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Abstract

Compositing is one of the most common operations in

photo editing. To generate realistic composites, the appear-

ances of foreground and background need to be adjusted

to make them compatible. Previous approaches to harmo-

nize composites have focused on learning statistical rela-

tionships between hand-crafted appearance features of the

foreground and background, which is unreliable especially

when the contents in the two layers are vastly different. In

this work, we propose an end-to-end deep convolutional

neural network for image harmonization, which can cap-

ture both the context and semantic information of the com-

posite images during harmonization. We also introduce an

efficient way to collect large-scale and high-quality train-

ing data that can facilitate the training process. Experi-

ments on the synthesized dataset and real composite images

show that the proposed network outperforms previous state-

of- the-art methods.

1. Introduction

Compositing is one of the most common operations in

image editing. To generate a composite image, a foreground

region in one image is extracted and combined with the

background of another image. However, the appearances

of the extracted foreground region may not be consistent

with the new background, making the composite image un-

realistic. Therefore, it is essential to adjust the appearances

of the foreground region to make it compatible with the new

background (Figure 1). Previous techniques improve the re-

alism of composite images by transferring statistics of hand-

crafted features, including color [13, 28] and texture [25],

between the foreground and background regions. However,

these techniques do not take the contents of the compos-

ite images into account, leading to unreliable results when

appearances of the foreground and background regions are

vastly different.

In this work, we propose a learning-based method by

training an end-to-end deep convolutional neural network

Composite image Xue [28]

Zhu [32] Our harmonization result

Figure 1. Our method can adjust the appearances of the compos-

ite foreground to make it compatible with the background region.

Given a composite image, we show the harmonized images gener-

ated by [28], [32] and our deep harmonization network.

(CNN) for image harmonization, which can capture both

the context and semantic information of the composite im-

ages during harmonization. Given a composite image and

a foreground mask as the input, our model directly outputs

a harmonized image, where the contents are the same as

the input but with adjusted appearances on the foreground

region. Context information has been utilized in several im-

age editing tasks, such as image enhancement [6, 29], image

editing [27] and image inpainting [20]. For image harmo-

nization, it is critical to understand what it looks like in the

surrounding background region near the foreground region.

Hence foreground appearances can be adjusted accordingly

to generate a realistic composite image. Toward this end,

we train a deep CNN model that consists of an encoder to

capture the context of the input image and a decoder to re-

construct the harmonized image using the learned represen-

tations from the encoder.

In addition, semantic information is of great importance
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to improve image harmonization. For instance, if we know

the foreground region to be harmonized is a sky, it is nat-

ural to adjust the appearance and color to be blended with

the surrounding contents, instead of making the sky green

or yellow. However, the above-mentioned encoder-decoder

does not explicitly model semantic information without the

supervision of high-level semantic labels. Hence, we in-

corporate another decoder to provide scene parsing of the

input image, while sharing the same encoder for learning

feature representations. A joint training scheme is adopted

to propagate the semantic information to the harmonization

decoder. With such semantic guidance, the harmonization

process not only captures the image context but also under-

stands semantic cues to better adjust the foreground region.

Training an end-to-end deep CNN requires a large-scale

training set including various and high-quality samples.

However, unlike other image editing tasks such as im-

age colorization [30] and inpainting [20] where unlimited

amount of training data can be easily generated, it is rela-

tively difficult to collect a large-scale training set for image

harmonization, as generating composite images and ground

truth harmonized output requires professional editing skills

and a considerable amount of time. To solve this problem,

we develop a training data generation method that can syn-

thesize large-scale and high-quality training pairs, which fa-

cilitates the learning process.

To evaluate the proposed algorithm, we conduct exten-

sive experiments on synthesized and real composite images.

We first quantitatively compare our method with different

settings to other existing approaches for image harmoniza-

tion on our synthesized dataset, where the ground truth im-

ages are provided. We then perform a user study on real

composite images and show that our model trained on the

synthesized dataset performs favorably in real cases.

The contributions of this work are as follows. First, to

the best of our knowledge, this is the first attempt to have

an end-to-end learning approach for image harmonization.

Second, we demonstrate that our joint CNN model can ef-

fectively capture context and semantic information, and can

be efficiently trained for both the harmonization and scene

parsing tasks. Third, an efficient method to collect large-

scale and high-quality training images is developed to facil-

itate the learning process for image harmonization.

2. Related Work

Our goal is to harmonize a composite image by adjusting

its foreground appearances while keeping the same back-

ground region. In this section, we discuss existing meth-

ods closely related to this setting. In addition, the proposed

method adopts a learning-based framework and a joint train-

ing scheme. Hence recent image editing methods within

this scope are also discussed.

Image Harmonization. Generating realistic composite im-

ages requires a good match for both the appearances and

contents between foreground and background regions. Ex-

isting methods use color and tone matching techniques to

ensure consistent appearances, such as transferring global

statistics [24, 23], applying gradient domain methods [21,

26], matching multi-scale statistics [25] or utilizing seman-

tic information [27]. While these methods directly match

appearances to generate realistic composite images, realism

of the image is not considered. Lalonde and Efros [13] pre-

dict the realism of photos by learning color statistics from

natural images and use these statistics to adjust foreground

appearances to improve the chromatic compatibility. On

the other hand, a data-driven method [10] is developed to

improve the realism of computer-generated images by re-

trieving a set of real images with similar global layouts for

transferring appearances.

In addition, realism of the image has been studied and

used to improve the harmonization results. Xue et al. [28]

perform human subject experiments to identify most sig-

nificant statistical measures that determine the realism of

composite images and adjust foreground appearances ac-

cordingly. Recently, Zhu et al. [32] learn a CNN model

to predict the realism of a composite image and incorpo-

rate the realism score into a color optimization function for

appearance adjustment on the foreground region. Different

from the above-mentioned methods, our end-to-end CNN

model directly learn from pairs of a composite image as the

input and a ground truth image, which ensures the realism

of the output results.

Learning-based Image Editing. Recently, neural network

based methods for image editing tasks such as image col-

orization [7, 14, 30], inpainting [20] and filtering [18], have

drawn much attention due to their efficiency and impressive

results. Similar to autoencoders [1], these methods adopt an

unsupervised learning scheme that learns feature represen-

tations of the input image, where raw data is used for super-

vision. Although our method shares the similar concept, to

the best of our knowledge it is the first end-to-end trainable

CNN architecture designed for image harmonization.

However, these image editing pipelines may suffer from

missing semantic information in the finer level during re-

construction, and such semantics are important cues for un-

derstanding image contents. Unlike previous methods that

do not explicitly use semantics, we incorporate an addi-

tional model to predict pixel-wise scene parsing results and

then propagate this information to the harmonization model,

where the entire framework is still end-to-end trainable.

3. Deep Image Harmonization

In this section, we describe the details of our proposed

end-to-end CNN model for image harmonization. Given

3790



(a) Miscrosoft COCO & Flickr

(b) MIT-Adobe FiveK

Figure 2. Data acquisition methods. We illustrate the approaches

for collecting training pairs for the datasets (a) Miscrosoft COCO

and Flickr via color transfer, and (b) MIT-Adobe FiveK with dif-

ferent styles.

a composite image and a foreground mask as the input,

our model outputs a harmonized image by adjusting fore-

ground appearances while retaining the background region.

Furthermore, we design a joint training process with scene

parsing to understand image semantics and thus improve

harmonization results. Figure 3 shows an overview of the

proposed CNN architecture. Before describing this net-

work, we first introduce a data collection method that allows

us to obtain large-scale and high-quality training pairs.

3.1. Data Acquisition

Data acquisition is an essential step to successfully train

a CNN. As described above, an image pair containing the

composite and harmonized images is required as the input

and ground truth for the network. Unlike other unsuper-

vised learning tasks such as [30, 20] that can easily obtain

training pairs, image harmonization task requires expertise

to generate a high-quality harmonized image from a com-

posite image, which is not feasible to collect large-scale

training data.

To address this issue, we start from a real image which

we treat as the output ground truth of our network. We then

select a region (e.g., an object or a scene) and edit its ap-

pearances to generate an edited image which we use as the

input composite image to the network. The overall process

is described in Figure 2. This data acquisition method en-

sures that the ground truth images are always realistic so

that the goal of the proposed CNN is to directly reconstruct

a realistic output from a composite image. In the following,

we introduce the details of how we generate our synthesized

dataset.

Images with Segmentation Masks. We first use the Mi-

crosoft COCO dataset [17], where the object segmentation

masks are provided for each image. To generate synthesized

composite images, we randomly select an object and edit its

appearances via a color transfer method. In order to ensure

Table 1. Number of training and test images on three synthesized

datasets.

MSCOCO MIT-Adobe Flickr

Training set 51187 4086 4720

Test set 3842 68 96

that the edited images are neither arbitrary nor unrealistic in

color and tone, we construct the color transfer functions by

searching for proper reference objects.

Specifically, given a target image and its corresponding

object mask, we search a reference image which contains

the object with the same semantics. We then transfer the

appearance from the reference object to the target object.

As such, we ensure that the edited object still looks plausi-

ble but does not match the background context. For color

transfer, we compute statistics of the luminance and color

temperature, and use the histogram matching method [16].

To generate a larger variety of transferred results, we ap-

ply different transfer parameters for both the luminance and

color temperature on one image, so that our learned network

can adapt to different scenarios in real cases. In addition, we

apply an aesthetics prediction model [11] to filter out low-

quality images. An example of generated synthesized input

and output pairs are shown in Figure 2(a).

Images with Different Styles. Although the Microsoft

COCO dataset provides us with rich object categories, it

is still limited to certain objects. To cover more object cat-

egories, we augment it with the MIT-Adobe FiveK dataset

[3]. In this dataset, each original image has another 5 differ-

ent styles that are re-touched by professional photographers

using Adobe Lightroom, resulting in 6 editions of the same

image. To edit the original image, we begin with one ran-

domly selected style and manually segment a region. We

then crop this segmented region and overlay on the image

with another style to generate the synthesized composite

image. An example set is presented in Figure 2(b).

Flickr Images with Diversity. Since images in the MIT-

Adobe FiveK and Microsoft COCO datasets only contain

certain scenes and styles, we collect a dataset from Flickr

with larger diversity such as images containing different

scenes or stylized images. To generate input and ground

truth pairs, we apply the same color transfer technique de-

scribed for the Microsoft COCO dataset. However, since

there is no semantic information provided in this dataset to

search proper reference objects for transfer, we use a pre-

trained scene parsing model [31] to predict semantic pixel-

wise labels. We then compute a spatial-pyramid label his-

togram [15] of the target image and retrieve reference im-

ages from the ADE20K dataset [31] with similar histograms

computed from the ground truth annotations.

Next, we manually segment a region (e.g., an object or
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Figure 3. The overview of the proposed joint network architecture. Given a composite image and a provided foreground mask, we first pass

the input through an encoder for learning feature representations. The encoder is then connected to two decoders, including a harmonization

decoder for reconstructing the harmonized output and a scene parsing decoder to predict pixel-wise semantic labels. In order to use the

learned semantics and improve harmonization results, we concatenate the feature maps from the scene parsing decoder to the harmonization

decoder (denoted as dot-orange lines). In addition, we add skip links (denoted as blue-dot lines) between the encoder and decoders for

retaining image details and textures. Note that, to keep the figure clean, we only depict the links for the harmonization decoder, while the

scene parsing decoder has the same skip links connected to the encoder.

a scene) in the target image. Based on the predicted scene

parsing labels within the segmented target region, we find a

region in the reference image that shares the same labels as

the target region. The composite image is then generated by

the color transfer method mentioned above (Figure 2(a)).

Discussions. With the above-mentioned data acquisition

methods on three datasets, we are able to collect large-

scale and high-quality training and test pairs (see Table 1

for a summarization). This enables us to train an end-to-

end CNN for image harmonization with several benefits.

First, our data collection method ensures that the ground

truth images are realistic, so the network can really capture

the image realism and adjust the input image according to

the learned representations.

Another merit of our method is to enable quantitative

evaluations. This is, we can use the synthesized compos-

ite image to measure errors by comparing to the ground

truth images. Although there should be no single best so-

lution for the image harmonization task, this quantitative

measurement can give us a sense of how closer the images

generated by different methods are, to a truly realistic image

(discussed in Section 4), which is not addressed by previous

approaches.

3.2. Context­aware Encoder­decoder

Motivated by the potential of the Context Encoders [20],

our CNN learns feature representations of input images via

an encoder and reconstruct the harmonized output results

through a decoder. While the proposed deep network bears

some resemblance, we add novel components for image

harmonization. In the following, we present the objective

function and proposed network architecture with discussion

of novel components.

Objective Function. Given a RGB image I ∈ R
H×W×3

and a provided binary mask M ∈ R
H×W×1 of the compos-

ite foreground region, we form the input X ∈ R
H×W×4

by concatenating I and M , where H and W are image

dimensions. Our objective is to predict an output image

Ŷ = F(X) that optimizes the reconstruction (L2) loss with

respect to the ground truth image Y :

Lrec(X) =
1

2

∑

h,w

‖ Yh,w − Ŷh,w ‖2
2
. (1)

Since the L2 loss is optimized with the mean of the data

distribution, the results are often blurry and thus miss im-

portant details and textures from the input image. To over-

come these problems, we show that adding skip links from

the encoder to the decoder can recover those image details

in the proposed network.

Network Architecture. Figure 3 shows basic components

of our network architecture with an encoder and a harmo-

nization decoder. The encoder is a series of convolutional

layers and a fully connected layer to learn feature repre-

sentations from low-level image details to high-level con-

text information. Note that as we do not have any pooling

layers, fine details are preserved in the encoder [20]. The

decoder is a series of deconvolutional layers which aim to

reconstruct the image via up-sampling from the representa-

tions learned in the encoder and simultaneously adjust the

appearances of the foreground region.
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However, image details and textures may be lost during

the compression process in the encoder, and thus there is

less information to reconstruct the contents of the input im-

age. To retain those details, it is crucial that we add a skip

link from each convolutional layer in the encoder to each

corresponding deconvolutional layer in the decoder. We

show this method is effectively useful without adding ad-

ditional burdens for training the network. Furthermore, it

can alleviate the problem of the L2 loss that prefers a blurry

image solution.

Implementation Details. We implement the proposed net-

work in Caffe [9] and use the stochastic gradient descent

solver for optimization with a fixed learning rate 10−8. In

addition, we compute the loss on the entire image rather

than the foreground mask to account for the reconstruc-

tion differences in the background region. We also try a

weighted loss that considers the foreground region more im-

portantly, but the results are similar and thus we use a sim-

ple loss function. Since the entire network is trained from

scratch, we use the batch normalization [8] followed by a

scaling layer and an ELU layer [5] after each convolutional

and deconvolutional layers to facilitate the training process.

Discussions. We conduct experiments using the proposed

network architecture with different input sizes. Interest-

ingly, we find that the one with larger input size performs

better in practice, and thus we use input resolution of

512×512. This observation also matches our intuition when

designing the encoder-decoder architecture with skip links,

where the network can learn more context information and

details from a larger input image. To generate higher reso-

lution results, we can up-sample the output of the network

with joint bilateral filtering [22], in which the input com-

posite image is used as the guidance to keep clear details

and sharp textures.

3.3. Joint Training with Semantics

In the previous section, we propose an encoder-decoder

network architecture for image harmonization. In order to

further improve harmonization results, it is natural to con-

sider semantics of the composite foreground region. The

ensuing question is how to incorporate such semantics in

our CNN, so that the entire network is still end-to-end train-

able. In this section, we propose a modified network that

can jointly train the image harmonization and scene parsing

tasks simultaneously, while propagating semantics to im-

prove harmonization results. The overall architecture is de-

picted in Figure 3, which adds the scene parsing decoder

branch.

Joint Loss. In addition to the reconstruction loss described

for image harmonization in (1), we introduce a pixel-wise

cross-entropy loss with the standard softmax function E for

scene parsing:

Lcro(X) = −
∑

h,w

log(E(Xh,w; θ)). (2)

We then define a combined loss for both tasks and optimize

it jointly:

L = λ1Lrec + λ2Lcro, (3)

where λi is the weight to control the balance between losses

for image harmonization and scene parsing.

Network Architecture. We design the joint network by

inheriting the encoder-decoder architecture described in the

previous section. Specifically, we add a decoder to predict

scene parsing results, while the encoder is to learn feature

representations and is shared for both decoders. To extract

semantic knowledge from the scene parsing model and help

harmonization process, we concatenate feature maps from

each deconvolutional layer of the scene parsing decoder to

the harmonization decoder, except for the last layer which

focuses on image reconstruction. In addition, skips links

[19] are also connected to the scene parsing decoder to gain

more information from the encoder.

Implementation Details. To enable the training process for

the proposed joint network, both the ground truth images for

harmonization and scene parsing are required. We then use

a subset of the ADE20K dataset [31], which contains 12080
training images with the top 25 frequent labels. Similarly,

training pairs for harmonization are obtained in a way de-

scribed in the data acquisition section via color transfer.

To train the joint network, we start with the training data

from the ADE20K dataset to obtain an initial solution for

both the harmonization and scene parsing by optimizing (3).

We set λ1 = 1 and λ2 = 100 with a fixed learning rate

10−8. Next, we fix the scene parsing decoder with λ2 = 0
and finetune rest of the network using all the training data

introduced in Section 3.1 to achieve the optimal solution for

image harmonization. Note that, during this fintuning step,

the scene parsing decoder is able to propagate learned se-

mantic information through the links between two decoders.

Discussions. With the incorporated scene parsing model,

our network can learn the color distribution of certain se-

mantic categories, e.g., the skin color on human or the sky-

like colors. In addition, the learned background semantics

can help identify which region to match for better fore-

ground adjustment. During harmonization, it essentially

uses these learned semantic priors to improve the realism

of output results. Moreover, the incorporation of semantic

information through joint training not only helps our image

harmonization task, but also can be adopted to benefit other

image editing tasks [30, 20].
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Ground truth Input Lalonde [13] Xue [28] Zhu [32] Ours

23.68 14.01 24.19 23.89 31.96

17.59 19.26 18.26 17.85 24.40

15.97 14.71 16.13 16.97 24.48

Figure 4. Example results on synthesized datasets for the input, ground truth, three state-of-the-art methods and our proposed network.

From the first row to the third one, we show one example for the MSCOCO, MIT-Adobe and Flickr datasets. Each result is associated with

a PSNR score. Among all the methods, our harmonization results obtain the highest score.

Table 2. Comparisons of methods with mean-squared errors

(MSE) on three synthesized datasets.

MSCOCO MIT-Adobe Flickr

cut-and-paste 400.5 552.5 701.6

Lalonde [13] 667.0 1207.8 2371.0

Xue [28] 351.6 568.3 785.1

Zhu [32] 322.2 360.3 475.9

Ours (w/o semantics) 80.5 168.8 491.7

Ours 76.1 142.8 406.8

To validate our scene parsing model, we compare the

proposed joint network to a deeplab model [4], MSc-

COCO-LargeFOV, that has a similar model capacity and

size to our model but is initialized from a pre-trained model

for semantic segmentation. We evaluate the scene parsing

results on the validation set of the ADE20K dataset with the

top 25 frequent labels. The mean intersection-over-union

(IoU) accuracy of our joint network is 32.2, while the MSc-

COCO-LargeFOV model achieves IoU as 36.0. Although

our model is not specifically designed for scene parsing and

is learned from scratch, it shows that our method performs

competitively against a state-of-the-art model for semantic

segmentation.

Table 3. Comparisons of methods with PSNR scores on three syn-

thesized datasets.

MSCOCO MIT-Adobe Flickr

cut-and-paste 26.3 23.9 25.9

Lalonde [13] 22.7 21.1 18.9

Xue [28] 26.9 24.6 25.0

Zhu [32] 26.9 25.8 25.4

Ours (w/o semantics) 32.2 27.5 27.2

Ours 32.9 28.7 27.4

4. Experimental Results

We present the main results on image harmonization

with comparisons to the state-of-the-art methods in this sec-

tion. More results and analysis can be found in the sup-

plementary material. The code, model and test set are

available at https://github.com/wasidennis/

DeepHarmonization.

Synthesized Data. We first evaluate the proposed method

on our synthesized dataset for quantitative comparisons. Ta-

ble 2 and 3 show the results of mean-squared errors (MSE)

and PSNR scores between the ground truth and harmonized
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Input No semantics With semantics

18.86 28.15 33.32

Figure 5. Example results to show the comparison of our network

with or without incorporating semantic information. With seman-

tics, our result can recover the skin color and obtain higher PSNR

score.

image. Note that it is the first quantitative evaluation on

image harmonization, which reflects how close different re-

sults are to realistic images. We show that our joint network

consistently achieves better performance compared to the

single network without combining scene parsing decoder

and other state-of-the-art algorithms [13, 28, 32] on all three

synthesized datasets in terms of MSE and PSNR. In addi-

tion, it is also worth noticing that our baseline network with-

out semantics already outperforms other existing methods.

In Figure 4, we show visual comparisons with respect to

PSNR of the harmonization results generated from different

methods. Overall, the harmonized images by the proposed

methods are more realistic and closer to the ground truth

images, with higher PSNR values. In addition, Figure 5

presents one comparison of our networks with and without

incorporating the scene parsing decoder. With semantic un-

derstandings, our joint network is able to harmonize fore-

ground regions according to their semantics and produce

realistic appearance adjustments, while the one without se-

mantics may generate unsatisfactory results in some cases.

Real Composite Images. To evaluate the effectiveness of

the proposed joint network in real scenarios, we create a test

set of 52 real composite images and combine 48 examples

from Xue et al. [28], resulting in a total of 100 high-quality

composite images. To cover a variety of real examples, we

create composite images including various scenes and styl-

ized images, where the composite foreground region can be

an object or a scene.

We follow the same procedure as [28, 32] to set up a

user study on Amazon Mechanical Turk, in which each user

sees two randomly selected results at a time and is asked to

choose the one that looks more realistic. For sanity checks,

we use ground truth images from the synthesized dataset

and heavily edited images to create easily distinguishable

pairs that are used to filter out bad users. As a result, a total

of 225 subjects participate in this study with a total of 10773
pairwise results (10.8 results for each pair of different meth-

(a) Input

(b) Mask (c) Output

Figure 6. Given an input image (a), our network can adjust the

foreground region according to the provided mask (b) and pro-

duce the output (c). In this example, we invert the mask from the

one in the first row to the one in the second row, and generate har-

monization results that account for different context and semantic

information.

Table 4. Comparisons of methods with B-T scores on real com-

posite datasets.

Dataset [28] Our test set Overall

cut-and-paste 1.080 1.168 1.139

Lalonde [13] 0.557 0.067 0.297

Xue [28] 1.130 0.885 1.002

Zhu [32] 0.875 0.867 0.876

Ours 1.237 1.568 1.424

ods on average). After obtaining all the pairwise results, we

use the Bradley-Terry model (B-T model) [2, 12] to calcu-

late the global ranking score for each method.

Table 4 shows that our method achieves the highest B-T

score in terms of realism compared to state-of-the-art ap-

proaches on both our created test set and examples from

[28]. Interestingly, our method is the only one that can

improve the harmonization result with a significant margin

from the input image (by cut-and-paste).

Figure 7 shows sample harmonized images by the evalu-

ated methods. Overall, our joint network produces realistic

output images, which validates the effectiveness of using

synthesized data to directly learn how to harmonize com-

posite images from realistic ground truth images. The re-

sults from [28] may be easily affected by the large appear-

ance difference between the background and foreground re-

gions during matching. For the method [32], it may gener-

ate unsatisfactory results due to the errors introduced during

realism prediction, which may affect the color optimization

step. In contrast, our network adopts a single feed-forward

scheme learned from a well-constructed training set, and

utilizes semantic information to improve harmonization re-

sults. The complete results on the real composite test set are

presented in the supplementary material.
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Input Lalonde [13] Xue [28] Zhu [32] Ours

Figure 7. Example results on real composite images for the input, three state-of-the-art methods and our proposed network. We show that

our method produces realistic harmonized images by adjusting composite foreground regions containing various scenes or objects.

Generalization to Background Masks. With the provided

foreground mask, our network can learn context and seman-

tic information while transforming the composite image to

a realistic output image. Therefore, our method can be ap-

plied to any foreground masks containing arbitrary objects,

scenes or clutter backgrounds. Figure 6 illustrates one ex-

ample, where originally the adjusted foreground region is

the child. Instead, we can invert the mask and focus on

harmonizing the region of inverted child. The result shows

that our network can produce realistic outputs from differ-

ent foreground masks.

Runtime Performance. Previous harmonization methods

rely on matching statistics [13, 28] or optimizing an adjust-

ment function [32], which usually require longer processing

time (more than 10 seconds with a 3.4GHz Core Xeon CPU)

on a 512 × 512 test image. In contrast, our proposed CNN

is able to harmonize an image in 0.05 seconds with a Titan

X GPU and 12GB memory, or 3 seconds with a CPU.

5. Concluding Remarks

In this paper, we present a novel network that can cap-

ture both the context and semantic information for image

harmonization. We demonstrate that our joint network can

be trained in an end-to-end manner, where the semantic

decoder branch can effectively provide semantics to help

harmonization. In addition, to facilitate the training pro-

cess, we develop an efficient method to collect large-scale

and high-quality training pairs. Experimental results show

that our method performs favorably on both the synthesized

datasets and real composite images against other state-of-

the-art algorithms.
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