor

positions, whereby each of the training data is assigned two

labels i.e. the activity the data is depicting and position of the

sensor producing the data. We evaluate the performance of

the trained DHALR using the evaluation set. The evaluation

results show that the DHALR achieves a mean precision,
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TABLE 7. Experiment 3: DHALR F1-scores in predicting five activities from seven sensor positions.

TABLE 8. Experiment 4: DHALR activity recognition results for different combinations of sensor data.

FIGURE 6. Experiment 4: Confusion matrix of the results of the DHALR
trained with activity data generated from both shin and waist mounted
sensors. These results show significant improvement compared to when
training is done using all sensor position data as reported in Figure 5.

recall and F1-score of 0.77, 0.72 and 0.71, respectively. This

is an encouraging result considering the difficult nature of

the problem. Figure 7 shows the confusion matrix of the

thirty-four combinations of both activity and sensor positions.

The intensity of the colours in the diagonal of the confusion

matrix represents the level of the accuracy of the prediction.

We can observe that the DHALR correctly predicted most of

the activities with the corresponding positions of the sensors

generating the activity data. We also observe some instances

where the DHALR err, which include walking and climbing

activities where the activity data is generated by the sen-

sor positioned in the thigh. For example, Walking_Thigh is

wrongly classified as ClimbingDown_Thigh. This particular

case is not unexpected as we have shown in the previous

experiments that the thigh is not a suitable position for activity

recognition.

F. EXPERIMENT 6: ROBUSTNESS COMPARISON AGAINST

OTHER CNN-BASED MODELS AND EXISTING METHODS

We performed this experiment to compare the robustness

of the proposed DHALR against two classical CNN archi-

tectures commonly used for natural image classification.

Specifically we implement LeNet5 [27] and ResNet50 [28],

a shallow and deep CNN architectures, respectively. We train

both CNNs using the same activity data from shin mounted

sensor. Table 9 shows the performance of all the methods

on the evaluation set. The DHALR performed much better

compared to the other two methods with a mean F1-score of

0.88. The LeNet5 achieves a mean F1-score of 0.79, while the

ResNet50 obtain an average F1-score of 0.73. These results

support our assertion that unlike natural image classification

problem, frequency images which encode activity signals

can be accurately recognised using CNN architecture (like

the proposed DHALR) which incorporates relatively fewer

convolutional layers.
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FIGURE 7. Experiment 5: Confusion matrix of the DHALR results showing the prediction of both activity and sensor position. Note the acronyms
used, e.g. CD_Chest means climbing down activity with the sensor positioned in the chest. CD:Climbing Down, CU:Climbing Up, JP:Jumping,
RN:Running, and WK:Walking.

Finally, we also compare the performance of the DHALR

with [11]: another state-of-the-art method. We chose to com-

pare with this method because the authors reported their

evaluation on the same RWHAR dataset. Table 10 shows the

comparison of DHALR best results with those reported in

[11] and our previous work [6], respectively. The table clearly

shows that the proposed DHALR with a mean F1-score of

0.94 for position recognition and 0.90 for activity recogni-

tion achieves superior performance compared to [11] which

reported a mean F1-score of 0.89 and 0.87 respectively, and

[6] which obtained an average F1-score of 0.87 for activity

recognition. Unlike [11], the DHALR can effectively clas-

sify the various activities and device positions, due to the

transformation of the raw tri-axial accelerometer and gyro-

scope motion readings into frequency images that encode

the activity signals, and the use of a two-stream CNN clas-

sifier to capture the intrinsic similarities among the activity

images.
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TABLE 9. Experiment 6: Evaluation results of different CNN methods
using activity data from shin-mounted sensor.

TABLE 10. Experiment 6: Evaluation results of different methods for
position and activity recognition.

FIGURE 8. Samples of the corrupted activity data for climbing down,
climbing up and walking generated from thigh-mounted sensor.

G. SOURCES OF RECOGNITION ERROR

We observed that some activities are more difficult to differ-

entiate and/or recognise, due to the similarities in the manner

the activities are performed. Specifically, walking and climb-

ing up/down are often confused in our experiments. We stud-

ied the instances where some of these problems occur and

examine the affected activity data in the evaluation set. The

prediction errors can be attributed partly to the following

reasons

• Errors due to corrupted activity data. Figure 8 shows

samples of corrupted activity data which the proposed

DHALR misrecognised. Such samples occur at the start

or/and end of an activity. These erroneous data are

difficult for the DHALR because they are corrupted.

The solution could be to discard them from both the

training and evaluation set accordingly since they lack

information that will improve the recogniser.

• Errors due to the similarity in the manner closely related

activities are performed. Figure 9 shows samples of the

activity data for walking and climbing activities with

very similar movement patterns. This type of error can

FIGURE 9. Samples of the activity data for climbing down, climbing up
and walking showing very similar motion patterns.

be mitigated by using additional motion information

from a complementary sensor as input during the train-

ing of the recogniser as validated in Section VI-D.

VII. CONCLUSION

We proposed a novel method for human activity and sensor

location recognition by proposing a two-stream convolutional

neural network. We used frequency-based activity images

from both accelerometer and gyroscope sensors mounted

on several body locations as input to our network. The

network jointly encoded both accelerometer and gyroscope

frequency images, concatenated the two feature maps and

predicted either the activity or location or both activity

and location. We evaluate the performance of the proposed

method using real-world human activity dataset, and the

experimental results show that the proposed DHALR is

robust compared to other activity recognition methods and

CNN-based networks(commonly used in natural image clas-

sification). Unlike existing HAR methods, which mainly rely

on single (waist) sensor information for activity inference,

we showed that the shin position is more accurate than

the waist. Moreover, combining complementary information

from both waist and shin data helped in further improving the

activity recognition accuracy.
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