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Abstract
To speed-up the solutionof parametrizeddifferential problems, reducedordermodels (ROMs)
have been developed over the years, including projection-based ROMs such as the reduced-
basis (RB)method, deep learning-based ROMs, as well as surrogatemodels obtained through
machine learning techniques. Thanks to its physics-based structure, ensured by the use of a
Galerkin projection of the full order model (FOM) onto a linear low-dimensional subspace,
the Galerkin-RB method yields approximations that fulfill the differential problem at hand.
However, to make the assembling of the ROM independent of the FOM dimension, intru-
sive and expensive hyper-reduction techniques, such as the discrete empirical interpolation
method (DEIM), are usually required, thus making this strategy less feasible for problems
characterized by (high-order polynomial or nonpolynomial) nonlinearities. To overcome this
bottleneck,we propose a novel strategy for learning nonlinearROMoperators using deep neu-
ral networks (DNNs). The resulting hyper-reduced order model enhanced byDNNs, to which
we refer to asDeep-HyROMnet, is then a physics-basedmodel, still relying on theRBmethod
approach, however employing a DNN architecture to approximate reduced residual vectors
and Jacobian matrices once a Galerkin projection has been performed. Numerical results
dealing with fast simulations in nonlinear structural mechanics show that Deep-HyROMnets
are orders ofmagnitude faster than POD-Galerkin-DEIMROMs, still ensuring the same level
of accuracy.
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1 Introduction

Mathematical models involving partial differential equations (PDEs) depending on a set of
parameters are ubiquitous in applied sciences and engineering. These input parameters are
defined to characterize, e.g., material properties, loads, boundary/initial conditions, source
terms, or geometrical features. High-fidelity simulations based on full-order models (FOMs),
like the finite element (FE) method, entail huge computational costs in terms of CPU time
and memory, if a large number of degrees of freedom dofs) is required. Complexity is ampli-
fied whenever interested to go beyond a single direct simulation, such as in the multi-query
contexts of optimization, parameter estimation and uncertainty quantification. To face these
problems, several strategies to build reduced order models (ROMs) have been developed over
the years, aiming at computing reliable solutions to parametrized PDEs at a greatly reduced
cost. A large class of ROMs relies on a projection-based approach, which aims at approx-
imating the unknown state quantities as a linear superimposition of basis functions; these
latter then span a subspace which the governing equations are projected onto [8, 9]. Among
these, the reduced basis (RB) method [35, 49] is a powerful and widely used technique, char-
acterized by a splitting of the reduction procedure into an expensive, parameter-independent
offline phase (however performed once and for all) and an efficient, parameter-dependent
online phase. Its efficiency mainly relies on two crucial assumptions:

1. The solutionmanifold is low-dimensional, so that theFOMsolutions canbe approximated
as a linear combination of few reduced modes with a small error;

2. The online stage is completely independent of the high-fidelity dimension [21].

Assumption 1 concerns the approximability of the solution set and is associated with the
slow decay of the Kolmogorov N -width [46]. However, for physical phenomena character-
ized by a slow N -width decay, such as those featuring coherent structures that propagate
over time [25], the manifold spanned by all the possible solutions is not of small dimension,
so that ROMs relying on linear (global) subspaces might be inefficient. Alternative strate-
gies to overcome this bottleneck can be, e.g., local RB methods [2, 43, 55], or nonlinear
approximation techniques, mainly based on deep learning architectures, see, e.g., [22–24,
37, 39].

Assumption 2 is automatically verified in linear, affinely parametrized problems [49],
but cannot be fulfilled when dealing with nonlinear problems, as the online assembling
of the reduced operators requires to reconstruct the high-fidelity ones. To overcome this
issue, a further level of approximation, or hyper-reduction, must be introduced. State-of-the-
art methods, such as the empirical interpolation method (EIM) [6], the discrete empirical
interpolation method (DEIM) [15], its variant matrix DEIM (MDEIM) [42], the missing
point estimation [4] and the Gauss-Newton with approximated tensors (GNAT) [13], aim at
recovering an affine expansion of the nonlinear operators by computing only a few entries
of the nonlinear terms. EIM, DEIM and GNAT can be seen as approximate-then-project
techniques, since operator approximation is performed at the level of FOM quantities, prior
to the projection stage. On the other hand, project-then-approximate strategies have also been
introduced, aiming at approximating directly ROM operators, such as the reduced nonlinear
residual and its Jacobian. An option in this sense is represented by the so-called Energy
Conserving Sampling and Weighting (ECSW) technique [20]; see. e.g., [21] for a detailed
review.
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Although extensively used in many applications, spanning from fluid flows models
to cardiac mechanics [2, 11, 19, 27, 50, 54], these strategies are code-intrusive and,
more importantly, might impact on the overall efficiency of the ROM approximation in
complex applications. Indeed, when dealing with highly nonlinear problems, expensive
hyper-reduction strategies are usually required if aiming at preserving the physical con-
straints at the ROM level, that is, if ROMs are built consistently with the FOM through a
projection-based procedure. For instance, a large number of DEIM basis vectors are required
to ensure the convergence of the reducedNewton systems arising from the linearization of the
nonlinear hyper-ROM when dealing with highly nonlinear elastodynamics problems [17],
even if few basis functions are required to approximate the state solution in a low-dimensional
subspace through, e.g., proper orthogonal decomposition (POD). An alternative formulation
of DEIM in a finite element framework, known as unassembled DEIM (UDEIM) [53], has
been proposed to preserve the sparsity of the problem, while in [44] a localized DEIM select-
ing smaller local subspace for the approximation of the nonlinear term is presented.

Semi-intrusive strategies, avoiding the ROM construction through a Galerkin projection,
have been recently proposed exploiting surrogate models to determine the RB approxima-
tion. For instance, neural networks (NNs) or Gaussian process regression can be employed
to learn the map between the input parameters and the reduced-basis expansion coefficients
in a non-intrusive way [32, 33, 36, 52]. An approximation of the nonlinear term arising
in projection-based ROMs is obtained in [26] through deep NNs (DNNs) that exploit the
projection of FOM solutions. NNs have also also been recently applied in the context of
operator inference for (parametrized) differential equations, combining ideas from classical
model reduction with data-driven learning. For instance, the design of NNs able to accurately
represent linear/nonlinear operators, mapping input functions to output functions, has been
proposed recently in [40]; based on the universal approximation theorem of operators [16],
a general deep learning framework, called DeepONet, has been introduced to learn contin-
uous operators, such as solution operators of PDEs, using DNNs; see also [56]. In [45] a
non-intrusive projection-based ROM for parametrized time-dependent PDEs including low-
order polynomial nonlinear terms is considered, inferring an approximation of the reduced
operators directly from data of the FOM. Finally, the obtained low-dimensional system is
solved—in this case, the learning task consists in the solution to a least squares problem; see
also [7]. Projection-based ROMs and machine learning have been fused in [47] aiming at the
approximation of linear and quadratic ROM operators, focusing on the solution to a large
class of fluid dynamics applications. Similarly, in [5] a non-intrusive technique, exploiting
machine learning regression algorithms, is proposed for the approximation of ROMoperators
related to projection-based methods for the solution of parametrized PDEs. Finally, principal
component analysis-based model reduction with a NNs for approximation has been com-
bined in [10], in a purely data-driven fashion, of infinite-dimensional solution maps, such as
the solution operator for time-dependent PDEs.

In this paper, we develop a novel semi-intrusive, deep learning-enhanced hyper-reduced
order modeling strategy, which hereon we refer to as shape Deep-HyROMnet, by lever-
aging a Galerkin-RB method for solution dimensionality reduction and DNNs to perform
hyper-reduction. Since the efficiency of the nonlinear ROM hinges upon the cost-effective
approximation of the projections of the (discrete) reduced residual operator and its Jacobian
(when an implicit numerical scheme is employed), the key idea is to overcome the computa-
tional bottleneck associated with classical, intrusive hyper-reduction techniques, like DEIM,
by relying on DNNs to approximate otherwise expensive reduced nonlinear operators at a
greatly reduced cost. Unlike data-driven-based methods, for which the predicted output is
not guaranteed to satisfy the underlying PDE, our proposed method is physics-based, as it
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computes the ROM solution by actually solving the reduced nonlinear systems by means
of the Newton method, thus exploiting the physics of the problem. A further benefit of the
proposed Deep-HyROMnet method lies on the fact that the inputs given to the NNs are low-
dimensional arrays, so that the overwhelming training times and costs that may be required
by even moderately large FOM dimensions can be avoided. Note that we aim at efficiently
approximating the nonlinear operators that result from the composition of the reduced solu-
tion operator—that maps the input parameter vector and time to the corresponding ROM
solution—and the reduced residual/Jacobian operator, that maps the ROM solution to the
reduced residual/Jacobian evaluated on the ROM solution. We apply the proposed method-
ology to the solution of problems in nonlinear solid mechanics, focusing on parametrized
nonlinear elastodynamics and complex (e.g., exponential nonlinear) constitutive relations of
thematerial undergoing large deformations, showing that theDeep-HyROMnet approach out-
performs the Galerkin-RB method equipped with DEIM in terms of computational speed-up
during the online stage, achieving the same level of accuracy results.

The paper is structured as follows.We recall the formulation of the RBmethod for nonlin-
ear unsteady parametrized PDEs in Sect. 2, relying on POD for the construction of the reduced
subspace and on DEIM as hyper-reduction technique (hence obtaining POD-Galerkin-DEIM
ROMs). The proposed Deep-HyROMnet and the DNN architecture employed to perform
reduced operator approximation are detailed in Sect. 3. The numerical performances of the
resultingmethod are assessed in Sect. 4 on several benchmark problems relatedwith nonlinear
elastodynamics, highlighting some conclusions in Sect. 5.

2 Projection-Based ROMs: The Reduced Basis Method

Our goal is to pursue an efficient solution to nonlinear unsteady PDE problems depending
on a set of input parameters, which can be written in abstract form as follows: given an input
parameter vector μ ∈ P and u(0;μ), find u(t;μ) ∈ V such that, ∀t ∈ (0, T ],

R(u(t;μ), t;μ) = 0 in V ′, (1)

where the parameter space P ⊂ R
P is a compact set, R is the residual of a second-order

differential equation, and V ′ is the dual of a suitable functional space H1
0 (Ω)m ⊆ V ⊆

H1(Ω)m over the bounded domain Ω ⊂ R
d , where V depends on the boundary conditions

at hand. In particular, we are interested in vector problems (m = 3) set in d = 3 dimensions.
The role of the parameter vector μ depends on the particular application at hand; in the case
of nonlinear elastodynamics, μ is for instance related to the coefficients of the constitutive
relation, the material properties and the boundary conditions.

After discretising problem (1) in space and time, we end up with a fully-discrete nonlinear
system

R(unh(μ), tn;μ) = 0 in R
Nh , (2)

at each time step tn , n = 1, . . . , Nt , which can be solved by means of the Newton method:
given μ ∈ P and an initial guess un,(0)

h (μ), for k ≥ 0, find un,(k)
h (μ) ∈ R

Nh such that{
J(un,(k)

h (μ), tn;μ)un,(k)
h (μ) = −R(un,(k)

h (μ), tn;μ)

un,(k+1)
h (μ) = un,(k)

h (μ) + un,(k)
h (μ)

(3)

until suitable stopping criteria are fulfilled. Here, un,(k)
h (μ) represents the solution vector for

a fixed parameter μ computed at time step tn and Newton iteration k, while R ∈ R
Nh and
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J ∈ R
Nh×Nh denote the residual vector and the corresponding Jacobian matrix, respectively.

In particular, un,(0)
h (μ) is selected as the solution vector obtained at time tn−1 once Newton

iterations have converged. We refer to (3) as the high-fidelity, FOM for problem (1). In
particular, we rely on a Galerkin-FE method for space approximation, and consider implicit
finite difference schemes for time discretization, which do not require restrictions on�t [48].
The high-fidelity dimension Nh is determined by the underlying mesh and the chosen FE
polynomial order and can be extremely large in case of very fine meshes.

To reduce the FOM numerical complexity, we introduce a projection-based ROM, by
relying on the RB method [49]. The idea of the RB method is to suitably select N � Nh

vectors of RNh , forming the so-called RB matrix V ∈ R
Nh×N , and to generate a reduced

problem by performing a Galerkin projection of the FOM onto the subspace VN = Col(V) ⊂
R

Nh generated by these vectors. This method relies on the assumption that the reduced-order
approximation can be expressed as a linear combination of few, problem-dependent, basis
functions, that is

unh(μ) ≈ VunN (μ)

for n = 1, . . . , Nt , where unN (μ) ∈ R
N denotes the vector of the ROM-dofs at time tn ≥ 0.

The latter is obtained by imposing that the projection of the FOM residual computed on the
ROM solution is orthogonal to the trial subspace (in the case of a Galerkin projection): given
μ ∈ P , at each time tn , for n = 1, . . . , Nt , we seek unN (μ) ∈ R

N such that

VTR(VunN (μ), tn;μ) = 0.

From now on, we will denote the reduced residual VTR and the corresponding Jacobian
VT JV as RN and JN , respectively. Then, the associated reduced Newton problem at time tn

reads: given un,(0)
N (μ), for k ≥ 0, find un,(k)

N (μ) ∈ R
N such that{

JN (Vun,(k)
N (μ), tn;μ)un,(k)

N (μ) = −RN (Vun,(k)
N (μ), tn;μ),

un,(k+1)
N (μ) = un,(k)

N (μ) + un,(k)
N (μ),

(4)

until a suitable stopping criterion is fulfilled.

2.1 Solution-Space Reduction: Proper Orthogonal Decomposition

In this section we provide an overview of the proper orthogonal decomposition (POD) tech-
nique used to compute the reduced basis V through the so-called method of snapshots [8,
14]. Let

Muh = {unh(μ) ∈ R
Nh | μ ∈ P, n = 1, . . . , Nt }

be the (discrete) solution manifold identified by the image of uh , that is, the set of all the PDE
solutions forμ varying in the parameter space and tn in the partition of the time interval. Our
goal is to approximate Muh with a reduced linear manifold, the trial manifold

Mlin
uN = {VunN (μ) | unN (μ) ∈ R

N , μ ∈ P, n = 1, . . . , Nt }.
To do this, given ns < Nh sampled instances ofμ ∈ P , the snapshots matrix S is constructed
by collecting column-wise the FOM solution unh(μ�) at each time step n = 1, . . . , Nt , for
� = 1, . . . , ns , that is

S =
[
u1h(μ1) |. . .|uNt

h (μ1) |. . .|u1h(μns ) |. . .|uNt
h (μns )

]
∈ R

Nh×Ntns .
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Sampling can be performed, e.g., through a latin hypercube sampling design, as well as
through suitable low-discrepancy points sets. The POD basis V ∈ R

Nh×N spanning the
subspace VN is usually obtained by performing the singular value decomposition S = U6ZT

of S, and then collecting the first N columns of U, corresponding to the N largest singular
values stored in the diagonal matrix � = diag(σ1, . . . , σr ) ∈ R

ns×ns , with σ1 ≥ · · · ≥ σr ≥
0 and r ≤ Nh ∧ ns being the rank of S. This yields an orthonormal basis such that

‖S − VVT S‖2F = min
W∈RNh×N : WTW=IN

‖S − WWT S‖2F =
r∑

i=N+1

σ 2
i ,

where ‖·‖F is the Frobenius norm. Hence, singular values’ decay directly impacts on the size
N , which can be computed as the minimum integer satisfying

RIC(N ) =
∑N

�=1 σ 2
i∑r

�=1 σ 2
i

≥ 1 − ε2POD (5)

for a given tolerance εPOD > 0. In this work we exploit the so-called randomized-SVD,
which offers a powerful tool to perform low-rank matrix approximations when dealing with
massive datasets [34], such as high-dimensional snapshots matrices.

2.2 Hyper-Reduction: The Discrete Empirical InterpolationMethod

In the case of parametrized PDEs featuring nonaffine dependence on the parameter and/or
nonlinear (high-order polynomial or nonpolynomial) dependence on the field variable, a
further level of reduction, known as hyper-reduction, must be introduced [30, 42]. Note that
if nonlinearities only include quadratic (or, at most, cubic) terms and do not feature any
parameter dependence, assembling of nonlinear terms in the ROM can be performed by
projection of the corresponding FOM quantities, once and for all [28].

For the case at hand, the residual RN and the Jacobian JN appearing in the reduced
Newton system (4) depend on the solution at the previous iteration and, therefore, must be
computed at each step k ≥ 0. It follows that, for any new instance of the parameter μ, we
need to assemble the high-dimensional FOM-arrays before projecting them onto the reduced
subspace, entailing a computational complexitywhich is still of order Nh . To setup an efficient
offline–online computational splitting, an approximation of the nonlinear operators that is
independent of the high-fidelity dimension is required.

Several techniques have been employed to provide this further level of approximation [4,
6, 13, 15, 20]; among these, DEIM has been successfully applied to stationary or quasi-static
nonlinear mechanical problems [11, 27]. Its key idea is to replace the nonlinear arrays in
(4) with a collateral reduced basis expansion, computed through an inexpensive interpolation
procedure. In this framework, the high-dimensional residualR(μ) is projected onto a reduced
subspace of dimension m < Nh spanned by a basis �R ∈ R

Nh×m

R(μ) ≈ �Rr(μ),

where r(μ) ∈ R
m is the vector of the unknown amplitudes. The matrix �R can be precom-

puted offline by performing POD on a set of high-fidelity residuals collected when solving
(4) for n′

s training input parameters

Sρ =
[
R(Vun,(k)

N (μ�), t
n;μ�)), k ≥ 0

]�=1,...,n′
s

n=1,...,Nt
.
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Fig. 1 Sketch of a reduced mesh for an hexahedral computational grid in two dimensions. The red dots
represent the points selected by the DEIM algorithm and, together with the blue ones, yield the vertices of the
elements (light blue) of the reduced mesh (Color figure online)

The unknown parameter-dependent coefficient r(μ) is obtained online by collocating the
approximation at the m components selected by a greedy procedure, and requiring that, for
these components, PTR(μ) = PT�Rr(μ), so that

r(μ) = (PT�R)−1PTR(μ),

where P ∈ R
Nh×m is the boolean matrix associated with the interpolation constraints. We

thus define the hyper-reduced residual vector as

RN ,m(μ) := VT�R(PT�R)−1PTR(μ) ≈ RN ≡ VTR(μ).

Finally, the associated Jacobian approximation JN ,m(μ) can be computed as the derivative
of RN ,m(μ) with respect to the reduced displacement, obtaining

JN ,m(μ) = VT�R(PT�R)−1PT J(μ)V,

or relying on the MDEIM algorithm [42], see [11, 41].
However, the application of DEIM in the case of nonlinear time-dependent PDEs can be

rather inefficient, especially when turning to complex problem which require a high number
of residual basis (and, thus, of interpolation points) to ensure the convergence of the hyper-
reduced Newton system{

JN ,m(Vun,(k)
N (μ), tn;μ)un,(k)

N (μ) = −RN ,m(Vun,(k)
N (μ), tn;μ)

un,(k+1)
N (μ) = un,(k)

N (μ) + un,(k)
N (μ).

In fact, the m points selected by the DEIM algorithm correspond to a subset of nodes of
the computational mesh, which, together with the neighboring nodes (i.e. those sharing the
same cell), form the so-called reduced mesh; see, e.g., the sketch reported in Fig. 1. Since the
entries of any FE-vector are associated with the dofs of the problem, PTR(μ) is computed
by integrating the residual only on the quadrature points belonging to the elements forming
the reduced mesh, which, nevertheless, can be rather dense.

A modification of the DEIM algorithm, UDEIM, has been proposed in [54] to exploit
the sparsity of the problem and minimize the number of element function calls. However, a
high number of nonlinear function evaluations is still required when the number of magic
points is sufficiently large. Indeed, DEIM-based affine approximations are effective, in terms
of computational costs, provided that few entries of the nonlinear terms can be cheaply
computed; however, this situation does not occur neither for dynamical systems arising from
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the linearization of a nonlinear system around a steady state, nor when dealing with global
nonpolynomial nonlinearities.

In this paper, we propose an alternative technique to perform hyper-reduction, which
is independent of the underlying mesh and relies on a DNN architecture to approximate
reduced residual vectors and Jacobian matrices. The introduction of a surrogate model to
perform operator approximation is justified by the fact that, often, most of the CPU time
needed online for each new parameter instance is required by POD-Galerkin-DEIM ROMs
for assembling arrays such as residual vectors or corresponding Jacobian matrices on the
reduced mesh.

3 Operator Approximation: A Deep Learning-Based Technique
(Deep-HyROMnet)

To recover the offline–online efficiency of the RB method, overcoming the need to assemble
the nonlinear arrays onto the computational mesh as in the case of DEIM, we present a novel
projection-basedmethod which relies on DNNs for the approximation of the nonlinear terms.
We refer to this strategy as to a hyper-reduced order model enhanced by deep neural networks
(Deep-HyROMnet). Our goal is the efficient numerical approximation of the sets

MRN = {RN (Vun,(k)
N (μ), tn;μ) ∈ R

N | μ ∈ P, n = 1, . . . , Nt , k ≥ 0},
MJN = {JN (Vun,(k)

N (μ), tn;μ) ∈ R
N×N | μ ∈ P, n = 1, . . . , Nt , k ≥ 0},

which represents the reduced residual manifold and reduced Jacobianmanifold, respectively,
in a way that depends only on the ROM dimension N and on the number of parameters P .
To achieve this task, we employ the DNN architecture developed in [23] for the so-called
DL-ROM techniques. It is worthy to note that, except for the approximation error of the
reduced nonlinear operators, the proposed Deep-HyROMnet approach is a physics-based
method and that the computed solution satisfies the nonlinear equation of the problem at
hand, up to a further approximation of ROM residual and Jacobian arrays—thus, similarly to
what happened for a POD-Galerkin-DEIM ROM. The main idea of the deep learning-based
operator approximation approach that replaces DEIM in our new Deep-HyROMnet strategy,
is to learn the following input-to-residual and input-to-Jacobian maps, respectively:

ρN : (μ, tn, k) �−→ RN (Vun,(k)(μ), tn;μ),

ιN : (μ, tn, k) �−→ JN (Vun,(k)(μ), tn;μ),

provided (μ, tn, k) ∈ P × {t1, . . . , t Nt } × N
+ as inputs and to finally replace the linear

system in (4) with
ιN (μ, tn, k)un,(k)(μ) = −ρN (μ, tn, k).

Hence, we aim at approximating the residual vector and the Jacobian matrix obtained
after their projection onto the reduced space of dimension N � Nh . Indeed, performing
a Galerkin projection onto the POD solution space allows to severely reduce the problem
dimension from Nh to N and, hence, to ease the learning task with respect the reconstruction
of the full-order residual R and Jacobian J.

Remark 1 As an alternative to Newton iterative scheme, we can rely on Broyden’s method
[12], which belongs to the class of quasi-Newton methods. This allows to avoid the computa-
tion of the Jacobian matrix at each iteration k ≥ 0 by relying on rank-one updates, based on
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residuals computed at previous iterations. However, we are able to compute Jacobian matri-
ces very efficiently using automatic differentiation (AD), so that the computational burden is
the assembling of residual vectors. For this reason, in this paper we will focus on the Newton
method only, that is, the solution of problem (4).

To summarize, in the case of the Newton approach, we end up with the following reduced
problem: given μ ∈ P and, for n = 1, . . . , Nt , the initial guess u

n,(0)
N (μ) = un−1

N (μ), find

δun,(k)
N ∈ R

N such that, for k ≥ 0,

{
ιN (μ, tn, k)δun,(k)

N (μ) = −ρN (μ, tn, k),

un,(k+1)
N (μ) = un,(k)

N (μ) + δun,(k)
N (μ),

(6)

until ‖ρN (μ, tn, k)‖2/‖ρN (μ, tn, 0)‖2 < ε, where ε > 0 is a given tolerance. In Algo-
rithms 1 and 2, we report a summary of the offline and online stages of Deep-HyROMnet,
respectively.

Algorithm 1 Deep-HyROMnet, offline (training) stage.
INPUT: μ�, for � = 1, . . . , ns , and μ�′ , for �′ = 1, . . . , n′

s
OUTPUT: V ∈ R

Nh×N

1: for � = 1, . . . , ns do
2: for n = 1, . . . , Nt do
3: for k ≥ 0 until convergence do
4: Assemble and solve problem (3)

5: Collect Su ← Su ∪
[
un,(k)
h (μ�)

]
column-wise

6: Construct V = POD(Su , εPOD)

7: for �′ = 1, . . . , n′
s do

8: for n = 1, . . . , Nt do
9: for k ≥ 0 until convergence do
10: Assemble and solve reduced problem (4)

11: Collect Sρ ← Sρ ∪
[
RN (Vun,(k)

N (μ�′ ), tn; μ�′ )
]
column-wise

12: Collect Sι ← Sι ∪
[
JN (Vun,(k)

N (μ�′ ), tn; μ�′ )
]
column-wise

13: Train the DNNs (see Algorithm 3)

Algorithm 2 Deep-HyROMnet, online (testing) stage.
INPUT: μ ∈ P
OUTPUT: VunN (μ) ∈ R

Nh , for n = 1, . . . , Nt

1: for n = 0, . . . , Nt − 1 do
2: for k ≥ 0 until convergence do
3: Compute ρN (μ, tn , k) and ιN (μ, tn , k) (see Algorithm 4)
4: Solve hyper-reduced problem (6)
5: Recover VunN (μ), for n = 1, . . . , Nt
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3.1 Deep Neural Network Construction

For the sake of generality, we will focus on the DNN-based approximation of the reduced
residual vector only, that is

ρN (μ, tn, k) ≈ RN (Vun,(k)
N (μ), tn;μ) ∈ R

N .

In fact, by relying on a suitable transformation, we can easily write the Jacobian matrix as
a vector of dimension N 2 and apply to it the same procedure described in the following for
the residual vector. In particular, we define the transformation

vec : RN×N → R
N2

, vec(JN (Vun,(k)
N (μ), tn;μ)) = jN (Vun,(k)

N (μ), tn;μ),

which consists in stacking the columns of JN (Vun,(k)
N (μ), tn;μ) in a vector that is passed to

the DNN as training sample, thus obtaining

ι̃N (μ, tn, k) ≈ jN (Vun,(k)
N (μ), tn;μ) ∈ R

N2
.

Finally, the vec operation is reverted, so that ιN (μ, tn, k) = vec−1(̃ιN (μ, tn, k)).
We thus aim at efficiently approximating the whole set MRN by means of the reduced

residual trial manifold, defined as

MρN = {ρN (μ, tn, k) | μ ∈ P, n = 1, . . . , Nt , k ≥ 0} ⊂ R
N .

The approximation of the ROM residual RN (Vun,(k)
N (μ), tn;μ) takes the form

ρN (μ, tn, k) = R̃N (μ, tn, k; θDF , θD) = fDN (φDF
q (μ, tn, k; θDF ); θD)

where:

– φDF
q (· ; θDF ) : RP+2 → R

q such that

φDF
q (μ, tn, k; θDF ) = Rq(μ, tn, k; θDF )

is a deep feedforward neural network (DFNN), consisting in the subsequent composition
of a nonlinear activation function, applied to a linear transformation of the input, multi-
ple times. Here, θDF denotes the vector of parameters of the DFNN, collecting all the
corresponding weights and biases of each layer and q is as close as possible to the input
size P + 2;

– fDN (· ; θD) : Rq → R
N such that

fDN (Rq(μ, tn, k; θDF ); θD) = R̃N (μ, tn, k; θDF , θD)

is the decoder function of a convolutional autoencoder (CAE), obtained as the compo-
sition of several layers (some of which are convolutional), depending upon a vector θD

collecting all the corresponding weights and biases.

The encoder function of the CAE is exploited, during the training stage only, to map the
reduced residual RN (Vun,(k)

N (μ), tn;μ) associated to (μ, tn, k) onto a low-dimensional rep-
resentation

fEq (RN (Vun,(k)
N (μ), tn;μ); θ E ) = R̃q(μ, tn, k; θ E ),

where fEq (· ; θ E ) : RN → R
q denotes the encoder function, depending upon a vector θ E

of parameters. The choice of a CAE is due to the fact that, thanks to the shared parameters
and local connectivity properties which allow to reduce the numbers of parameters of the
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Fig. 2 DNN architecture for the approximation of the reduced residual vector. A similar architecture is con-
sidered to approximate the reduced Jacobian matrix

network and the number of associated computations, convolutional layers are better suited
than dense layers to handle high-dimensional correlated data.

Remark 2 We point out that the input of the encoder function—that is, the reduced residual
vector RN—is reshaped into a square matrix by rewriting its elements in row-major order,
thus obtaining Rreshape

N ∈ R

√
N×√

N . If N is not a square, the input RN is zero-padded as
explained in [29], and the additional elements are subsequently discarded.

Regarding the prediction of the reduced residual for new unseen instances of the inputs,
computing ρN (μtest , t

n, k) for any givenμtest ∈ P , and for any possible n = 1, . . . , Nt , k ≥
0, corresponds to the testing stage of a DFNN and of the decoder function of a convolutional
AE. Thus, we discard the encoder function at testing time. The architecture used during the
training stage is reported in Fig. 2; only the block highlited in the inner (red) box is then used
during the testing phase.

Let M ∈ R
(P+2)×Ntrain , with Ntrain = n′

s Nt Nk , be the parameter matrix of the input
triples, i.e.

M = [(
μ�, t

n, k
)]

�=1,...,n′
s ,n=1,...,Nt ,k≥0 .

The corresponding training dataset for ρN is given by the reduced residual snapshots matrix
Sρ ∈ R

N×Ntrain defined as

Sρ = [RN (Vu1,(1)N (μ1), t
1;μ1)| . . . |RN (Vu

1,(Nk1 )

N (μ1), t
1;μ1)|

RN (Vu2,(1)N (μ1), t
2;μ1)| . . . |RN (Vu

2,(Nk2 )

N (μ1), t
2;μ1)|

...

RN (VuNt ,(1)
N (μn′

s
), t Nt ;μn′

s
)| . . . |RN (Vu

Nt ,(Nkn′
s
)

N (μn′
s
), t Nt ;μn′

s
) ]

=
[
RN (Vun,(k)

N (μ), tn;μ�)
]
�=1,...,n′

s ,n=1,...,Nt ,k≥0
,

that is, by thematrix collecting column-wise ROM residuals computed for n′
s sampled param-

etersμ� ∈ P , at different time instances t1, . . . , t Nt and for each Newton iteration k ≥ 0. The
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training stage consists in solving the following optimization problem in the weights variable
θ = (θ E , θDF , θD):

J (θ) = 1

Ntrain

n′
s∑

�=1

Nt∑
n=1

Nk∑
k=0

L(μ�, t
n, k; θ) → min

θ

where

L(μ�, t
n, k; θ) = 1

2
‖RN (Vun,(k)

N (μ�), t
n;μ�) − R̃N (μ�, t

n, k; θDF , θD)‖2

+ 1

2
‖R̃q(μ�, t

n, k; θ E ) − Rq(μ�, t
n, k; θDF )‖2.

(7)

The loss function (7) combines the reconstruction error, i.e. the error between the ROM
residual and the corresponding DNN approximation, and the error between the intrinsic
coordinates and the output of the encoder. The training stage of the DNN involved in Deep-
HyROMnet is detailed in Algorithm 3; in particular, we denote by α the training-validation
splitting fraction, by η the starting learning rate of the ADAM optimizer, by Nb the batch
size, by nb = (1−α)Ntrain/Nb the number of minibatches and by Ne the maximum number
of epochs. We recall that the total number of training samples is given by Ntrain = n′

s Nt Nk .
The testing stage of the DNN is detailed in Algorithm 4. As suggested by [23, 24], we set
α = 8 : 2, η = 10−4, Nb = 20 and Ne = 104. To avoid overfitting, we employ the
early-stopping regularization technique [29], that is, we stop the training if (and when) the
loss evaluated on the validation set does not decrease over 500 epochs. Regarding the NN
architecture, a 12-layer DFNN with 50 neurons per hidden layer and q neurons in the output
layer is employed, where q is problem-dependent and set equal to the intrinsic dimension,
i.e. q = P + 2 (the time instant and the Newton iteration are considered as additional
parameters); further details about the CAE architecture are summarized in Tables 1 and 2.
In all cases, except for the last convolutional layer of the decoder, we consider the ELU
nonlinear activation function [18], selected by assessing the impact of different activation
functions on the validation loss.

Remark 3 Differently from the min-max scaling used in [23, 24], we standardize the input
and output of the DNN as follows. After splitting the data into training and validation sets
according to a user-defined training-validation splitting fraction α,M = [

Mtrain,Mval
]
and

Sρ =
[
Strainρ ,Sval

ρ

]
, we define for each row of the training set the corresponding mean and

standard deviation

Table 1 Attributes of convolutional and dense layers of the encoder function of the CAE

Layer Input dimension Output dimension Kernel size # filters Stride Padding

1 [5,5] 8 1 SAME

2 [5,5] 16 2 SAME

3 [5,5] 32 2 SAME

4 [5,5] 64 2 SAME

5 N 64

6 64 q
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Table 2 Attributes of dense and transposed convolutional layers of the decoder function of the CAE

Layer Input dimension Output dimension Kernel size # filters Stride Padding

1 q 64

2 64 N

3 [5,5] 64 2 SAME

4 [5,5] 32 2 SAME

5 [5,5] 16 2 SAME

6 [5,5] 1 1 SAME

Algorithm 3 Training stage for the DNN, based on Algorithm 1 of [23]

INPUT: M ∈ R
(P+2)×Ntrain , Sρ ∈ R

N×Ntrain , α, η, Nb , nb , Ne , early-stopping criterion
OUTPUT: θ∗ = (θ∗

E , θ∗
DF , θ∗

D) (optimal)
1: Randomly shuffleM and S

2: Split data inM =
[
Mtrain ,Mval

]
and Sρ =

[
Strainρ , Sval

ρ

]
(according to α)

3: Normalize M and S according to (8)
4: Randomly initialize θ0 = (θ0E , θ0DF , θ0D)

5: ne = 0
6: while ¬early-stopping and ne ≤ Ne do
7: for k = 1, . . . , nb do
8: Sample a minibatch (Mbatch ,Sbatch) ⊂ (Mtrain ,Strain)

9: Sbatch = reshape(Sbatch)

10: S̃batchq (θ
nbne+k
E ) = fEq (Sbatch ; θ

nbne+k
E )

11: Sbatchq (θ
nbne+k
DF ) = φDF

q (Mbatch ; θ
nbne+k
DF )

12: S̃batchN (θ
nbne+k
DF , θ

nbne+k
D ) = fDN (Sbatchq (θ

nbne+k
DF ); θ

nbne+k
D )

13: S̃batchN = reshape(̃SbatchN )

14: Accumulate loss (7) on (Mbatch ,Sbatch) and compute ∇̂θJ
15: θnbne+k+1 = ADAM(η, ∇̂θJ , θnbne+k )

16: Repeat instructions 9-13 on (Mval ,Sval ) to evaluate early-stopping criterion
17: ne = ne + 1

Algorithm 4 Testing stage for the DNN, based on Algorithm 2 of [23]

INPUT: (μ, tn , k) ∈ P × {t1, . . . , t Nt } × N
+, (θ∗

DF , θ∗
D) (optimal)

OUTPUT: S̃N (i.e. ρN (μ, tn , k) or ιN (μ, tn , k))

1: Sq (θ∗
DF ) = φDF

q (μ, tn , k; θ∗
DF )

2: S̃N (θ∗
DF , θ∗

D) = fDN (Sq (θ∗
DF ); θ∗

D)

3: S̃N = reshape(̃SN )

Mi
mean = 1

Ntrain

Ntrain∑
j=1

Mtrain
i j , Mi

sd =

√√√√√ 1

Ntrain − 1

Ntrain∑
j=1

(Mtrain
i j − Mi

mean)
2,

so that parameters are normalized by applying the following transformation

Mtrain
i j �→ Mtrain

i j − Mi
mean

Mi
sd

, i = 1, . . . , P + 2, j = 1, . . . , Ntrain, (8)
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that is, each feature of the training parameter matrix is standardized. The same procedure
is applied to the training snapshots matrix Strainρ by replacing Mi∗ with Si∗, where ∗ ∈
{mean, sd} respectively. Transformation (8) is applied to the validation and testing sets as
well, but considering the mean and the standard deviation computed over the training set.
In order to rescale the reconstructed solution to the original values, we apply the inverse
transformation.

4 Numerical Results

In this section we assess the performances of the proposed Deep-HyROMnet strategy on dif-
ferent applications related to parametrized nonlinear time-dependent PDEproblems, focusing
on structural mechanics. In particular, we consider (1) a series of structural tests on a rect-
angular beam, with different loading conditions and a simple nonlinear constitutive law, and
then (2) a test case on an idealized left ventricle geometry, simulating cardiac contraction.

4.1 Nonlinear Elastodynamics

Let us consider a continuum body B embedded in a three-dimensional Euclidean space. For
a given parameter vector μ ∈ P , the displacement vector field

u(X, t;μ) = χ(X, t;μ) − X

relates the material position X of a particle in the reference configuration Ω0, which we
assume to coincide with the initial configuration, to its spatial position x in the current con-
figurationΩt at time t > 0, being χ(X, t;μ) = x the motion of the body. The corresponding
deformation gradient

F(X, t;μ) = ∂χ(X, t;μ)

∂X
= I + ∇0u(X, t;μ),

characterizes the change of material elements during motion, so that the change in volume
between the reference and the current configurations at time t > 0 is given by J (X, t;μ) =
det F(X, t;μ) > 0. The equation of motion for a continuous medium reads as follows:

ρ0∂
2
t u(X, t;μ) − ∇0 · P(F(X, t;μ)) = b0(X, t;μ), X ∈ Ω0, t > 0

where ρ0 is the density of the body, P(F) is the first Piola-Kirchhoff stress tensor and b0 is
an external body force. Proper boundary and initial conditions must be specified to ensure
the well-posedness of the problem. In addition, we need a constitutive equation for P, that is,
a stress-strain relationship describing the material behavior. Here, we consider hyperelastic
materials, for which the existence of a strain-energy density function W : Lin+ → R such
that

P(F) = ∂W(F)

∂F
is postulated. Note that, since F depends on the displacement u, we can equivalently write
P(F) or P(u).

The strong formulation of a general initial boundary-valued problem in elastodynamics
thus reads as follows: given a body force b0 = b0(X, t;μ), a prescribed displacement
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ū = ū(X, t;μ) and surface traction T̄ = T̄(X, t,N;μ), find the unknown displacement field
u(μ) : Ω0 × (0, T ] → R

3 so that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ0∂
2
t u(X, t;μ) − ∇0 · P(u(X, t;μ)) = b0(X, t;μ) in Ω0 × (0, T ]

u(X, t;μ) = ū(X, t;μ) on D
0 × (0, T ]

P(u(X, t;μ))N = T̄(X, t,N;μ) on N
0 × (0, T ]

P(u(X, t;μ))N + αu(X, t;μ) + β∂tu(X, t;μ) = 0 on R
0 × (0, T ]

u(X, 0;μ) = u0(X;μ), ∂tu(X, 0;μ) = u̇0(X;μ) in Ω0 × {0}

(9)

whereN is the outer normal unit vector and α, β ∈ R. The boundary of the reference domain
is partitioned such that D

0 ∪ N
0 ∪ R

0 = , with i
0 ∩ 

j
0 = ∅ for i, j ∈ {D, N , R}. This

equation is inherently nonlinear and additional source of nonlinearity is introduced in the
material law, i.e. when using a nonlinear strain-energy density function W = W(F), which
is often the case of engineering applications. For the sake of simplicity, in all test cases, we
neglect the body forces b0(μ) and consider zero initial conditions u0(μ) = u̇0(μ) = 0.
Regarding boundary conditions, we consider ū(μ) = 0 on the Dirichlet boundary D

0 and
always assume α = β = 0, so that we actually impose homogeneous Neumann conditions
on R

0 . Finally, the traction vector is given by

T̄(X, t,N;μ) = −g(t;μ)JF−TN,

where g(t;μ) represents an external load and will be specified according to the application
at hand. Finally, the residual in (2) is given by

R(unh(μ), tn;μ) :=
(

ρ0

�t2
M + 1

�t
F int

β + F int
α

)
unh(μ) + S(unh(μ))

−
(
2ρ0
�t2

M + 1

�t
F int

β

)
un−1
h (μ) + ρ0

�t2
Mun−2

h (μ) − Fext,n(μ),

for n = 1, . . . , Nt , where u0h(μ) and u−1
h (μ) are known for the initial condition, and

[M]i j =
∫

Ω0

ϕ j · ϕi dΩ,

[F int
β ]i j =

∫
R
0

β ϕ j · ϕi d, [F int
α ]i j =

∫
R
0

α ϕ j · ϕi d,

[S(unh(μ))]i =
∫

Ω0

P(unh(μ)) : ∇ϕi dΩ,

[Fext,n(μ)]i =
∫

N
0

T̄n(N;μ) · ϕi d +
∫

Ω0

bn0(μ) · ϕi dΩ,

for all i, j = 1, . . . , Nh , being {ϕi }Nh
i=1 a basis for the FE space.

As ameasure of accuracy of the reduced approximationswith respect to the FOMsolution,
we consider time-averaged L2-errors of the displacement vector, that are defined as follows:

εabs(μ) = 1

Nt

Nt∑
n=1

‖uh(·, tn;μ) − VuN (·, tn;μ)‖2,

εrel(μ) = 1

Nt

Nt∑
n=1

‖uh(·, tn;μ) − VuN (·, tn;μ)‖2
‖uh(·, tn;μ)‖2 .

(10)

123



   57 Page 16 of 37 Journal of Scientific Computing            (2022) 93:57 

Fig. 3 Rectangular beam geometry (left) and computational grid (right)

The CPU time ratio, that is the ratio between FOM and ROM computational times, is used
to measure efficiency, since it represents the speed-up offered by the ROM with respect
to the FOM. The code is implemented in Python in our software package pyfex, a Python
binding with the in-house Finite Element library lifex (https://lifex.gitlab.io/lifex), a high-
performance C++ library based on the deal.II (https://www.dealii.org) Finite Element
core [3]. Computations have been performed on a PC desktop computer with 3.70GHz Intel
Core i5-9600K CPU and 16GB RAM, except for the training of the DNNs and the prediction
of the reduced nonlinear operators that have been carried out on a Tesla V100 32GB GPU.

Furthermore, we introduce the following measures to evaluate the performance of the
DNNs during the training process:

εrel,RN = 1

n′
s Nt

n′
s∑

�=1

Nt∑
n=1

E(RN , R̃N ;μ�, t
n),

εrel,JN = 1

n′
s Nt

n′
s∑

�=1

Nt∑
n=1

E(vec(JN ), vec(̃JN );μ�, t
n),

(11)

for residual vectors and Jacobian matrices, respectively, where

E(w, w̃;μ�, t
n) =

⎛
⎝

√∑Nk�
k=1‖w(Vun,(k)

N (μ�), tn;μ�) − w̃(μ�, tn, k; θDF , θD)‖2√∑Nk�
k=1‖w(Vun,(k)

N (μ�), tn;μ�)‖2

⎞
⎠ .

4.2 Deformation of a Clamped Rectangular Beam

The first series of test cases represents a typical structural mechanical problem,with reference
geometry Ω̄0 = [0, 10−2] × [0, 10−3] × [0, 10−3] m3, reported in Fig. 3.

We consider a nearly-incompressible neo-Hookean material, which is characterized by
the following strain density energy function

W(F) = G

2
(I1 − 3) + K

4
((J − 1)2 + ln2(J )),

where G > 0 is the shear modulus, I1 = J− 2
3 det(C) and the latter term is needed to

enforce incompressibility, being the bulk modulus K > 0 the penalization factor. This choice
leads to the following first Piola-Kirchhoff stress tensor, characterized by a nonpolynomial
nonlinearity,
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P(F) = GJ− 2
3

(
F − 1

3
I1FT

)
+ K

2
J

(
J − 1 + 1

J
ln(J )

)
FT .

The beam is clamped at the left-hand side, that is, Dirichlet boundary conditions are imposed
on the left face x = 0, whilst a pressure load changing with the deformed surface orientation
is applied to the entire bottom face z = 0 (i.e. N

0 ). Homogeneous Neumann conditions are
applied on the remaining boundaries (i.e. R

0 with α = β = 0). As possible functions for the
external load g(t;μ), we choose

1. A linear function g(t;μ) = p̃ t/T ;

2. A triangular or hat function g(t;μ) = p̃

(
2t χ(

0, T2

](t) + 2(T − t) χ(
T
2 ,T

](t)
)
;

3. A step function g(t;μ) = p̃ χ(
0, T3

](t), so that the presence of the inertial term is not

negligible.

Here, p̃ > 0 is a parameter controlling the maximum load. The FOM is built on a hexahedral
mesh with 640 elements and 1025 vertices, resulting in a high-fidelity dimension Nh = 3075
(sinceQ1-FE are employed). The resulting computationalmesh in the reference configuration
is reported in Fig. 3.

The following sections are organized as follows: first, we analyze the accuracy and the
efficiency of the POD-Galerkin ROM without hyper-reduction with respect to the POD
tolerance εPOD , thus resulting in reduced subspaces of different dimensions N ∈ N. Then, for
a fixed basis V ∈ R

Nh×N , POD-Galerkin-DEIM approximation capabilities are investigated
for different sizes of the reducedmesh, associatedwith different values of theDEIM tolerance
εDE IM for the computation of the residual basis �R ∈ R

Nh×m . Finally, the performances of
Deep-HyROMnet are assessed and compared to those of DEIM-based hyper-ROMs.

4.2.1 Test Case 1: Linear Function for the Pressure Load

Let us consider the parametrized linear function

g(t;μ) = p̃ t/T ,

for the pressure load, describing a situation in which a structure is progressively loaded. We
choose a time interval t ∈ [0, 0.25] s and employ a uniform time step�t = 5×10−3 s for the
time discretization scheme, resulting in a total number of 50 time iterations. As parameters,
we consider:

– The shear modulus G ∈ [0.5 × 104, 1.5 × 104] Pa;
– The bulk modulus K ∈ [2.5 × 104, 7.5 × 104] Pa;
– The external load parameter p̃ ∈ [2, 6] Pa.
Given a training set of ns = 50 points generated from the three-dimensional parameter

spaceP through latin hypercube sampling (LHS), we compute the reduced basisV ∈ R
Nh×N

using the POD method with tolerance

εPOD ∈ {10−3, 5 × 10−4, 10−4, 5 × 10−5, 10−5, 5 × 10−6, 10−6}.
The corresponding reduced dimensions are N = 3, 4, 5, 6, 8, 9 and 15, respectively. In Fig. 4
we show the singular values of the snapshot matrix related to the FOM displacement uh ,
where a rapid decay of the plotted quantity means that a small number of RB functions is
needed to correctly approximate the FOM solution.
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Fig. 4 Test case 1. Decay of the
singular values of the FOM
solution snapshots matrix

Fig. 5 Test case 1. Average over 50 testing parameters of relative error εrel (left) and average speed-up (right)
of ROM without hyper-reduction

The average relative error εrel between the FOM and the POD-Galerkin ROM solutions
computed over a testing set of 50 randomly chosen parameters, different from the ones used
to compute the solution snapshots, is reported in Fig. 5, together with the CPU time ratio. The
approximation error decreases up to an order of magnitude when reducing the POD tolerance
εPOD from 10−3 to 10−6, corresponding to an increase of the RB dimension from N = 3 to
N = 15. Despite the low dimension of the POD space, the computational speed-up achieved
by the reduced model is negligible. This is due to the fact that the ROM still depends on
the FOM dimension Nh during the online stage. For this reason, we need to rely on suitable
hyper-reduction techniques.

For the construction of the hyper-reduced models, i.e. POD-Galerkin-DEIM ROMs and
Deep-HyROMnet, we first need to compute snapshots from the ROM solutions for given
parameter values and time instants, in order to build either the DEIM residual basis �R or
train the DNNs. To this goal, we choose a POD-Galerkin ROM with dimension N = 4,
yielding a good balance between accuracy and computational effort for the test case at hand,
and perform ROM simulations for a given set of n′

s = 200 parameter samples to collect
residual and Jacobian data. To investigate the impact of hyper-reduction on the ROM solution
error, we compute the DEIM basis �R for approximating the residual using different DEIM
tolerances,

εDE IM ∈ {10−3, 5 × 10−4, 10−4, 5 × 10−5, 10−5, 5 × 10−6, 10−6},
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Fig. 6 Test case 1. Average over 50 testing parameters of relative error εrel (left) and average speed-up (right)
of POD-Galerkin-DEIM with N = 4

Table 3 Test case 1. Computational data related to POD-Galerkin-DEIM with N = 4 and different values
of m

DEIM tolerance εDE IM 5 × 10−4 5 × 10−5 5 × 10−6

DEIM interpolation dofs m 25 33 43

Reduced mesh elements (total: 640) 86 115 168

Online CPU time 2.8 s 3.6 s 4.3 s

System construction [∗] 78% 83% 88%

System solution 0.16% 0.13% 0.09%

[∗] System construction for each Newton iteration 0.02 s 0.02 s 0.03 s

Residual assembling 89% 87% 88%

Jacobian computing through AD 0.6% 0.4% 0.5%

Computational speed-up ×9.4 ×7.3 ×6.0

Time-averaged L2(Ω0)-absolute error 3 × 10−5 2 × 10−5 2 × 10−5

Time-averaged L2(Ω0)-relative error 8 × 10−3 5 × 10−3 5 × 10−3

corresponding to m = 22, 25, 30, 33, 39, 43, 51, respectively, DEIM basis functions. Larger
tolerances were not sufficient to ensure the convergence of the Newton method for all consid-
ered combinations of parameters, so that higher speed-ups cannot be achieved by decreasing
the basis dimension m. The average relative error εrel is evaluated over the testing set and
plotted in Fig. 6, as well as the CPU time ratio. To compute the high-fidelity solutions, 26 s
are required in average, while a POD-Galerkin-DEIM ROM, with N = 4 and m = 22,
requires only 2.4 s, thus yielding a speed-up about 11 times compared to the FOM.

Data related to the performances of the POD-Galerkin-DEIM ROMs for N = 4 and
different values of m are shown in Table 3. The number of elements of the reduced mesh
represents a small percentage of the one forming the original grid, so that the cost related
to the residual assembling is remarkably alleviated. Nonetheless, it is evident how the main
computational bottleneck is the construction of the reduced system at each Newton iteration,
and in particular the assembling of the residual vector on the reduced mesh, which requires
between 78% and 88% of the total (online) CPU time. In particular, almost 90% of this com-
putational time is required for assembling the residual R(Vun,(k)

N (μ), tn;μ) on the reduced
mesh, while computing the associated Jacobian matrix using the AD tool takes less than 1%.
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Fig. 7 Test case 1. Evolution in time of the average L2(Ω0)-absolute error for N = 4 computed using Deep-
HyROMnet for different sizes of the training set (left) and that obtained using POD-Galerkin-DEIM and
Deep-HyROMnet (for n′

s = 200) hyper-ROMs (right)

The performances of Deep-HyROMnet are first analyzed by considering different sizes
of the training set, and then compared in terms of both accuracy and efficiency with those of
different POD-Galerkin-DEIM ROMs.

From the evolution of the L2(Ω)-absolute error displayed in Fig. 7 (left), averaged over
50 testing parameters values, we observe that relying on a training set of n′

s = 200 ROM
simulations results in an approximation accuracy up to two orders of magnitude higher than
the one obtained for n′

s = 100. On the other hand, further increasing the dimension of the
dataset, e.g. n′

s = 300, does not affect the results due to the fact that theNNarchitecture is kept
fixed and, consequently, the additional information becomes redundant. For this reason, we
focus on the results obtained with n′

s = 200, corresponding to the same training parameters
used for the construction of the DEIM bases.

The average of the absolute error εabs , the relative error εrel and the CPU time ratio are
reported in Table 4. Moreover, in Table 5 we report the relative errors (11) for the approxi-
mation of the reduced nonlinear arrays by means of the DNNs, computed on both training
and testing sets, showing that the approximation of the ROM residual is the most challeng-
ing task due to the higher variability of the data. In terms of efficiency, Deep-HyROMnets
outperform DEIM-based hyper-ROMs substantially, being almost 100 times faster than the
POD-Galerkin-DEIM ROM exploiting m = 22 DEIM basis functions, whilst achieving the
same accuracy for n′

s = 200. In particular, our Deep-HyROMnet approach allows us to
compute the reduced solutions in less than 0.02 s, thus yielding an overall speed-up of order
O(103) compared to the FOM.

The evolution of the L2(Ω0)-absolute error, averaged over the testing parameters, is
reported in Fig. 7 for both the reduction approaches considered. The final accuracy of the
hyper-ROMs equals that of the ROM without hyper-reduction, i.e. εrel ≈ 10−2, meaning
that the projection error dominates over the nonlinear operators approximation error. The
difference between the FOM and Deep-HyROMnet solutions at time T = 0.25 s is shown in
Fig. 8 in two scenarios.
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Table 4 Test case 1. Computational data related to POD-Galerkin-DEIM ROMs and Deep-HyROMnet, for
N = 4

POD-Galerkin- POD-Galerkin- Deep-HyROMnet
DEIM (m =22) DEIM (m =30)

Computational speed-up ×11 ×8 ×1300

Avg. CPU time 2 s 3 s 0.02 s

Time-avg. L2(Ω0)-abs. err. 7.4 × 10−5 1.9 × 10−5 7.7 × 10−5

Time-avg. L2(Ω0)-rel. err. 9.7 × 10−3 5.0 × 10−3 8.3 × 10−3

Table 5 Test case 1. Accuracy of
the DNNs predictions on training
and test sets

Training set error Test set error

εrel,RN 0.00835 0.00925

εrel,JN 0.00043 0.00093

Fig. 8 Test case 1. FOM (wireframe) and Deep-HyROMnet (colored) solutions at time T = 0.25 s for
μ = [1.3225×104 Pa, 3.9875×104 Pa, 3.43 Pa] (left) andμ = [0.6625×104 Pa, 5.8625×104 Pa, 4.89 Pa]
(right) (Color figure online)

Table 6 collects the offline CPU time required for building the POD basis and collecting
the ROM nonlinear operators, as well as the offline GPU time needed for training the DNN.
Moreover, we report the total offline computational time—assuming that the training stages
are run sequentially—and the break even point, that is the number of online FOM simulations
that make the construction of the ROM affordable. We recall that FOM and POD-Galerkin
ROM simulations are run in serial on a PC desktop computer with 3.70GHz Intel Core
i5-9600K CPU and 16GB RAM, whereas the DNN are trained on a Tesla V100 32GB GPU.

In order to improve the accuracy of the reduced solution, we should consider higher values
of the RB dimension N . Nonetheless, by increasing the number of the POD basis functions,
thus the size of the reduced nonlinear data, the task of the DNNs becomes more complex. As
a matter of fact, from the results reported in Fig. 9, we observe that more training samples
and a larger size of the neural networks are required when N increases, in order to achieve
comparable results with the ones obtained for smaller values of the POD dimension. In
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Table 6 Test case 1. Offline time
required for the construction of
the ROMs (for N = 4) and the
equivalence in terms of FOM
simulations

CPU time × ns (or n′
s )

FOM 26s×50

POD-Galerkin ROM 14.5 s×200

GPU time × #epochs

DNN for RN 2.7 s×5426

DNN for JN 2.8 s×8785

Offline time 12 h

break even point 1661 FOM simulations

Fig. 9 Test case 1. Evolution in time of the average L2(Ω0)-absolute error computed using Deep-HyROMnet
for different RB dimensions N (left) and different features of the DNNs, i.e. amount of training data and
architecture size (right)

particular, we have included an additional hidden layer in both the encoder and the decoder
of the CAE, and considered a larger numbers of neurons in the dense layers. To conclude,
we report in Table 7 the computational data associated with POD-Galerkin-DEIM and Deep-
HyROMnet hyper-ROMs when N = 8, but the same number of training snapshots and
the same DNN architectures of previous case (i.e. N = 4) are employed. As expected, the
POD-Galerkin-DEIM method is able to provide more accurate approximations of the FOM
solution by increasing the size m of the residual basis, albeit reducing the online speed-up
substantially.

4.2.2 Test Case 2: Hat Function for the Pressure Load

Let us now consider a piecewise linear pressure load given by

g(t;μ) = p̃

(
2
t

T
χ(

0, T2

](t) + 2
T − t

T
χ(

T
2 ,T

](t)
)

,

describing the case in which a structure is increasingly loaded until a maximum pressure is
reached, and then linearly unloaded in order to recover the initial resting state. For the case
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Table 7 Test case 1. Computational data related to POD-Galerkin-DEIM ROMs and Deep-HyROMnet, for
N = 8

POD-Galerkin- POD-Galerkin- Deep-HyROMnet
DEIM (m =29) DEIM (m =51)

Computational speed-up ×8 ×5 ×949

Avg. CPU time 3 s 5 s 0.027 s

Time-avg. L2(Ω0)-abs. err. 2.6 × 10−5 3.9 × 10−6 9.0 × 10−5

Time-avg. L2(Ω0)-rel. err. 1.1 × 10−2 6.0 × 10−4 8.1 × 10−3

Significance values are in bold

Fig. 10 Test case 2. Decay of the
singular values of the FOM
solution

at hand, we choose t ∈ [0, 0.35] s and �t = 5 × 10−3 s, resulting in a total number of 70
time steps. As parameter, we consider the external load parameter p̃ ∈ [2, 12] Pa; the shear
modulus G and the bulk modulus K are fixed to 104 Pa and 5× 104 Pa, respectively. Let us
consider a training set of ns = 50 points generated from P = [2, 12] Pa through LHS and
build the RB basis V ∈ R

Nh×N with N = 4, corresponding to εPOD = 10−4. The singular
values of the solution snapshots matrix are reported in Fig. 10.

Given the Galerkin-ROM nonlinear data collected for n′
s = 300 sampled parameters,

different DEIM residual bases �R are computed using different tolerances

εDE IM ∈ {10−3, 5 × 10−4, 10−4, 5 × 10−5, 10−5, 5 × 10−6, 10−6},

corresponding to m = 14, 16, 22, 24, 29, 31, 37 DEIM basis functions, respectively. Toler-
ances εDE IM larger than the values reported above were not sufficient to ensure convergence
of the Newton method for all the considered parameters.

The relative error εrel , evaluated over a testing set of 50 parameters, is about 10−2 when
usingm = 14 residual basis functions, and can be further reduced of one order of magnitude
when increasing the DEIM dimension to m = 29, albeit highly decreasing the CPU time
ratio, as shown in Fig. 11.

Table 8 shows the comparison between the POD-Galerkin-DEIM (with m = 14 and
m = 29) and the Deep-HyROMnet hyper-reduced models on a testing set of 50 param-
eter instances. As observed in the previous test case, Deep-HyROMnet is able to achieve
good results in terms of accuracy, comparable with the fastest POD-Galerkin-DEIM ROM
(m = 14), at a greatly reduced cost. Also in this case, the speed-up achieved by our Deep-
HyROMnet is of order O(103) with respect to the FOM, since less than 0.04 s are needed to
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Fig. 11 Test case 2. Average over 50 testing parameters of relative error εrel (left) and average speed-up (right)
of POD-Galerkin-DEIM with N = 4

Table 8 Test case 2. Computational data related to POD-Galerkin-DEIM ROMs and Deep-HyROMnet, for
N = 4

POD-Galerkin- POD-Galerkin- Deep-HyROMnet
DEIM (m = 14) DEIM (m = 29)

Computational speed-up ×14 ×9 ×1153

Avg. CPU time 3 s 5 s 0.035 s

Time-avg. L2(Ω0)-abs. err. 9.0 × 10−5 6.8 × 10−6 2.0 × 10−4

Time-avg. L2(Ω0)-rel. err. 1.5 × 10−2 1.4 × 10−3 1.7 × 10−2

Significance values are in bold

Fig. 12 Test case 2. Evolution in
time of the average
L2(Ω0)-absolute error for N = 4
computed using
POD-Galerkin-DEIM and
Deep-HyROMnet

compute the reduced solution for each new instance of the parameter, against a time of about
40 s required by the FOM, and of (at least) 3 s required by POD-Galerkin-DEIM ROMs.

The evolution in time of the average L2(Ω0)-absolute error for the POD-Galerkin-
DEIM and the Deep-HyROMnet models is shown in Fig. 12. The accuracy obtained using
Deep-HyROMnet, although slightly lower than the ones achieved using a DEIM-based
approximation, is satisfying in all the considered scenarios. Figure 13 shows the FOM and
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Fig. 13 Test case 2. FOM (wireframe) and Deep-HyROMnet (colored) solutions computed at different times
for μ = [10.7375 Pa] (Color figure online)

Table 9 Test case 2. Offline time
required for the construction of
the ROMs and the equivalence in
terms of FOM simulations

CPU time × ns (or n′
s )

FOM 40s×50

POD-Galerkin ROM 22s×300

GPU time × #epochs

DNN for RN 6.2 s×6367

DNN for JN 6.5 s×4899

Offline time 13 h 21 min

Break even point 1202

the Deep-HyROMnet displacements at different time instances obtained for a given testing
parameter.

We finally report in Table 9 the offline CPU and GPU times required for the test case at
hand.

4.2.3 Test Case 3: Step Function for the Pressure Load

As last test case for the beam geometry, we consider a pressure load acting on the bottom
surface area for only a third of the whole simulation time, that is

g(t;μ) = p̃ χ(
0, T3

](t),
such that the resulting deformation features oscillations. This case is of particular interest
in nonlinear elastodynamics, since the inertial term cannot be neglected, as it has a crucial
impact on the deformation of the body. For the case at hand, we choose t ∈ [0, 0.27] s and
a uniform time step �t = 3.6 × 10−3 s, resulting in a total number of 75 time iterations.
Concerning the input parameters, we vary the external load p̃ ∈ [2, 12] Pa and consider
G = 104 Pa and K = 5 × 104 Pa fixed.

We build the POD basis V ∈ R
Nh×N from a training set of ns = 50 FOM solutions

using εPOD = 10−3, obtaining also in this case a reduced dimension of N = 4, and perform
POD-Galerkin ROM simulations for a given set of n′

s = 300 parameter samples to collect the
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Fig. 14 Test case 3. Average over 50 testing parameters of relative error εrel (left) and average speed-up (right)
of POD-Galerkin-DEIM with N = 4

Table 10 Test case 3. Computational data related to POD-Galerkin-DEIM ROMs and Deep-HyROMnet, for
N = 4

POD-Galerkin- POD-Galerkin- Deep-HyROMnet
DEIM (m = 18) DEIM (m = 38)

Computational speed-up ×12 ×6 ×1350

Avg. CPU time 4 s 8 s 0.038 s

Time-avg. L2(Ω0)-abs. err. 2.4 × 10−3 1.3 × 10−4 4.8 × 10−4

Time-avg. L2(Ω0)-rel. err. 6.7 × 10−1 2.4 × 10−2 1.0 × 10−1

Significance values are in bold

nonlinear terms data necessary for the construction of both POD-Galerkin-DEIM and Deep-
HyROMnet models. The DEIM basis �R for the approximation of the residual is computed
using as tolerances

εDE IM ∈ {10−3, 5 × 10−4, 10−4, 5 × 10−5, 10−5, 5 × 10−6, 10−6},

where εDE IM = 10−3 is the larger tolerance that ensures the convergence of the reduced
Newton algorithm for all testing parameters. The corresponding number of bases for R is
m = 18, 20, 27, 30, 38, 40, 50, respectively. The results regarding the average relative error
εrel and the computational speed-up, evaluated over 50 instances of the parameter, are shown
in Fig. 14.

Like for the previous test cases, we compare POD-Galerkin-DEIM and Deep-HyROMnet
ROMs, with respect to the displacement error and the CPU time ratio.

As reported in Table 10, DNNs outperform DEIM substantially in terms of efficiency
also in this case when handling the nonlinear terms. Indeed, Deep-HyROMnet yields a ROM
that is more than 1000 times faster than the FOM (this latter requiring 51 s in average to be
solved), still providing satisfactory results in terms of accuracy.

In Fig. 15 the Deep-HyROMnet solution at different time instants for two different values
of the parameter is shown, highlighting that our hyper-ROM is able to correctly capture the
nonlinear behavior of the continuum body also when the inertial term cannot be neglected.
Table 11 reports the offline times required for the construction of the ROMs in the present
case.
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Fig. 15 Test case 3. FOM (wireframe) and Deep-HyROMnet (colored) solutions computed at different times
(Color figure online)

Table 11 Test case 3. Offline
time required for the construction
of the ROMs and the equivalence
in terms of FOM simulations

CPU time × ns (or n′
s )

FOM 51s×50

POD-Galerkin ROM 29s×300

GPU time × #epochs

DNN for RN 8.0 s×4993

DNN for JN 8.2 s×3441

Offline time 14 h 13 min

Break even point 1004

4.3 Passive Inflation and Active Contraction of an Idealized Left Ventricle

The second problem we are interested in is the inflation and contraction of a prolate spheroid
geometry representing an idealized left ventricle (see Fig. 16) where the boundaries R

0 ,
N
0 and D

0 represent the epicardium, the endocardium and the base of a left ventricle,
respectively, the latter being the artificial boundary resulting from truncation of the heart
below the valves in a short axis plane. We consider transversely isotropic material properties
for the myocardial tissue, adopting a nearly-incompressible formulation of the constitutive
law proposed in [31], whose strain-energy density function is given byW(F) = C

2 (eQ(F)−1),
with the following form for Q to describe three-dimensional transverse isotropy with respect
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Fig. 16 Passive inflation and active contraction of an idealized left ventricle. Idealized truncated ellipsoid
geometry (left) and computational grid (right)

to the fiber coordinate system,

Q = b f E
2
f f + bs E

2
ss + bnE

2
nn + b f s(E

2
f s + E2

s f ) + b f n(E
2
f n + E2

n f ) + bsn(E
2
sn + E2

ns).

here Ei j , i, j ∈ { f , s, n}, are the components of the Green-Lagrange strain tensor E =
1
2 (F

TF − I), the material constant C > 0 scales the stresses and the coefficients b f , bs , bn
are related to the material stiffness in the fiber, sheet and transverse directions, respectively.
This leads to a (passive) first Piola-Kirchhoff stress tensor characterized by exponential
nonlinearity. In order to enforce the incompressibility constraint, we consider an additional
termWvol(J ) in the definition of the strain-energy density function, which must grow as the
deformation deviates from being isochoric. A common choice forWvol is a convex function
with null slope in J = 1, e.g.,

Wvol(J ) = K

4
((J − 1)2 + ln2(J )),

where the penalization factor is the bulk modulus K > 0. Furthermore, to reproduce the
typical twisting motion of the ventricular systole, we need to take into account a varying
fiber distribution and contractile forces. The fiber direction is computed using the rule-
based method proposed in [51], which depends on parameter angles αepi and αendo. Active
contraction is modeled through the active stress approach [1], so that we add to the passive
first Piola-Kirchoff stress tensor a time-dependent active tension, which is assumed to act
only in the fiber direction

P =
(

∂W(F)

∂F
+ ∂Wvol(J )

∂F

)
+ Ta(t)(Ff0 ⊗ f0),

where f0 ∈ R
3 denotes the reference unit vector in the fiber direction and Ta is a parametrized

function that surrogates the active generation forces. In our case, since we are modeling only
the systolic contraction, we define

Ta(t) = T̃a t/T , t ∈ (0, T ),

with T̃a > 0. To model blood pressure inside the chamber we assume a linearly increasing
external load

g(t;μ) = p̂ t/T , t ∈ (0, T ).
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Fig. 17 Passive inflation and
active contraction of an idealized
left ventricle. Decay of the
singular values of the FOM
solution snapshots matrix

Since we want to assess the performance of Deep-HyROMnet in enhancing the
myocardium contraction problem, we consider as unknown parameters those related to the
active components of the strain-energy density function:

– The maximum value of the active tension T̃a ∈ [49.5 × 103, 70.5 × 103] Pa, and
– The fiber angles αepi ∈ [−105.5,−74.5]◦ and αendo ∈ [74.5, 105.5]◦.

All other parameters are fixed to the reference values taken from [38], namely b f = 8,
bs = bn = bsn = 2, b f s = b f n = 4, C = 2 × 103 Pa, K = 50 × 103 Pa and p̃ =
15 × 103. Regarding time discretization, we choose t ∈ [0, 0.25] s and a uniform time step
�t = 5 × 10−3 s, resulting in a total number of 50 time iterations. The FOM is built on a
hexahedral mesh with 4804 elements and 6455 vertices, depicted in Fig. 16, corresponding
to a high-fidelity dimension Nh = 19365, since Q1-FE (that is, linear FE on a hexahedral
mesh) are used. In this case, the FOM requires almost 360 s to compute the solution dynamics
for each parameter instance.

Given ns = 50 points obtained by sampling the parameter space P , we construct the
corresponding solution snapshots matrix Su and compute the POD basis V ∈ R

Nh×N using
the POD method with tolerance

εPOD ∈ {10−3, 5 × 10−4, 10−4, 5 × 10−5, 10−5, 5 × 10−6, 10−6}.
From Fig. 17, we observe a slower decay of the singular values of Su with respect to the
structural problems of Sect. 4.2. In fact, we obtain larger reduced basis dimensions N = 16,
22, 39, 50, 87, 109 and 178, respectively.

The error and the CPU speed-ups averaged over a testing set of 20 parameters are both
shown in Fig. 18, as functions of the POD tolerance εPOD .

Also in this case, the speed-up achieved by the ROM is negligible, since at each Newton
iteration without hyper-reduction the ROM still depends on the high-fidelity dimension Nh .
For what concerns the approximation error, we observe a reduction of almost two orders of
magnitude when going from N = 16 to N = 178. The fact that greater POD dimension with
respect to the previous test cases are now obtained, allows us to assess the performances of
the Deep-HyROMnet approach both on small and large values of N .

Given the reduced basis V ∈ R
Nh×N with N = 16, we construct the POD-Galerkin-

DEIM approximation by considering n′
s = 200 parameter samples. Fig. 19 shows the

decay of the singular values of SR , that is, the snapshots matrix of the residual vectors
R(Vun,(k)

N (μ�′), tn;μ�′). We observe that the reported curve decreases very slowly, so that
we expect that a large number of basis functions is required to correctly approximate the
nonlinear operators.
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Fig. 18 Passive inflation and active contraction of an idealized left ventricle.Average over 20 testing parameters
of relative error εrel (left) and average speed-up (right) of ROM without hyper-reduction

Fig. 19 Passive inflation and
active contraction of an idealized
left ventricle. Decay of the
singular values of the ROM
residual snapshots matrix

In fact, by computing �R ∈ R
Nh×m using the following DEIM tolerances,

εDE IM ∈ {5 × 10−4, 10−4, 5 × 10−5, 10−5, 5 × 10−6, 10−6},
we obtain m = 303, 456, 543, 776, 902 and 1233, respectively. Higher values of εDE IM

(related to smaller dimensions m) were not sufficient to guarantee the convergence of the
reduced Newton problem for all testing parameters. The average relative error over a set of
20 parameters and the computational speed-up are both reported in Fig. 20. In particular, we
observe that the relative error is between 4×10−3 and 8×10−3, as we could expect from the
projection error reported in Fig. 18, that is, POD-Galerkin-DEIM ROMs are able to achieve
the same accuracy of the ROM without hyper-reduction.

The data reported in Table 12 leads to the same conclusions regarding the computational
bottleneck of DEIM technique as those reported in Table 3. In fact, assembling the residual
on the reduced mesh requires around 85% of the online CPU time, thus undermining the
hyper-ROM efficiency.

Finally, Table 13 reports the computational data of POD-Galerkin-DEIM ROMs (for a
number of magic points equals to m = 303 and m = 543) and Deep-HyROMnet, clearly
showing that the latter outperforms the classical reduction strategy regarding the computa-
tional speed-up. In fact, Deep-HyROMnet is able to approximate the solution dynamics in
0.1 s, that is even faster than real-time given the timescale of the phenomenon at hand, while
a POD-Galerkin-DEIM ROM requires 1 min in average, where the final simulation time T
is set equal to 0.25 s. The offline CPU and GPU times are reported in Table 14. Although the
Deep-HyROMnet error is slightly larger than the one obtained with a DEIM-based hyper-
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Fig. 20 Passive inflation and active contraction of an idealized left ventricle.Average over 20 testing parameters
of relative error εrel (left) and average speed-up (right) of POD-Galerkin-DEIM ROMs with N = 16

Table 12 Passive inflation and active contraction of an idealized left ventricle

DEIM tolerance εDE IM 5 × 10−4 5 × 10−5 5 × 10−6

DEIM interpolation dofs m 303 543 902

Reduced mesh elements (total: 4804) 914 1345 1855

Online CPU time 58 s 81 s 110 s

System construction [∗] 89% 93% 94%

System solution 0.01% 0.01% 0.01%

[∗] System construction for each Newton iteration 0.4 s 0.6 s 0.9 s

Residual assembling 94% 94% 94%

Jacobian computing through AD 0.24% 0.24% 0.26%

Computational speed-up ×6.2 ×4.5 ×3.3

Time-averaged L2(Ω0)-absolute error 1 × 10−3 6 × 10−4 6 × 10−4

Time-averaged L2(Ω0)-relative error 7 × 10−3 5 × 10−3 5 × 10−3

Computational data related to POD-Galerkin-DEIM with N = 16 and different values of m

Table 13 Passive inflation and active contraction of an idealized left ventricle

POD-Galerkin- POD-Galerkin- Deep-HyROMnet
DEIM (m = 303) DEIM (m = 543)

Computational speed-up ×6 ×5 ×3554

Avg. CPU time 58 s 75 s 0.1 s

Time-avg. L2(Ω0)-abs. err. 1.3 × 10−3 6.6 × 10−4 1.5 × 10−2

Time-avg. L2(Ω0)-rel. err. 7.5 × 10−3 5.0 × 10−3 6.4 × 10−2

Significance values are in bold
Computational data related to POD-Galerkin-DEIM ROMs and Deep-HyROMnet, for N = 16

ROM (see Fig. 21), the results are satisfactory in terms of accuracy. In Fig. 22 the FOM
and the Deep-HyROMnet displacements at time T = 0.25 s are reported for three different
values of the parameters, together with the error between the high-fidelity and the reduced
solutions.

Table 15 reports the accuracy of the prediction on the interpolation functions, showing
that the error on the reduced Jacobian matrix JN is of the same order of the corresponding
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Table 14 Passive inflation and
active contraction of an idealized
left ventricle. Offline time
required for the construction of
the ROMs and the equivalence in
terms of FOM simulations

CPU time × ns (or n′
s )

FOM 360s×50

POD-Galerkin ROM 240s×200

GPU time × #epochs

DNN for RN 4.0 s×10080

DNN for JN 8.0 s×8615

Offline time 2 d 40 min

Break even point 487

Fig. 21 Passive inflation and
active contraction of an idealized
left ventricle. Evolution in time
of the average L2(Ω0)-absolute
error computed using
POD-Galerkin-DEIM ROMs and
Deep-HyROMnet, for N = 16

reduced residual vector RN and one order of magnitude higher than in test case 4.2. This
fact might be due to several issues, such as the larger dimension of the input, i.e., N 2 = 256
instead of N 2 = 16, the smaller size of the training set, and the overall increased complexity
of the problem, either in the constitutive law and the geometry.

To conclude, we assess the performances of Deep-HyROMnet on a problem involving a
higher FOMdimension.We still consider the test case described in this Section, however using
a finer hexahedral mesh with 9964 elements and 13025 vertices, thus obtaining Nh = 39075
as FOM dimension. In this case, about 13 minutes are required to compute the high-fidelity
solution. On the other hand, a reduced basis of dimension N = 16 is computed for εPOD =
10−3; the computational data, averagedover a testing set of 20 parameter samples, are reported
in Table 16. The online CPU time required by Deep-HyROMnet doubles as we double Nh ,
despite the same POD dimension N = 16 has been selected, and the same level of accuracy
is obtained. This mild dependence of our hyper-ROM on the FOM dimension Nh is due to
the reconstruction of the reduced solutions VunN (μ), for n = 1, . . . , Nt , whereas the same
computational time is required for the online assembling and solution of the reduced Newton
systems. Nonetheless, the overall computational speed-up of Deep-HyROMnet increases as
Nh grows, while the number N of reduced basis function remains small, so that reduced
solutions can be computed extremely fast.
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Fig. 22 Passive inflation and active contraction of an idealized left ventricle. FOM (wireframe) and
Deep-HyROMnet (colored) displacements (frontal view on top, lateral view in the middle) and corre-
sponding difference (bottom) at time T = 0.25 s for μ = [61942.5 Pa, −77.5225◦, 87.9075◦] (left),
μ = [59737.5 Pa,−102.3225◦, 91.1625◦] (center) and μ = [50497.5 Pa,−100.9275◦, 80.0025◦] (right)
(Color figure online)

Table 15 Passive inflation and
active contraction of an idealized
left ventricle

On training set On test set

εrel,RN 0.00342 0.00633

εrel,JN 0.00199 0.00331

Accuracy of the DNNs predictions on training and test sets

5 Conclusions

In this work we have addressed the solution to parametrized, nonlinear, time-dependent
PDEs arising in elastodynamics, by means of a new projection-based ROM, developed to
accurately capture the state solution dynamics at a reduced computational cost with respect to
high-fidelity FOMs. We focused on Galerkin-RB methods, characterized by a projection of
the differential problem onto a low-dimensional subspace built, e.g., by performing POD on a
set of FOMsolutions, and by the splitting of the reduction procedure into a costly offline phase
and an inexpensive online phase. Numerical experiments showed that, despite their highly
nonlinear nature, elastodynamics problems can be reduced by exploiting projection-based
strategies in an effective way, with POD-Galerkin ROMs achieving very good accuracy even
in presence of a handful of basis functions. However, when dealing with nonlinear problems,
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Table 16 Passive inflation and
active contraction of an idealized
left ventricle

Deep-HyROMnet

Nh 19, 365 39, 075

FOM time 5 min 54 s 13 min 01 s

N 16

Speed-up ×3554 ×3886

Avg. CPU time 0.1 s 0.2 s

Time-averaged L2(Ω0)-abs. err. 1.5 × 10−2 2.7 × 10−2

Time-averaged L2(Ω0)-rel. err. 6.4 × 10−2 8.3 × 10−2

Significance of values are in bold
Computational data related to Deep-HyROMnet for Nh = 19, 365 and
Nh = 39, 075

a further level of approximation is required to make the online stage independent of the
high-fidelity dimension.

Hyper-reduction techniques, such as DEIM, are necessary to efficiently handle the non-
linear operators. However, a serious issue is represented by the assembling (albeit onto a
reduced mesh) of the approximated nonlinear operators in this framework. This observa-
tion suggested the idea of relying on surrogate models to perform operator approximation,
overcoming the need to assemble the nonlinear terms onto the computational mesh. Pur-
suing this strategy, we have proposed a new projection-based, deep learning-based ROM,
Deep-HyROMnet, which combines the Galerkin-RB approach with DNNs to assemble the
reduced Newton system in an efficient way, thus avoiding the computational burden entailed
by classical hyper-reduction strategies. This approach allows to rely on physics-based ROMs
retaining the underlying structure of the physical model, as DNNs are employed only for the
approximation of the reduced nonlinear operators. Regarding the offline cost of this hybrid
reduction strategy, we point out that:

– FOM solutions are only required to build the POD-Galerkin ROM;
– A small number N of reduced basis functions is sufficient to accurately approximate

the high-fidelity solution manifold, so that the arising reduced nonlinear systems can be
solved efficiently;

– Since data on nonlinear operators are collected duringNewton iterations at each time step,
a smaller number of ROM simulations—compared to purely data-driven approaches—is
sufficient for training the DNNs;

– Since training data are low-dimensional, we can avoid the overwhelming training times
and costs that would be required by DNNs if FOM arrays were used.

The Deep-HyROMnet approach has been successfully applied on several test cases in
nonlinear solid mechanics, showing remarkable improvements in terms of online CPU time
with respect to POD-Galerkin-DEIM ROMs. Our goal in future works is to apply the devel-
oped strategy to other classes of nonlinear problems for which traditional hyper-reduction
techniques represent a computational bottleneck.
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