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Abstract In many applications of computer graphics,

art, and design, it is desirable for a user to provide

intuitive non-image input, such as text, sketch, stroke,

graph, or layout, and have a computer system

automatically generate photo-realistic images according

to that input. While classically, works that allow

such automatic image content generation have followed

a framework of image retrieval and composition,

recent advances in deep generative models such as

generative adversarial networks (GANs), variational

autoencoders (VAEs), and flow-based methods have

enabled more powerful and versatile image generation

approaches. This paper reviews recent works for image

synthesis given intuitive user input, covering advances

in input versatility, image generation methodology,

benchmark datasets, and evaluation metrics. This

motivates new perspectives on input representation and

interactivity, cross fertilization between major image

generation paradigms, and evaluation and comparison

of generation methods.
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1 Introduction

Machine learning and artificial intelligence have given

computers the abilities to mimic or even defeat

humans in tasks like playing games of chess and

go, recognizing objects in images, and translating

from one language to another. An interesting next

pursuit would be to see if computers can mimic

creative processes such as those used by painters

in making pictures, or assisting artists or architects

in making artistic or architectural designs. In fact,

in the past decade, we have witnessed advances

in systems that synthesize an image from a text

description [1–4] or from a learned style of content

[5], paint a picture given a sketch [6–9], render a

photorealistic scene from a wireframe [10, 11], and

create virtual reality content from images and videos

[12], among others. A comprehensive review of such

systems can explain the current state-of-the-art in

such pursuits, reveal open challenges, and illuminate

future directions. In this paper, we make an attempt

at a comprehensive review of image synthesis and

rendering techniques given simple, intuitive user

input such as text, sketches or strokes, semantic

label maps, poses, visual attributes, graphs, and

layouts. We first present ideas on what makes a

good paradigm for image synthesis from intuitive

user input and review popular metrics for evaluating

the quality of generated images. We then introduce

several mainstream methodologies for image synthesis

given user input, and review algorithms developed for

application scenarios specific to different formats of

user input. We also summarize major benchmark

datasets used by current methods, and advances

and trends in image synthesis methodology. Finally,

we provide our perspective on future directions

for developing image synthesis models capable of

3
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generating complex images that are closely aligned

with user input, have high visual realism, and adhere

to constraints of the physical world.

2 What makes a good paradigm for

image synthesis from intuitive user

input?

2.1 What types of user input do we need?

For an image synthesis model to be user-friendly

and useful in real-world applications, the user input

should be intuitive, easily interactively edited, and

commonly used in design and creative processes. We

define an input modality to be intuitive if it has the

following characteristics:

• Accessibility. The input should be easy to provide,

especially for non-professionals. Taking sketching

as an example, even people without any trained

skills in drawing can express rough ideas through

sketching.

• Expressiveness. The input should be expressive

enough to allow someone to convey not only

simple concepts but also complex ideas.

• Interactivity. The input should be interactive

to some extent, so that users can interactively

modify its content, to fine tune the synthesized

output in an iterative fashion.

Taking painting as an example, a sketch is an intuitive

input because it is what humans use to design the

composition of a painting. On the other hand, being

intuitive often means that the information provided

by the input is limited, which makes the generation

task more challenging. Moreover, for different types

of applications, suitable forms of user input can be

quite different.

For image synthesis with intuitive user input,

the most relevant and well-investigated method is

to use conditional image generation models. In

other words, user inputs are treated as conditional

input to the synthesis model to guide generation

by conditional generative models. In this review,

we mainly discuss mainstream conditional image

generation applications including those using text

descriptions, sketches or strokes, semantic maps,

poses, visual attributes, or graphs as intuitive input.

The processing and representation of the user input

are usually application- and modality-dependent.

When given text descriptions as input, pretrained

text embeddings are often used to convert text into

a vector-representation of the input words. Image-

like inputs, such as sketches, semantic maps, and

poses are often represented as images and processed

accordingly. In particular, one-hot encoding can

be used in semantic maps to represent different

categories, and keypoint maps can be used to encode

poses where each channel represents the position of

a body keypoint; both result in multi-channel image-

like tensors as input. Using visual attributes as

input is most similar to general conditional generation

tasks, where attributes can be provided in the form of

class vectors. For graph-like user inputs, additional

processing steps are required to extract relationship

information represented in the graphs. For instance,

graph convolutional networks (GCNs) [13] can be

applied to extract node features from input graphs.

More details of the processing and representation

methods of various input types will be reviewed and

discussed in Section 4.

2.2 How do we evaluate the output synthesized

images?

The quality of an image synthesis method depends

on how well its output adheres to user input, whether

the output is photorealistic or structurally coherent,

and whether it can generate a diverse pool of images

that satisfy requirements. General metrics have been

designed for evaluating the quality and sometimes

diversity of synthesized images. Widely adopted

metrics use different methods to extract features

from images and then calculate different scores or

distances. Such metrics include peak signal-to-noise

ratio, Inception score, Fréchet Inception distance,

structural similarity index measure, and learned

perceptual image patch similarity.

Peak signal-to-noise ratio (PSNR) measures the

physical quality of a signal by the ratio between the

maximum possible power of the signal and the power

of the noise affecting it. For images, PSNR can be

represented as

PSNR =
1

3

∑

k

10 log10

max DR2

1
m

∑

i,j (ti,j,k − yi,j,k)
2 (1)

where k is the number of channels, DR is the dynamic

range of the image (255 for 8-bit images), m is

the number of pixels, i, j are indices iterating over

every pixel, and t and y are the reference image and

synthesized image, respectively.

The Inception score (IS) [14] uses a pre-trained
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Inception [15] network to compute the KL-divergence

between the conditional class distribution and the

marginal class distribution. The Inception score is

defined as

IS = exp(ExKL(P (y|x)||P (y))) (2)

where x is an input image and y is the label predicted

by an Inception model. A high Inception score

indicates that the generated images are diverse and

semantically meaningful.

Fréchet Inception distance (FID) [16] is a popular

evaluation metric for image synthesis tasks, especially

for generative adversarial network (GAN) based models.

It computes the divergence between the synthetic data

distribution and the real data distribution:

FID = ||m̂ − m||22 + tr(Ĉ + C − 2(CĈ)1/2) (3)

where m, C and m̂, Ĉ represent the mean and

covariance of the feature embeddings of the real and

the synthetic distributions, respectively. The feature

embedding is extracted from a pre-trained Inception-

v3 [15] model.

Structural similarity index measure (SSIM) [17]

or multi-scale structural similarity (MS-SSIM)

metric [18] gives a score for relative similarity between

an image and a reference image, unlike absolute

measures such as PSNR. The SSIM is defined as

SSIM(x, y) =
(2μxμy + c1) (2σxy + c2)

(

μ2
x + μ2

y + c1

) (

σ2
x + σ2

y + c2

) (4)

where μ and σ indicate the average and variance of

two windows x and y respectively, and c1 and c2

are two variables to stabilize division by vanishing

denominators. The SSIM measures perceived image

quality considering structural information. It tests

pair-wise similarity between generated images, where

a lower score indicates higher diversity of generated

images (i.e., fewer mode collapses).

Another metric based on features extracted from

pre-trained CNN networks is the learned perceptual

image patch similarity (LPIPS) score [19]. The

distance is calculated as

d (x, x0) =
∑

l

1

HlWl

∑

h,w

∥

∥

∥wl ⊙
(

ŷl
hw − ŷl

0hw

)∥

∥

∥

2

2

(5)

where ŷl, ŷl
0 ∈ R

Hl×Wl×Cl are a unit-normalized

feature stack from the l-th layer in a pre-trained

CNN and wl indicates channel-wise weights. LPIPS

evaluates perceptual similarity between image patches

using the learned deep features from trained neural

networks.

For flow based models [20, 21] and autoregressive

models [22–24], the average negative log-likelihood

(i.e., bits per dimension) [22] is often used to evaluate

the quality of generated images. It is interpretable as

the number of bits that a compression scheme based

on this model would need to compress every RGB

color value [22].

Apart from metrics designed for general purposes,

specific evaluation metrics have been proposed

for different applications with various input types.

For instance, using text descriptions as input, R-

precision [25] evaluates whether a generated image

is well conditioned on the given text description.

It is measured by retrieving relevant text given

an image query. For sketch-based image synthesis,

classification accuracy is used to measure the realism

of the synthesized objects [7, 8] and how well the

identities of synthesized results match those of real

images [26]. Also, similarity between input sketches

and edges of synthesized images can be measured to

evaluate the correspondence between the input and

output [8]. In the scenario of pose-guided person

image synthesis, “masked” versions of IS and SSIM,

Mask-IS and Mask-SSIM are often used to ignore

the effects of the background [27–31], since we want

to focus on the synthesized human body. As in

sketch-based synthesis, the detection score (DS) is

used to evaluate how well the synthesized person can

be detected [29, 31] and keypoint accuracy can be

used to measure the level of correspondence between

keypoints [31]. For semantic maps, a commonly used

metric tries to restore the semantic-map input from

generated images using a pre-trained segmentation

network and then compares the restored semantic

map with the original input using intersection over

union (IoU) score or other segmentation accuracy

measures. Similarly, using visual attributes as input,

a pre-trained attribute classifier or regressor can be

used to assess the attribute correctness of generated

images.

3 Overview of mainstream conditional

image synthesis paradigms

3.1 Fundamentals

Image synthesis models with intuitive user inputs

often involve different types of generative models,

particularly conditional generative models that treat
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user input as the observed conditioning variable. Two

major goals of the synthesis process are high realism of

the synthesized images, and correct correspondences

between input conditions and output images. Existing

methods vary from more traditional retrieval and

composition based methods to more recent deep

learning based algorithms. In this section, we give an

overview of the architectures and main components

of different conditional image synthesis models.

3.2 Retrieval and composition

Traditional image synthesis techniques are mainly

based on a retrieval and composition paradigm. In the

retrieval stage, candidate images or image fragments

are fetched from a large image collection, under

some user-provided constraints, like text, sketches, or

semantic label maps. Methods like edge extraction,

saliency detection, object detection, and semantic

segmentation are used to pre-process images in the

collection according to different input modalities and

generation purposes, after which retrieval can be

performed using shallow image features like HoG

and shape context [32]. The user may interact

with the system to improve the quality of the

retrieved candidates. In the composition stage, the

selected images or fragments are combined by Poisson

blending, alpha blending, or a hybrid of both [33],

resulting in the final output image.

The biggest advantages of synthesizing images

through retrieval and composition are controllability

and interpretability. The user can simply intervene

in the generation process at any stage, and easily find

out whether the output image looks like it should. But

it can not generate instances that do not appear in

the collection, which restricts the range and diversity

of the output.

3.3 Conditional generative adversarial networks

(cGANs)

Generative adversarial networks (GANs) [34] have

achieved tremendous success in various image

generation tasks. A GAN model typically consists

of two networks: a generator network that learns to

generate realistic synthetic images and a discriminator

network that learns to differentiate between real

images and synthetic images generated by the

generator. The two networks are optimized alternatively

through adversarial training. Plain GAN models are

designed for unconditional image generation, and

implicitly model the distribution of images. To gain

more control over the generation process, conditional

GANs (cGANs) [35] synthesize images based on both

a random noise vector and a condition vector provided

by the user. The objective of training a cGAN as a

minimax game is

min
θG

max
θD

LcGAN = E(x,y)∼pdata(x,y)[log D(x, y)]

+ Ez∼p(z),y∼pdata(y)[log(1 − D(G(z, y), y)]

(6)

where x is the real image, y is the user input, and z

is the random noise vector. There are different ways

of incorporating user input in the discriminator, such

as inserting it at the beginning [35], the middle [36],

or the end of the discriminator [37].

3.4 Variational auto-encoders (VAEs)

Variational auto-encoders (VAEs) [38] extend the

idea of an auto-encoder and introduce variational

inference to approximate the latent representation

z encoded from the input data x. The encoder

converts x into z in a latent space where the decoder

tries to reconstruct x from z. Like GANs which

typically assume the input noise vector follows a

Gaussian distribution, VAEs use variational inference

to approximate the posterior p(z|x) given that p(z)

follows a Gaussian distribution. After training the

VAE, the decoder is used as a generator, like the

generator in a GAN; it can draw samples from the

latent space and generate new synthetic data. Based

on a simple VAE, Sohn et al. proposed a conditional

VAE (cVAE) [39–41] which is a conditional directed

graphical model whose input observations modulate

the latent variables that generate the outputs. Like

cGANs, cVAEs allow user input to provide guidance

to the image synthesis process. The training objective

for a cVAE is

max
θ,φ

LcVAE = Ez∼Qφ
[log Pθ(x | z, y)]

− DKL[Qφ(z | x, y)‖p(z | y)] (7)

where x is the real image, y is the user input, z is the

latent variable, and p(z | x) is the prior distribution of

the latent vectors, such as the Gaussian distribution.

φ and θ are parameters of the encoder Q and decoder

P networks, respectively. A cGAN and a cVAE are

illustrated in Fig. 1.

3.5 Other learning-based methods

Other learning-based conditional image synthesis

models include hybrid methods such as a combination
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Fig. 1 Use of cGAN and cVAE for image synthesis from intuitive

user input. During inferencing, the generator in the cGAN and the

decoder in the cVAE generate new images x̂ guided by user input y

and noise vector or latent variable z.

of VAE and GAN models [42, 43], autoregressive

models, and normalizing flow-based models. Among

these methods, autoregressive models such as

PixelRNN [22], PixelCNN [23], and PixelCNN++ [24]

provide tractable likelihood over priors such as class

conditions. The generation process is similar to an

autoregression model: While classic autoregression

models predict future information based on past

observations, image autoregressive models synthesize

subsequent image pixels based on previously

generated or existing nearby pixels.

Flow-based models [20], or normalizing flow

based methods, consist of a sequence of invertible

transformations which can convert a simple distribution

(e.g., a Gaussian) into a more complex one with the

same dimension. While flow-based methods have not

been widely applied to image synthesis with intuitive

user inputs, a few works [21] show that they have

great potential in visual attribute guided synthesis

and may be applicable in broader scenarios.

Among the aforementioned mainstream paradigms,

traditional retrieval and composition methods

have the advantage of better controllability and

interpretability, although the diversity of synthesized

images and flexibility of the models are limited. In

comparison, deep learning based methods generally

have stronger feature representation capacity, with

GANs having the potential to generate images of

the highest quality. While having been successfully

applied to various image synthesis tasks due to their

flexibility, GAN models lack tractable and explicit

likelihood estimation. On the contrary, autoregressive

models admit tractable likelihood estimation, and

can assign a probability to a single sample. VAEs

with latent representation learning provide better

feature representation power and can be more

interpretable. Compared to VAEs and autoregressive

models, normalizing flow methods provide both

feature representation power and tractable likelihood

estimation.

4 Methods specific to applications with

various input types

4.1 Background

In this section, we review work that targets

application scenarios with specific input types. We

review methods for image synthesis from text

descriptions, sketches and strokes, semantic label

maps, poses, and other input modalities including

visual attributes, graphs, and layouts. Among the

different input types, text descriptions are flexible,

expressive, and user-friendly, yet the comprehension

of input content and responding to interactive

editing can be challenging for generative models;

example applications of text-to-image systems are

computer generated art, image editing, computer-

aided design, interactive story telling, and visual

chat for education and language learning. Image-like

inputs such as sketches and semantic maps contain

richer information and can better guide the synthesis

process, but may require more effort from users to

provide adequate input; such inputs can be used

in applications such as image and photo editing,

computer-assisted painting and rendering. Other

inputs such as visual attributes, graphs, and layouts

allow appearance, structural, or other constraints

to be given as conditional input and can help

guide generation of images that preserve visual

properties of objects and geometric relations between

objects; they can be used in various computer-aided

design applications for architecture, manufacturing,

publishing, arts, and fashion.

4.2 Text description as input

4.2.1 Background

The task of text-to-image synthesis (Fig. 2) uses

descriptive sentences as inputs to guide the generation

of corresponding images. The generated image types

vary from single-object images [44, 45] to multi-object

images with complex backgrounds [46]. Descriptive

sentences in a natural language offer a general and

flexible way of describing visual concepts and objects.

As text is one of the most intuitive types of user input,

text-to-image synthesis has gained much attention

from the research community and numerous efforts

have been made towards developing better text-to-

image synthesis models. In the following, we review
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state-of-the-art text-to-image synthesis models and

discuss recent advances.

4.2.2 Learning correspondence between text and

image representations

One of the major challenges for the text-to-image

synthesis task is that the input text and output

image have different modalities, which requires

learning of correspondences between text and image

representations. This multimodal nature and the need

to learn text-to-image correspondences motivated

Reed et al. [47] to propose to solve the task using a

GAN model. They generate images conditioned on

the embedding of text descriptions, instead of class

labels as in traditional cGANs [35]. To learn the text

embedding from input sentences, a deep convolutional

image encoder and a character level convolutional-

recurrent text encoder are trained jointly so that

the text encoder can learn a vector-representation of

the input text descriptions. Adapting the DCGAN

architecture [48], the learned text encoding is then

concatenated with both the input noise vector in the

generator and the image features in the discriminator

along with the depth dimension. This method [47]

generated encouraging results on both the Oxford-

102 dataset [44] and the CUB dataset [45], but the

generated images have low resolution (64×64). Other

work proposed by Mansimov et al. [49] around the

same time as DCGAN proposes a combination of a

recurrent variational autoencoder with an attention

model which iteratively draws patches on a canvas,

while paying attention to the relevant words in the

description. Input text descriptions are represented

as a sequence of consecutive words and images

are represented as a sequence of patches drawn

Fig. 2 Bird image synthesis results given text descriptions as input

with an attention mechanism. Key words in the input sentences

are correctly captured and represented in the generated images.

Reproduced with permission from Ref. [25], c© IEEE 2018.

on a canvas. Image generation samples from a

Gaussian distribution, whose mean and variance

depend on the previous hidden states of the generative

LSTM. Experiments on the MS-COCO dataset

show reasonable results that correspond well to text

descriptions.

To further improve the visual quality and realism of

generated images given text descriptions, Zhang et al.

proposed multi-stage GAN models, StackGAN [1] and

StackGAN++ [50], to enable incremental refinement

in the image generation process. Given text

descriptions, StackGAN [1] decomposes the text-to-

image generative process into two stages: In the

first it captures basic object features and background

layout, and then in the second it refines details

of the objects and generates a higher resolution

image. Unlike Ref. [47] which transforms high

dimensional text encoding into low dimensional

latent variables, StackGAN adopts conditioning

augmentation, sampling the latent variables from

an independent Gaussian distribution parameterized

by the text encoding. Experiments on the Oxford-

102 [44], CUB [45], and COCO [46] datasets show

that StackGAN can generate compelling images with

resolution up to 256×256. In StackGAN++ [50], the

authors extended the original StackGAN to a more

general and robust model which contains multiple

generators and discriminators to handle images at

different resolutions. Subsequently, Zhang et al. [51]

extended the multi-stage generation idea by proposing

an HDGAN model with a single-stream generator and

multiple hierarchically-nested discriminators for high-

resolution image synthesis. Hierarchically-nested

discriminators distinguish outputs from intermediate

layers of the generator to capture hierarchical visual

features. HDGAN is trained by optimizing a pair

loss [47] and a patch-level discriminator loss [52].

In addition to generation via multi-stage

refinement [1, 50], the attention mechanism may

be introduced to improve text to image synthesis

at a finer-grained level. Xu et al. [25] introduced

AttnGAN, an attention driven image synthesis

model that generates images by focusing on different

regions described by different words of the text

input. A deep attentional multimodal similarity

model (DAMSM) module is also proposed to match

the learned embedding between image regions and

text at the word level. To achieve better semantic



Deep image synthesis from intuitive user input: A review and perspectives 9

consistency between text and image, Qiao et al. [2]

proposed MirrorGAN which guides image generation

with both sentence- and word-level attention and

further tries to reconstruct the original text input to

guarantee the image–text consistency. The backbone

of MirrorGAN uses a multi-scale generator as in

Ref. [50]. The proposed text reconstruction model is

pre-trained to stabilize the training of MirrorGAN.

Zhu et al. [3] introduced a gating mechanism where

a writing gate writes selected important textual

features from the given sentence into a dynamic

memory, and a response gate adaptively reads from

the memory and the visual features from some

initially generated images. The proposed DM-GAN

relies less on the quality of the initial images and can

refine poorly-generated initial images having wrong

colors and rough shapes.

To learn expression variants in different text

descriptions of the same image, Yin et al. [53]

proposed SD-GAN to distill the shared semantics

from texts that describe the same image. The authors

propose a Siamese structure with a contrastive

loss to minimize the distance between images

generated from descriptions of the same image, and

maximize the distance between those generated from

the descriptions of different images. To retain

semantic diversity for fine-grained image generation,

semantically-conditioned batch normalization is also

introduced for enhanced visual-semantic embedding.

4.2.3 Location and layout aware generation

With advances in correspondence learning between

text and image, content described in the input

text can already be well captured in the generated

image. However, to achieve finer control of generated

images such as object locations, additional inputs

or intermediate steps are often required. For text-

based, location-controllable synthesis, Reed et al. [54]

proposed to generate images conditioned on both

the text description and object locations. Built

upon the similar idea of inferring scene structure for

image generation, Hong et al. [55] introduced a novel

hierarchical approach for text-to-image synthesis by

inferring semantic layout from the text description.

Bounding boxes are first generated from text input

through an auto-regressive model, and then semantic

layouts are refined from the generated bounding

boxes using a convolutional recurrent neural network.

Conditional on both the text and the semantic layouts,

the authors adopt a combination of pix2pix [52] and

the CRN [56] image-to-image translation model to

generate the final images. With predicted semantic

layouts, this work can potentially generate more

realistic images containing complex objects such

as those in the MS-COCO [46] dataset. Li et

al. [57] extended the work in Ref. [55] and introduced

Obj-GAN, which generates salient objects given a

text description. Semantic layout is first generated

as in Ref. [55] and then later converted into the

synthetic image. A Fast R-CNN [58] based object-

wise discriminator is developed to retain the matching

between generated objects and the input text and

layout. Experiments on the MS-COCO dataset show

improved performance in generating complex scenes

compared to previous methods.

Compared to Ref. [55], Johnson et al. [59] included

another intermediate step which converts the input

sentences into scene graphs before generating the

semantic layouts. A graph convolutional network is

developed to generate embedding vectors for each

object. Bounding boxes and segmentation masks

for each object, constituting the scene layout, are

converted from the object embedding vectors. Final

images are synthesized by a CRN model [56] from the

noise vectors and scene layouts. In addition to text

input, Ref. [59] also allows direct generation from

input scene graphs. Experiments conducted on the

Visual Genome [60] dataset and COCO-Stuff [61],

an augmented subset of the MS-COCO [46] dataset,

show better depiction of complex sentences with many

objects than a previous method [1].

Without taking the complete semantic layout as

additional input, Hinz et al. [62] introduced a model

consisting of a global pathway and an object pathway

for finer control of object location and size within

an image. The global pathway is responsible for

creating a general layout of the global scene, while

the object pathway generates object features within

the given bounding boxes. The outputs of the global

and object pathways are then combined to generate

the final synthetic image. When there is no text

description available, Ref. [62] can take a noise vector

and individual object bounding boxes as input.

Taking a different approach from GAN based

methods, Tan et al. [63] proposed a Text2Scene

model for text-to-scene generation, which learns to

sequentially generate objects and their attributes such
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as location, size, and appearance at every time step.

With a convolutional recurrent module and attention

module, Text2Scene can generate abstract scenes and

object layouts directly from descriptive sentences. For

image synthesis, Text2Scene retrieves patches from

real images to generate the image composites.

4.2.4 Fusion of conditional and unconditional

generation

While most existing text-to-image synthesis models

are based on conditional image generation, Bodla et

al. [64] proposed a FusedGAN which combines

unconditional image generation and conditional image

generation. An unconditional generator produces a

structure prior independent of the condition, and

the other conditional generator refines details and

creates an image that matches the input condition.

FusedGAN was evaluated on both the text-to-image

generation task and the attribute-to-face generation

task discussed later in Section 4.4.1.

4.2.5 Evaluation metrics for text to image synthesis

Widely used metrics for image synthesis such as

IS [14] lack awareness of matching between the text

and generated images. Recently, more effort has

been focused on proposing more accurate evaluation

metrics for text to image synthesis and for evaluating

the correspondence between generated image content

and input conditions. R-precision is proposed in

Ref. [25] to evaluate whether a generated image is

well conditioned on the given text description. Hinz

et al. [65] proposed the semantic object accuracy

(SOA) score which uses a pre-trained object detector

to check whether the generated image contains the

objects described in the caption, especially for the

MS-COCO dataset. SOA shows better correlation

with human perception than IS in the user study and

provides better guidance for training text to image

synthesis models.

4.2.6 Benchmark datasets

For text-guided image synthesis tasks, popular

benchmark datasets include datasets with a single

object category and datasets with multiple object

categories. For the former, the Oxford-102 dataset [44]

contains 102 different types of flowers common in the

UK. The CUB dataset [45] contains photos of 200 bird

species mostly from North America. Datasets with

multiple object categories and complex relationships

can be used to train models for more challenging

image synthesis tasks. One such dataset is MS-

COCO [46], which has a training set with 80k images

and a validation set with 40k images. Each image in

the COCO dataset has five text descriptions.

4.3 Image-like inputs

4.3.1 Commonality

In this section, we summarize image synthesis works

based on three types of intuitive inputs, namely

sketches, semantic maps, and pose. We call them

image-like inputs because all of them can be, and have

been, represented as rasterized images. Therefore,

synthesizing images from these image-like inputs

can be regarded as an image-to-image translation

problem. Several works provide general solutions to

this problem, like pix2pix [52] and pix2pixHD [66].

In this survey, we focus on works that deal with a

specific type of input.

4.3.2 Sketches and strokes as input

Sketches, or line drawings, can be used to express

users’ intent in an intuitive way, even for those

without professional drawing skills. With the

widespread use of touch screens, it has become

very easy to create sketches; and the research

community is paying increasingly more attention

to the understanding and processing of hand-drawn

sketches, especially in applications such as sketch-

based image retrieval and sketch-to-image generation.

Generating realistic images from sketches is not a

trivial task, since the synthesized images need to

be aligned spatially with the given sketches, while

maintaining semantic coherence.

(1) Retrieval-and-composition based approaches

Early approaches for generating images from

sketches mainly took a retrieval-and-composition

strategy as illustrated in Fig. 3. For each object in

the user-given sketch, they searched for candidate

images in a pre-built object-level image (fragment)

database, using some similarity metric to evaluate

how well the sketch matched the image. The final

image is synthesized by composition of retrieved

results, mainly by image blending algorithms. Chen

et al. [33] presented a system called Sketch2Photo,

which composes a realistic image from a simple free-

hand sketch annotated with text labels. The authors

proposed a contour-based filtering scheme to search

for appropriate photographs according to the given

sketch and text labels, and a novel hybrid blending

algorithm combining alpha blending and Poisson
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blending, to improve the synthesis quality. Eitz

et al. [67] created Photosketcher, a system that

finds semantically relevant regions from appropriate

images in a large image collection and composes the

regions automatically. Users can also interact with

the system by drawing scribbles on the retrieved

images to improve region segmentation quality, re-

sketching to find better candidates, or choosing

from different blending strategies. Hu et al. [68]

introduced PatchNet, a hierarchical representation

of image regions that summarizes a homogeneous

image patch by a graph node and represents geometric

relationships between regions by labeled graph edges.

PatchNet was shown to be a compact representation

that can be used efficiently for sketch-based, library-

driven, interactive image editing. Wang et al. [69]

proposed a sketch-based image synthesis method that

compares sketches with contours of object regions via

the GF-HoG descriptor; novel images are composited

by GrabCut followed by Poisson blending or alpha

blending. For generating images of a single object like

an animal with user-specified pose and appearance,

Turmukhambetov et al. [70] presented a sketch-based

interactive system that generates the target image by

composing patches of nearest neighbour images on

the joint manifold of ellipses and contours for object

parts.

(2) Deep learning based approaches

In recent years, deep convolutional neural networks

(CNNs) have achieved significant progress in image-

related tasks. CNNs have been used to map sketches

to images with the benefit of being able to

synthesize novel images different from those in

pre-built databases. One challenge to using deep

CNNs is that training such networks requires paired

sketch–image data, which can be expensive to

acquire. Hence, various techniques have been

proposed to generate synthetic sketches from images,

and then use the synthetic sketch and image

pairs for training. Methods for synthetic sketch

generation include boundary detection algorithms

such as Canny or holistically-nested edge detection

(HED) [71], and stylization algorithms for image-to-

sketch conversion [72–76]. Post-processing steps are

adopted for small stroke removal, spline fitting [77],

and stroke simplification [78]. A few works utilize

crowd-sourced free-hand sketches for training [8,

9]. They either construct pseudo-paired data by

matching sketches and images [8], or propose a

method that does not require paired data [9].

Another aspect of CNN training that has been

investigated is the representation of sketches. In some

works [79, 80], the input sketches are transformed

into distance fields to obtain a dense representation,

but no experimental comparisons have been done to

demonstrate which form of input is more suitable for

CNN processing. Next, we review specific works that

utilize a deep-learning based approach for sketch to

image generation.

Treating a sketch as an image-like input, several

works use a fully convolutional neural network

architecture to generate photorealistic images.

Güçlütürk et al. [81] first attempted to use deep

neural networks to tackle the problem of sketch-based

synthesis. They developed three different models to

generate face images from three different types of

sketches: line sketches, grayscale sketches, and color

sketches. An encoder–decoder fully convolutional

Fig. 3 A classical pipeline of retrieval-and-composition methods for synthesis. Candidate images are generated by composing image segments

retrieved from a pre-built image database. Reproduced with permission from Ref. [33], c© ACM 2009.
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neural network is adopted and trained with various

loss terms. A total variation loss is proposed to

encourage smoothness. Sangkloy et al. [6] proposed

Scribbler, a system that can generate realistic images

from human sketches and color strokes. An XDoG

filter is used for boundary detection to generate image–

sketch pairs and color strokes are sampled to provide

color constraints in training. The authors also use

an encoder–decoder network architecture and adopt

similar loss functions to those in Ref. [81]. Users can

interact with the system in real time. The authors

also provide applications for colorization of grayscale

images.

Generative adversarial networks have also been

used for sketch-to-image synthesis. Chen and Hays

[79] proposed a novel GAN-based architecture with

multi-scale inputs for the problem. The generator and

discriminator both consist of several masked residual

unit (MRU) blocks. An MRU takes in a feature map

and an image, and outputs a new feature map, which

can allow a network to repeatedly condition on an

input image, like a recurrent network. They also

adopt a novel data augmentation technique, which

generates sketch–image pairs automatically through

edge detection and post-processing steps including

binarization, thinning, small component removal,

erosion, and spur removal. To encourage diversity of

generated images, the authors proposed a diversity

loss, which maximizes the L1 distance between the

outputs of two identical input sketches with different

noise vectors. Lu et al. [26] considered the sketch-to-

image synthesis problem as an image completion task

and proposed a contextual GAN for the task. Unlike a

traditional image completion task where only part of

an object is masked, the entire real image is treated as

the missing piece in a joint image that consists of both

sketch and the corresponding photo. The advantage

of using such a joint representation is that, instead

of using the sketch as a hard constraint, the sketch

part of the joint image serves as a weak contextual

constraint. Furthermore, the same framework can

also be used for image-to-sketch generation where the

sketch would be the masked or missing piece to be

completed. Ghosh et al. [7] presented an interactive

GAN-based sketch-to-image translation system. As

the user draws a sketch of a desired object type,

the system automatically recommends completions

and fills the shape with class-conditioned texture.

The result changes as the user adds or removes

strokes over time, which enables a feedback loop

that the user can leverage for interactive editing.

The system consists of a shape completion stage

based on a non-image generation network [82], and a

class-conditioned appearance translation stage based

on the encoder–decoder model from MUNIT [83].

To perform class-conditioning more effectively, the

authors propose a soft gating mechanism, instead of

using simple concatenation of class codes and features.

Several works focus on sketch-based synthesis of

human face images. Portenier et al. [84] developed

an interactive system for face photo editing. The

user can provide shape and color constraints by

sketching on the original photo, to edit it. Editing

is done by a CNN, which is trained on randomly

masked face photos with sampled sketches and

color strokes in an adversarial manner. Xia et

al. [85] proposed a two-stage network for sketch-

based portrait synthesis. The stroke calibration

network is responsible for converting the input poorly-

drawn sketch to a more detailed and calibrated one

that resembles an edge map. Then the refined

sketch is used in the image synthesis network to

produce a photo-realistic portrait image. Li et

al. [80] proposed a self-attention module to capture

long-range connections of sketch structures, where

a self-attention mechanism is adopted to aggregate

features from all positions of the feature map

using the calculated self-attention map. A multi-

scale discriminator is used to distinguish patches of

different receptive fields, to simultaneously ensure

local and global realism. Chen et al. [86] introduced

DeepFaceDrawing, a local-to-global approach for

generating face images from sketches that uses

input sketches as soft constraints and is able to

produce high-quality face images even from rough or

incomplete sketches. The key idea is to learn feature

embeddings of key face components and then train a

deep neural network to map the embedded component

features to realistic images.

While most works in sketch-to-image synthesis with

deep learning techniques have focused on synthesizing

object-level images from sketches, Gao et al. [8]

explored synthesis at the scene level by proposing

a deep learning framework for scene-level image

generation from freehand sketches. The framework

first segments the sketch into individual objects,
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recognizes their classes, and categories them into

foreground/background objects. Then the foreground

objects are generated by an EdgeGAN module that

learns a common vector representation for images

and sketches and maps the vector representation

of an input sketch to an image. The background

generation module is based on the pix2pix [52]

architecture. The synthesized foregrounds along with

background sketches are fed to a network to get the

final generated scene. To train the network and

evaluate their method, the authors constructed a

composite dataset called SketchyCOCO based on

the Sketchy database [87], Tuberlin dataset [88],

QuickDraw dataset, and COCO Stuff [89].

As collecting paired training data can be labor

intensive, learning from unpaired sketch-photo data

in an unsupervised setting is an interesting direction

to explore. Liu et al. [9] proposed an unsupervised

solution by decomposing the synthesis process into

a shape translation stage and a content enrichment

stage. The shape translation network transforms an

input sketch into a gray-scale image, trained using

unpaired sketches and images, under the supervision

of a cycle-consistency loss. In the content enrichment

stage, a reference image can be provided as style

guidance, whose information is injected into the

synthesis process following the AdaIN framework [90].

(3) Benchmark datasets

For synthesis from sketches, various datasets

covering multiple types of objects are used [45, 46,

87, 89, 92–98]. However, only a few [87, 92, 98]

have paired image and sketch data. For the other

datasets, edge maps or line strokes are extracted

using edge extraction or style transfer techniques

and used as ersatz sketch data for training and

validation. SketchyCOCO [8] built a paired image–

sketch dataset from existing image datasets [89] and

sketch datasets [87, 88] by looking for the most similar

sketch with the same class label for each foreground

object in a natural image.

4.3.3 Semantic label maps as input

(1) Background

Synthesizing photorealistic images from semantic

label maps is the inverse problem of semantic image

segmentation. It has applications in controllable

image synthesis and image editing. Existing

methods either work with a traditional retrieval-

and-composition approach [99, 100], a deep learning

based method [101–106], or a hybrid of the two [107].

Different types of datasets are utilized to allow

synthesis of images of various scenes or subjects, such

as indoor and outdoor scenes, or human bodies.

(2) Retrieval-and-composition based methods

Non-parametric methods follow the traditional

retrieval-and-composition strategy. Johnson et

al. [99] first proposed synthesizing images from

semantic concepts. Given an empty canvas, the

user can paint regions with corresponding keywords

at desired locations. The algorithm searches for

candidate images in the stock and uses a graph-

cut based seam optimization process to generate

realistic photographs for each combination. The

best combination with the minimum seam cost is

chosen as the final result. Bansal et al. [100]

proposed a non-parametric matching and hierarchical

composition strategy to synthesize realistic images

from semantic maps. The strategy has four stages: a

global consistency stage to retrieve relevant samples

based on indicator vectors of presented categories, a

shape consistency stage to find candidate segments

based on shape context similarity between the input

label mask and the ones in the database, and

a part consistency stage and a pixel consistency

stage that re-synthesize patches and pixels based

on best-matching areas as measured by Hamming

distance. The proposed method outperforms state-

of-the-art parametric methods like pix2pix [52] and

pix2pixHD [66] both qualitatively and quantitatively.

(3) Deep learning based methods

Methods based on deep learning mainly vary

in network architecture design and optimization

objective. Chen and Koltun [101] proposed a

regression approach for synthesizing realistic images

from semantic maps, without the need for adversarial

training. To improve synthesis quality, they

proposed a cascaded refinement network (CRN),

which progressively generates images from low

resolution to high resolution (up to 1024 × 2048

pixels) through a cascade of refinement modules.

To encourage diversity in generated images, the

authors proposed a diversity loss, which lets the

network output multiple images at once and optimizes

diversity within the collection. Wang et al. [108]

proposed a style-consistent GAN framework that

generates images given a semantic label map input

and an example image indicating style. A novel style-
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consistency discriminator is designed to determine

whether a pair of images have consistent style and

an adaptive semantic consistency loss is optimized to

ensure correspondence between the generated image

and input semantic label map.

Having found that directly synthesizing images

from semantic maps through a sequence of

convolutions sometimes provides unsatisfactory

results because of semantic information loss

during forward propagation, some work seeks to

better use the input semantic map and preserve

semantic information in all stages of the synthesis

network. Park et al. [103] proposed a spatially-

adaptive normalization layer (SPADE) with learnable

parameters that utilizes the original semantic map to

help retain semantic information in the feature maps

after traditional batch normalization. The authors

incorporated their SPADE layers into the pix2pixHD

architecture and produced state-of-the-art results on

multiple datasets. Liu et al. [104] argued that a

convolutional network should be sensitive to semantic

layouts at different locations. Thus they proposed

conditional convolution blocks (CC Block), where

parameters for convolution kernels are predicted from

semantic layouts. They also proposed a feature

pyramid semantic-embedding (FPSE) discriminator,

which predicts semantic alignment scores in addition

to real versus fake scores. It explicitly forces the

generated images to be better aligned semantically

with the given semantic map. Zhu et al. [105]

proposed a group decreasing network (GroupDNet).

It utilizes group convolutions in the generator;

the number of groups in the decoder decreases

progressively. Inspired by SPADE, the authors

also proposed a novel normalization layer to make

better use of information in the input semantic map.

Experiments show that the GroupDNet architecture

is more suitable for multi-modal image synthesis, and

can produce plausible results.

Observing that results from existing methods often

lack detailed local texture, resulting from large objects

dominating the training, Tang et al. [106] aimed

to better synthesize small objects in the image.

In their design, each class has its own class-level

generation network that is trained with feedback from

a classification loss; all classes share an image-level

global generator. The class-level generator generates

parts of the image that correspond to each class, from

masked feature maps. All the class-specific image

parts are then combined and fused with the image-level

generation result. In other work, to provide more fine-

grained interactivity, Zhu et al. [91] proposed semantic

region-adaptive normalization (SEAN), which allows

manipulation of each semantic region individually, to

improve image quality. A qualitative comparison of

different deep learning based methods is shown in Fig. 4.

(4) Integrative methods

While deep learning based generative methods are

Fig. 4 Image synthesis from semantic label maps. Reproduced with permission from Ref. [91], c© IEEE 2020.
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better able to synthesize novel images, traditional

retrieval-and-composition methods generate images

with more reliable texture and fewer artifacts. To

combine the advantages of both parametric and non-

parametric methods, Qi et al. [107] presented a semi-

parametric approach. They built a memory bank

offline, containing segments of different classes of

objects. Given an input semantic map, segments are

first retrieved using a similarity metric defined by

IoU score of the masks. The retrieved segments are

fed to a spatial transformer network where they are

aligned, and further put onto a canvas by an ordering

network. The canvas is refined by a synthesis network

to give the final result. This combination of retrieval-

and-composition and deep-learning based methods

allows high-fidelity image generation, but it takes

more time during inferencing and the framework is

not end-to-end trainable.

(5) Benchmark datasets

For synthesis from semantic label maps, experiments

are mainly conducted on datasets of the human

body [109–111] or face [112], or indoor [113–115] or

outdoor scenes [116]. Lassner et al. [102] augmented

the Chictopia10K [109, 110] dataset by adding 2D

keypoint locations and fitted SMPL body models,

and the augmented dataset was used by Bem et

al. [117]. Park et al. [103] and Zhu et al. [91] collected

images from the Internet and applied state-of-the-art

semantic segmentation models [118, 119] to build

paired datasets.

4.3.4 Poses as input

(1) Background

Given a reference person image, its corresponding

pose, and a novel pose, pose-based image synthesis

methods can generate an image of the person in

that novel pose. Unlike synthesizing images from

sketches or semantic maps, pose-guided synthesis

requires novel views to be generated, which cannot

be done by a retrieval and composition pipeline.

Thus we focus on reviewing deep learning-based

methods [27–31, 117, 120–123]. In these methods,

a pose is often represented as a set of well-defined

body keypoints. Each keypoint can be modeled as

an isotropic Gaussian that is centered at the ground-

truth joint location with a small standard deviation,

giving rise to a heatmap. The concatenation of the

joint-centered heatmaps then can be used as input

to the image synthesis network. Heatmaps of rigid

parts and the whole body can also be utilized [117].

(2) Supervised deep learning methods

In a supervised setting, ground-truth target images

in target poses are required for training. Thus,

datasets with the same person in multiple poses are

needed. Ma et al. [27] proposed a pose guided person

generation network for generating person images in

given poses. It adopts a GAN-like architecture and

generates images in a coarse-to-fine manner. In the

coarse stage, an image of a person along with a novel

pose are fed into the U-Net based generator, where

the pose is represented as heatmaps of body keypoints.

The coarse output is then concatenated again with

the person image, and a refinement network is trained

to learn a difference map that can be added to

the coarse output to give the final refined result.

The discriminator is trained to distinguish synthetic

outputs from real images. Besides the GAN loss, an

L1 loss is used to measure dissimilarity between the

generated output and the target image. Since the

target image may have different background from the

input condition image, the L1 loss is modified to give

higher weight to the human body, utilizing a pose

mask derived from the pose skeleton.

Although GANs have achieved great success in

image synthesis, there are still difficulties when

it comes to pose-based synthesis, one of which is

the deformation problem. The given novel pose

can be drastically different from the original pose,

resulting in large deformations in both shape and

texture in the synthesized image, making it hard to

directly train a network that can generate images

without artifacts. Existing work mainly adopts

transformation strategies to overcome this problem,

because transformations make explicit which body

part moves to which place, given original and

target poses. These methods usually transform

body parts of the original image [120], the human

parsing map [122], or the feature map [29, 31, 122].

Balakrishnan et al. [120] explicitly separated the

human body from the background and synthesized

person images of unseen poses and background in

separate steps. Their method consists of four modules:

a segmentation module that produces masks of

the whole body and each body part based on the

source image and pose, a transformation module that

calculates and applies an affine transformation to

each body part and corresponding feature maps, a
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background generation module that applies inpainting

to fill the body-removed foreground region, and a

final integration module that uses the transformed

feature maps and the target pose to produce the

synthesized foreground, which is then combined with

the inpainted background to give the final result. To

train the network, VGG-19 perceptual loss is used

along with GAN loss. Siarohin et al. [29] noted that

it is hard for the generator to directly capture large

body movements because of the restricted receptive

field, and introduced deformable GANs to tackle

the problem. The method decomposes the body

joints into several semantic parts, and calculates

an affine transform from the source to the target

pose for each part. The affine transforms are used

to align the feature maps of the source image with

the target pose. The transformed feature maps

are then concatenated with the target pose features

and decoded to synthesize the output image. The

authors also proposed a novel nearest-neighbor loss

based on feature maps, instead of using L1 or L2

loss. Their method is more robust to large pose

changes and produces higher quality images than

Ref. [27]. Dong et al. [122] utilized parsing results

as a proxy to achieve better synthesis results. They

first estimate parsing results for the target pose, and

then fit a thin plate spline (TPS) transformation

between the original and estimated parsing maps.

The TPS transformation is further applied to warp

the feature maps for feature alignment and a soft-

gated warping block is used to provide controllability

to the transformation. The final image is synthesized

using the transformed feature maps. Zhu et al. [31]

proposed to divide large deformations into a sequence

of small deformations, which are more amenable to

network training. In this way, the original pose

can be transformed progressively, through many

intermediate poses. They proposed a pose-attentional

transfer block (PATB), which transforms the feature

maps under the guidance of an attention mask. By

stacking multiple PATBs, the feature maps undergo

several transformations and the transformed maps

are used to synthesize the final result.

While most deep learning based methods for

synthesis from poses adopt an adversarial training

paradigm, Bem et al. [117] proposed a conditional-

VAEGAN architecture that combines a conditional-

VAE framework and a GAN discriminator module

to generate realistic natural images of people in a

unified probabilistic framework, where the body pose

and appearance are kept as separate interpretable

variables, allowing the sampling of people with

independent variations of pose and appearance. The

loss function used includes both conditional-VAE and

GAN losses including L1 reconstruction loss, closed-

form KL-divergence loss between recognition and

prior distributions, and discriminator cross-entropy

loss.

(3) Unsupervised deep learning methods

The aforementioned pose-to-image synthesis

methods require ground-truth images in target poses

for training because of their use of L1, L2 or

perceptual losses. To eliminate the need for target

images, some works consider an unsupervised setting

of this problem [30, 121], where the training process

does not require ground-truth images of the target

pose. The basic idea is to ensure cycle consistency.

After the forward pass, the synthesized results along

with the target pose are treated as the reference, and

used to synthesize the image in the original reference

pose. This synthesized image should be consistent

with the original reference image. Pumarola et

al. [121] further utilized a pose estimator, to ensure

pose consistency. Song et al. [30] used parsing

maps as supervision instead of poses. They predict

parsing maps under new target poses and use them

to synthesize the corresponding images. Since the

parsing maps in the target poses are not available

due to operating in an unsupervised setting, the

authors proposed a pseudo-label selection technique

to provide ersatz parsing maps by searching for

ones with the same type of clothes and minimum

transformation energy.

(4) Benchmark datasets

For synthesis from poses, the DeepFashion [111]

and Market-1501 [124] datasets are most widely used.

The former is built for clothes recognition but has

also been used for pose-based image synthesis because

of its rich annotation, such as clothing landmarks,

as well as images with corresponding foreground but

diverse backgrounds. The Market-1501 dataset was

initially introduced for the purpose of person re-

identification, and contains a large number of person

images produced using a pedestrian detector, with

annotated bounding boxes; also, each identity has

multiple images from different camera views.
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4.4 Other input modalities

Apart from text descriptions and image-like inputs,

other intuitive user inputs exist, such as class labels,

attribute vectors, and graph-like inputs.

4.4.1 Visual attributes as input

In this subsection, we mainly focus on works that

use one of the fine-grained class conditional labels

or vectors, i.e., visual attributes, as inputs. Visual

attributes provide a simple and accurate way of

describing major features in images, e.g., describing

attributes of a certain category of birds or details of a

person’s face. Current methods either take a discrete

one-hot vector as attribute labels, or a continuous

vector as visual attribute input.

Yan et al. [125] proposed a disentangling CVAE

(disCVAE) for conditioned image generation from

visual attributes. A conditional variational auto-encoder

(cVAE) [39] generates images from a posterior

conditioned on both the conditions and random

vectors, while disCVAE interprets an image as a

composite of a foreground layer and a background

layer. The foreground layer is conditioned on visual

attributes and the whole image is generated through

gated integration. Attribute-conditioned experiments

are often conducted on the LFW [126] and CUB [45]

datasets.

An application of face generation with visual

attribute inputs is to manipulate existing face images.

AttGAN [127] applies an attribute classification

constraint and reconstruction learning to guarantee

changes in desired attributes while maintaining

other details. Zhang et al. [128] proposed using

spatial attention which can localize attribute-specific

regions to perform desired attribute manipulation

while keeping the rest unchanged. Unlike other

work utilizing attribute input, Qian et al. [129]

explored face manipulation via conditional structure

input. Given a structure prior as conditional input

to a cVAE, AF-VAE [129] can arbitrarily modify

facial expressions and head poses using geometry-

guided feature disentanglement and an additive

Gaussian mixture prior for appearance representation.

Most such face image manipulation work performs

experiments on commonly used face image datasets

such as the CelebA [96] dataset.

For controllable person image synthesis, Men et

al. [130] introduced an attribute-decomposed GAN,

where visual attributes, including clothes, are

extracted from reference images and combined with

target poses to generate target images with desired

attributes. The separation and decomposition of

attributes from existing images provide a new way

of synthesizing person images without attribute

annotations.

Another interesting application of taking visual

attributes as input is fashion design. Lee and Lee

[131] proposed a GAN model with an attentional

discriminator for attribute-to-fashion generation.

For multiple-attribute inputs, multiple independent

Gaussian distributions are derived by mapping

each attribute vector to the mean vector and

diagonal covariance matrix. The prior distribution

for attribute combination is the product of all

independent Gaussians. Experiments were conducted

on a dataset consisting of dress images collected from

a popular fashion site.

In terms of image generation methodology

using visual attributes as inputs, the Glow model

introduced in Ref. [21], a generative flow model

using an invertible 1 × 1 convolution, shows great

potential. Compared with VAEs and GANs, flow

models have merits including reversible generation,

meaningful latent space, and memory efficiency. Glow

consists of a series of steps of flow, where each step

consists of activation normalization followed by an

invertible 1 × 1 convolution, followed by a coupling

layer. On the Cifar10 dataset, Glow achieves better

negative log likelihood than RealNVP [132]. On the

CelebA-HQ dataset, Glow generates high fidelity face

images and also allows meaningful visual attribute

manipulation.

For attribute-guided synthesis tasks, major

benchmark datasets include the Visual Genome,

CelebA(-HQ), and Labeled Faces in the Wild. The

Visual Genome [60] contains over 100k images in

which each image has an average of 21 objects, 18

attributes, and 18 pairwise relationships between

objects. The CelebA [96] dataset has a 40 dimensional

binary attribute vector annotated for each face image.

The CelebA-HQ dataset [97] consists of 30,000 high

resolution images from the CelebA dataset. The

Labeled Faces in the Wild (LFW) dataset contains

face images that are segmented and labeled with

semantically meaningful region labels (e.g., hair,

skin).
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4.4.2 Graphs and layouts as input

Another interesting type of intuitive user input is

graphs (see Fig. 5). Graphs can encode multiple

relationships in a concise way and have distinctive

characteristics such as sparse representation. An

example application of graph-based inputs is

architectural design using scene graphs, layouts, and

other similar modalities.

Johnson et al. [59], as mentioned earlier in

Section 4.2.3, can take a scene graph and generate

a corresponding layout. The final image is then

synthesized by a CRN model [56] from a noise vector

and the layout. Figure 5 demonstrates some results.

To generate images that exhibit complex

relationships between multiple objects, Zhao et

al. [133] proposed a Layout2Im model that uses

layout as input to generate images. The layout is

specified by multiple bounding boxes of objects with

category labels. Training of the model is done by

taking ground-truth images with their layouts, and

testing is done by sampling object latent codes from

a normal distribution. An object composer takes

the word embedding of input text, object latent

code, and bounding box locations to produce object

feature maps. The object feature maps are then

composed using convolutional LSTM into a hidden

feature map and decoded into the final image.

Also containing the idea of converting layout

to image, LayoutGAN [10] uses a differentiable

wireframe rendering layer with an image-based

discriminator that can generate layout from graphical

element inputs. Semantic and spatial relations

between elements are learned via a stacked relation

module with self attention; experiments on various

datasets show promising results in generating

meaningful layouts which can be also rasterized.

Luo et al. [134] proposed a variational generative

model which generates 3D scene layouts given input

scene graphs. cVAE is combined with a GCN [13]

for layout synthesis. The authors also present a

rendering model which first instantiates a 3D model

by retrieving object meshes, and then utilizes a

differentiable renderer to render the corresponding

semantic image and depth image. Their experiments

on the SUNCG dataset [135] show that the method

can generate accurate and diverse 3D scene layouts,

Fig. 5 Scene graph to image synthesis results. Scene graphs are often extracted from text descriptions. Correct object relationships embedded

in input scene graphs are reflected in the generated images. Reproduced with permission from Ref. [59], c© IEEE 2018.
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and has potential for various downstream scene layout

and image synthesis tasks.

5 Summary and trends

5.1 Advances in model architecture design

and training strategy

Among different attempts to improve the quality

of the synthesized image and the correspondence

between user input and generated image, several

successful designs have been incorporated into

multiple conditional generative models and have

proven their effectiveness in various tasks. For

instance, a hierarchical generation architecture has

been widely used by different models, including

GANs [50, 66, 136] and VAEs [137], in order

to generate high-resolution, high-quality images

in a multi-stage, progressive fashion. Attention-

based mechanisms have been incorporated in

various work [25, 138] to give finer-grained control

over regions within generated images. To ensure

correspondence between user input and generated

images, various designs have been proposed for

generative neural networks: relatively straightforward

methods combine user input and other input (e.g., a

latent vector) as input to the generative model, other

methods take the user input as part of the supervision

signal to measure the correspondence between input

and output, and more advanced methods, which may

also be more effective, combine transformed inputs,

e.g., in a projection discriminator [36] and spatially-

adaptive normalization [103].

While most current successful models are based

on GANs, it is well-known that training GANs

is difficult and can be unstable. As for general

purpose GANs, works focusing on image synthesis

with intuitive user inputs adopt different design

and training strategies to ease and stabilize GAN

training. Commonly used normalisations include

conditional batch normalization [139] and spectral

normalization [140]; commonly used adversarial losses

include WGAN loss with various regularizations [141,

142], LS-GAN loss [143], and hinge loss [144].

To balance training of the generator and the

discriminator, imbalanced training strategies such

as two time-scale update rule (TTUR) [16] have also

been adopted for better convergence.

General losses employed in different models heavily

depend on the methodological framework. Retrieval

and composition methods typically do not need to be

trained, so no loss is used. For GAN-like models, an

adversarial loss is essential in a majority of the models,

combining a loss for the generator and a loss for the

discriminator in order to push the generator toward

generating fake samples that match the distribution of

real examples. Widely used adversarial losses include

the minimax loss introduced in the original GAN

paper [34] and the Wasserstein loss introduced in

the WGAN paper [141]. VAE models are typically

trained by minimizing a reconstruction error between

the encoder–decoded data and the initial data, with

some regularization of the latent space [38]. To

evaluate the visual quality of generated images and

help provide better image quality, perceptual loss

[145] or adversarial feature matching loss [14] has

been adopted by many existing works, especially when

a paired supervision signal is available.

Alongside general losses, auxiliary losses are often

incorporated in models to better handle different

tasks. Task-specific losses, as well as evaluation

metrics, are natural choices to evaluate and improve

task-specific performance. Depending on the output

modality, one commonly used loss or metric considers

recovering the input condition from the synthesized

images. For instance, image captioning losses can be

included in text-to-image synthesis models [2], and

pose prediction losses can complement general losses

in pose-to-image synthesis tasks [30, 121].

5.2 Summary of methods using specific input

types

Recent advances in text-to-image synthesis have been

mainly based on deep learning methods, especially

GANs. Two major challenges in text-to-image

synthesis are learning the correspondence between

text descriptions and generated images, and ensuring

the quality of generated images. The text–image

correspondence problem has been addressed in

recent years with advanced embedding techniques

for text descriptions and special designs such as

attention mechanisms used to match words and image

regions. High quality generated images, however, are

still limited to narrow categories of objects. For

general scenes where multiple objects co-exist with

complex relationships, the realism and diversity of

the generated images are unsatisfactory and need

improvement. To reduce the difficulty of synthesizing
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complex scenes, current models may benefit from

leveraging different methods such as combining

retrieval-and-composition with deep learning, and

relationship learning which uses relation graphs as

auxiliary input or intermediate steps.

For image-like inputs, one can use a traditional

retrieval-and-composition strategy or adopt recent

deep learning based methods. The former has

several advantages. First, its outputs contain fewer

artifacts because objects are retrieved rather than

synthesized. Second, it allows user intervention at

all stages of the workflow, bringing controllability

and customizability. Third, it can be directly

applied to a new dataset, without the need for time-

consuming training or adaptation. In comparison,

deep learning based methods are less interpretable

and user intervention at all stages of the synthesis

process is more difficult. Although attempts have

been made to combine the advantages of both

approaches [107], deep learning based methods still

dominate for their versatility and ability to generate

completely novel images. In these deep learning based

methods, inputs are usually represented using grid

structures like rasterized images (e.g., for sketches)

or multi-channel tensors (e.g., for poses, semantic

maps), to simplify utilizing convolution based neural

networks. Methods for different input types also have

their own idiosyncrasies. Sketch-based synthesis work

has attempted to bridge the gap between synthetic

sketches and real free-hand sketches, because the

latter are hard to collect; synthetic sketches can be

used to satisfy the needs of training large networks.

For synthesis using semantic maps as input, most

progress is in the design of network architectures to

better utilize information in the input. For pose-based

synthesis, various proposals address problems caused

by large deformations between source and target

poses, including performing explicit transformations,

learning pixel-level correspondence, and synthesis

through a sequence of small deformations. Efforts

have also been made to alleviate the need for ground-

truth data in supervised learning. For example, in

pose-based synthesis, the supervised setting requires

multiple images of the same person in different

poses with the same background; however, often

we have an image collection with only one image

per person. Some methods [9, 30, 121] work in an

unsupervised setting, where no ground-truth of the

synthesized result is needed; they mainly work by

constraining cycle consistency, with extra supervision

for intermediate outputs.

For image synthesis from visual attributes,

applications are mainly in face synthesis, person

synthesis, and fashion design. Since attributes are an

intuitive type of user input suitable for interactive

synthesis, we believe that more applications could

be explored and more advanced models proposed.

One bottleneck for current visual attribute based

synthesis tasks is that attribute-level annotation is

often required for supervised training. For datasets

with no attribute-level annotations, unsupervised

attribute disentanglement or attribute-related prior

knowledge need to be incorporated into the model

design to guarantee that the generated images have

the correct attributes.

Image synthesis with graphs as input can better

encode relationships between objects than other

intuitive user inputs. Current work often relies

on graph neural networks [13, 146] to learn graph

and node features. In addition to graph input,

current methods also try to generate scene graphs

as intermediate output from other input modalities

such as text descriptions. Applications of graphs

as intuitive input include architectural design and

scene synthesis requiring the preservation of specific

object relationships. While few works have consider

image synthesis with graphs, we believe it has great

potential for generating scenes with multiple objects,

complex relationships, and structural constraints.

5.3 Summary of benchmark datasets

To facilitate finding datasets for particular tasks or

particular types of input, we summarize datasets

popularly used for various image synthesis tasks

with intuitive user inputs in Table 1. State-of-

the-art image synthesis methods have achieved

high-quality results using datasets containing single

object categories such as cars [93], birds [45], and

human faces [96–98, 112]. When synthesizing images

containing multiple object categories and complex

scene structure, there is still room for improvement;

datasets such as MS-COCO [46] provide a suitable

basis. Future work could also focus more on synthesis

with intuitive and interactive user inputs, as well

as applications of synthesis methods to real-world

scenarios.
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Table 1 Commonly used datasets in image synthesis tasks with intuitive user inputs. Annotation types include Label, Attribute, Pair,

KeyPoint, Bounding Box, Semantic map, Relationship, Text, Visual Question Answers, Depth map, 3D SCan. Tasks values are TExt, Pose,

SKetch, SEmantic map, ATtributes, Scene Graph, LAyout

Dataset name # images Categories Annotations Tasks Used in

Shoe V2 [92] 8,648a shoe P SK [9]

Stanford’s Cars [93] 16,185 car L,BB SK [26]

UT Zappos50K [94, 95] 50,025 shoe L,P SK [7]

Caltech-UCSD Birds 200 [45] 6,033 bird L,A,BB,S TE, SK [1–3, 25, 26, 47, 50, 51, 53, 64, 125]

Oxford-102 [44] 8,189 flower L TE [1–3, 25, 47, 50, 51]

Labeled Faces in the Wild [126] 13,233 face L,S AT [125, 128]

CelebA [96] 202,599 face L,A,KP SK, AT [26, 64, 127–129]

CelebA-HQ [97] 30,000 face L,A,KP SK, AT [21, 80, 84]

Sketchy [87] 87,971b objects L,P SK [79]

CUHK Face Sketch [98] 1,212c face P SK [6, 81, 85]

COCO [46] 330,000 objects BB,S,KP,T TE,SK,SE [1–3, 25, 49–51, 53, 55, 57, 63, 65, 69, 100]

COCO-Stuff [89] 164,000 objects S,C SK,SE,SG,LA [8, 59, 103, 104, 133]

CelebAMask-HQ [112] 30,000 face S SE [91]

Cityscapes [116] 25,000 outdoor scene S SE [91, 101, 103–107]

ADE20K [113, 114] 22,210 indoor scene S SE [91, 103–107]

NYU Depth [115] 1,449 indoor scene S,D SE [101, 107]

Chictopia10K [109, 110] 17,706 human S SE [102]

DeepFashion [111] 52,712 human L,A,P,KP SE,P,AT [27–31, 105, 121–123, 130]

Market-1501 [124] 32,668 human L,A P [27–31, 122, 123]

Human3.6M [147] 3,600,000 human KP,BB,S,SC P [117]

Visual Genome [60] 108,077 objects BB,A,R,T,VQA SG,LA [59, 133]

a 2000 real images and 6648 sketches.
b 12,500 real images and 75,471 sketches.
c 606 pairs of face photo and corresponding sketch.

6 Perspectives

Having reviewed recent work on image synthesis given

intuitive inputs, we discuss in this section perspectives

on future research, related to input versatility,

generation methodology, benchmark datasets, and

evaluation metrics.

6.1 Input versatility

6.1.1 Text to image

While current methods for text-to-image synthesis

mainly take text inputs that describe the visual

content of an image, more natural inputs often

contain affective words such as happy, pleasing, scary,

or frightful. To handle such inputs, it is necessary for

models to consider the emotional effects during input

text comprehension. Further, generating images that

express or evoke a certain sentiment will require

learning the mapping between visual content and

emotional dimensions such as valence (i.e., positive

or negative affectivity) and arousal (how calming or

exciting the information is), as well as understanding

how differently composing the same objects in an

image can lead to different sentiments.

For particular application domains, input text

descriptions may be more versatile. For instance,

in medical image synthesis, a given input might be a

clinical report containing one or several paragraphs

of text description. Such domain-specific inputs also

require prior knowledge for input text comprehension

and text-to-image mapping. Other under-explored

applications include taking paragraphs or multiple

sentences as input to generate a sequence of images

for story telling [148], or text-based video synthesis

and editing [149–151].

For conditional synthesis, most current works

perform one-to-many generation and try to improve

the diversity of images generated from the same

text input. One interesting work on text-to-image

synthesis by Yin et al. proposes SD-GAN [53] which

investigates the variability between different inputs

intended for the same target image. New applications

may be discovered that need methods for many-to-one

synthesis using similar pipelines.
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6.2 Images from other inputs

Existing methods using sketches and poses as

user input treat them as rasterized images, and

perform image-to-image translation as the synthesis

method. As sketches and poses both contain

geometric information and relationships between

different points on the geometry are important,

we believe it is worth investigating representing

such inputs as sparse vectorized representations

such as graphs, instead of rasterized representations.

Using vectorized inputs will greatly reduce the

size of the input and will also enable the use of

existing graph understanding techniques such as

graph neural networks. Using sketches as input,

another interesting task is generating videos from

sketch-based storyboards, with numerous applications

in animation and visualization.

For graphic inputs that represent architectural

structures such as layouts and wireframes, an

important consideration is that the synthesized

images should preserve structural constraints such as

junctions, parallel lines, and planar surfaces [11] or

relations between graphical elements [10]. In these

scenarios, incorporating prior knowledge about the

physical world could help enhance the photorealism

of generated images and improve the structural

coherence of generated designs.

It will also be interesting to further investigate

image and video generation from other forms of

input. Audio, for instance, is another intuitive,

interactive, and expressive type of input. Generating

photo-realistic video portraits that follow input

audio streams [152–154] has many applications

such as assisting the hearing impaired with speech

comprehension, privacy-preserving video calls, and

VR/AR for training professionals.

6.3 Linking paradigms

In conditional image synthesis, deep learning based

methods have dominated, showing promising results.

However, they still have limitations including the

requirement for large training datasets and high

computational cost for training. Since retrieval-

and-composition methods are often light-weight and

require little training, they can be complementary

to deep learning based methods. Existing works

on image synthesis from semantic maps have

explored the strategy of combining retrieval-and-

composition and learning-based models [107]. One

approach to combination could be to use retrieval-

and-composition to generate a draft image and then

refine it to provide better visual quality and diversity

using a learning-based approach.

Besides the quality of generated images, the

controllability of the output and the interpretability

of the model also play essential roles in synthesis.

Although GAN models generally achieve better image

quality than other methods, it is often more difficult

to interact to control GAN methods than other

learning based methods. Hybrid models combining

GANs and VAEs [42, 43, 117, 155] have shown

promising synthesis results as well as better feature

disentanglement properties. Future works in image

synthesis from intuitive user input can explore other

hybrid models combining the advantages of GANs and

VAEs, as in Ref. [117], as well as using normalizing

flow based methods [20, 21] which allow both feature

learning and tractable marginal likelihood estimation.

Overall, we believe cross pollination between major

image generation paradigms will continue to be an

important direction to produce new models that

improve upon existing image synthesis paradigms

by combining their merits and overcoming their

limitations.

6.4 Evaluation of generation methods

6.4.1 Evaluation metrics

While a range of quantitative metrics for measuring

the realism and diversity of generated images have

been proposed, including the widely used IS [14],

FID [16], and SSIM [17], they still lack consistency

with human perception, which is why many works

still rely on qualitative human assessment of the

quality of images synthesized by different methods.

Recently, some metrics, such as R-precision [25] and

SOA score [65] in text-to-image synthesis, have been

proposed to evaluate whether a generated image is

well conditioned on the given input, in an attempt

to achieve better consistency with human perception.

Further work on automatic metrics that agree with

human evaluation will continue to be important.

For a specific task or application, evaluation should

be based on not just the final image quality but how

well the generated images match the conditional input

and serve the purpose of the intended application or

task. If the synthesized images are used in down-stream

tasks such as data augmentation for classification,
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evaluation based on down-stream tasks also provides

valuable information.

While it is difficult to compare methods across

input types due to differences in input modality

and interactivity, it is feasible to establish standard

processes for synthesis from a particular kind of input,

thus making fair benchmark comparison possible

between methods given the same type of input.

6.4.2 Datasets

As shown in Section 5.3, large-scale datasets of

natural images and annotations have been collected

for specific object categories such as human bodies,

faces, birds, and cars, and for scenes that contain

multiple object categories such as those in COCO [46]

and CityScapes [116]. In future, in order to enable

applications in particular domains that benefit from

image synthesis, e.g., medical image synthesis for data

augmentation and movie video generation, domain-

specific datasets with appropriate annotations will

need to be created.

6.4.3 Evaluation of input choices

Existing image generation methods have been

evaluated and compared mainly based on their

output, i.e., the generated images. We believe that

in image generation tasks conditioned on intuitive

inputs, it is equally important to compare methods

based on the choice of input. In Section 2.1,

we introduced several characteristics that can be

used to compare and evaluate inputs such as their

accessibility, expressiveness, and interactivity. It will

be interesting to study other important characteristics

of inputs as well as criteria for evaluating how well

an input type meets the needs of an application,

how well the input supports interactive editing, how

regularized the learned latent space is, and how well

the synthesized image matches the input condition.

7 Conclusions

This review has covered main approaches for image

synthesis and rendering given intuitive user inputs.

First, we examined what makes a good paradigm

for image synthesis from intuitive user input, from

the perspective of user input characteristics and

output image quality. We then provided an overview

of the main generation paradigms: retrieval and

composition, cGAN, cVAE, and hybrid models,

autoregressive models, and normalizing flow based

methods. Their relative strengths and weaknesses

were discussed in the hope of inspiring ideas that

draw connections between the main approaches, to

produce models and methods that take advantage of

the relative strengths of each paradigm. After the

overview, we delved into details of specific algorithms

for different input types and examined their ideas

and contributions. In particular, we conducted a

comprehensive survey of approaches for generating

images from text, sketches, strokes, semantic label

maps, poses, visual attributes, graphs, and layouts.

Then, we summarized these existing methods in

terms of benchmark datasets used and identified

trends related to advances in model architecture

design and training strategy, and strategies for

handling specific input types. Last but not least,

we provided our perspective on future directions

related to input versatility, generation methodology,

benchmark datasets, and method evaluation and

comparison.
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Favaro, P.; Zwicker, M. Faceshop: Deep sketch-based

face image editing. arXiv preprint arXiv:1804.08972,

2018.

[85] Xia, W.; Yang, Y.; Xue, J.-H. Calisketch: Stroke

calibration and completion for high quality face image

generation from poorly-drawn sketches. arXiv preprint

arXiv:1911.00426, 2019.

[86] Chen, S.-Y.; Su, W.; Gao, L.; Xia, S.; Fu, H.

DeepFaceDrawing: Deep generation of face images

from sketches. ACM Transactions on Graphics Vol.

39, No. 4, Article No. 72, 2020.

[87] Sangkloy, P.; Burnell, N.; Ham, C.; Hays, J. The

sketchy database. ACM Transactions on Graphics

Vol. 35, No. 4, Article No. 119, 2016.

[88] Eitz, M.; Hays, J.; Alexa, M. How do humans sketch

objects? ACM Transactions on Graphics Vol. 31, No.

4, Article No. 44, 2012.

[89] Caesar, H.; Uijlings, J.; Ferrari, V. COCO-stuff:

Thing and stuff classes in context. In: Proceedings of

the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 1209–1218, 2018.

[90] Huang, X.; Belongie, S. Arbitrary style transfer in

real-time with adaptive instance normalization. In:

Proceedings of the IEEE International Conference on

Computer Vision, 1510–1519, 2017.

[91] Zhu, P. H.; Abdal, R.; Qin, Y. P.; Wonka,

P. SEAN: Image synthesis with semantic region-

adaptive normalization. In: Proceedings of the

IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 5103–5112, 2020.

[92] Yu, Q.; Liu, F.; Song, Y. Z.; Xiang, T.; Hospedales, T.

M.; Loy, C. C. Sketch me that shoe. In: Proceedings

of the IEEE Conference on Computer Vision and

Pattern Recognition, 799–807, 2016.

[93] Krause, J.; Stark, M.; Jia, D.; Li, F. F. 3D object

representations for fine-grained categorization. In:

Proceedings of the IEEE International Conference

on Computer Vision Workshops, 554–561, 2013.

[94] Yu, A.; Grauman, K. Fine-grained visual comparisons

with local learning. In: Proceedings of the IEEE

Conference on Computer Vision and Pattern

Recognition, 192–199, 2014.

[95] Yu, A.; Grauman, K. Semantic jitter: Dense supervision

for visual comparisons via synthetic images. In:

Proceedings of the IEEE International Conference

on Computer Vision, 5571–5580, 2017.

[96] Liu, Z. W.; Luo, P.; Wang, X. G.; Tang, X. O. Deep

learning face attributes in the wild. In: Proceedings

of the IEEE International Conference on Computer

Vision, 3730–3738, 2015.

[97] Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive

growing of GANs for improved quality, stability, and

variation. arXiv preprint arXiv:1710.10196, 2017.

[98] Wang, X. G.; Tang, X. O. Face photo-sketch synthesis

and recognition. IEEE Transactions on Pattern

Analysis and Machine Intelligence Vol. 31, No. 11,

1955–1967, 2009.



28 Y. Xue, Y.-C. Guo, H. Zhang, et al.

[99] Johnson, M.; Brostow, G. J.; Shotton, J.;

Arandjelovic, O.; Kwatra, V.; Cipolla, R. Semantic

photo synthesis. Computer Graphics Forum Vol. 25,

No. 3, 407–413, 2006.

[100] Bansal, A.; Sheikh, Y.; Ramanan, D. Shapes and

context: In-the-wild image synthesis & manipulation.

In: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2312–2321,

2019.

[101] Chen, Q. F.; Koltun, V. Photographic image synthesis

with cascaded refinement networks. In: Proceedings

of the IEEE International Conference on Computer

Vision, 1520–1529, 2017.

[102] Lassner, C.; Pons-Moll, G.; Gehler, P. V. A generative

model of people in clothing. In: Proceedings of the

IEEE International Conference on Computer Vision,

853–862, 2017.

[103] Park, T.; Liu, M. Y.; Wang, T. C.; Zhu, J. Y. Semantic

image synthesis with spatially-adaptive normalization.

In: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2332–2341,

2019.

[104] Liu, X.; Yin, G.; Shao, J.; Wang, X.; Li, H. Learning

to predict layout-to-image conditional convolutions

for semantic image synthesis. In: Proceedings of the

33rd Conference on Neural Information Processing

Systems, 570–580, 2019.

[105] Zhu, Z.; Xu, Z. L.; You, A. S.; Bai, X. Semantically

multi-modal image synthesis. In: Proceedings of the

IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 5466–5475, 2020.

[106] Tang, H.; Xu, D.; Yan, Y.; Torr, P. H. S.;

Sebe, N. Local class-specific and global image-

level generative adversarial networks for semantic-

guided scene generation. In: Proceedings of the

IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 7867–7876, 2020.

[107] Qi, X. J.; Chen, Q. F.; Jia, J. Y.; Koltun, V. Semi-

parametric image synthesis. In: Proceedings of the

IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 8808–8816, 2018.

[108] Wang, M.; Yang, G. Y.; Li, R. L.; Liang, R. Z.; Zhang,

S. H.; Hall, P. M.; Hu, S.-M. Example-guided style-

consistent image synthesis from semantic labeling.

In: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 1495–1504,

2019.

[109] Liang, X. D.; Liu, S.; Shen, X. H.; Yang, J. C.; Liu, L.

Q.; Dong, J.; Lin, L.; Yan, S. C. Deep human parsing

with active template regression. IEEE Transactions

on Pattern Analysis and Machine Intelligence Vol. 37,

No. 12, 2402–2414, 2015.

[110] Liang, X. D.; Xu, C. Y.; Shen, X. H.; Yang, J. C.; Liu,

S.; Tang, J. H.; Lin, L.; Yan, S. C. Human parsing

with contextualized convolutional neural network. In:

Proceedings of the IEEE International Conference on

Computer Vision, 1386–1394, 2015.

[111] Liu, Z. W.; Luo, P.; Qiu, S.; Wang, X. G.; Tang, X.

O. DeepFashion: Powering robust clothes recognition

and retrieval with rich annotations. In: Proceedings

of the IEEE Conference on Computer Vision and

Pattern Recognition, 1096–1104, 2016.

[112] Lee, C. H.; Liu, Z. W.; Wu, L. Y.; Luo,

P. MaskGAN: Towards diverse and interactive

facial image manipulation. In: Proceedings of the

IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 5548–5557, 2020.

[113] Zhou, B. L.; Zhao, H.; Puig, X.; Fidler, S.;

Barriuso, A.; Torralba, A. Semantic understanding of

scenes through the ADE20K dataset. arXiv preprint

arXiv:1608.05442, 2016.

[114] Zhou, B. L.; Zhao, H.; Puig, X.; Fidler, S.; Barriuso, A.;

Torralba, A. Scene parsing through ADE20K dataset.

In: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 5122–5130, 2017.

[115] Silberman, N.; Hoiem, D.; Kohli, P.; Fergus, R. Indoor

segmentation and support inference from RGBD

images. In: Computer Vision – ECCV 2012. Lecture

Notes in Computer Science, Vol. 7576. Fitzgibbon,

A.; Lazebnik, S.; Perona, P.; Sato, Y.; Schmid, C. Eds.

Springer Berlin Heidelberg, 746–760, 2012.

[116] Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.;

Enzweiler, M.; Benenson, R.; Franke, U.; Roth,

S.; Schiele B. The cityscapes dataset for semantic

urban scene understanding. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern

Recognition, 3213–3223, 2016.

[117] Bem, R. D.; Ghosh, A.; Boukhayma, A.; Ajanthan, T.;

Siddharth, N.; Torr, P. A conditional deep generative

model of people in natural images. In: Proceedings

of the IEEE Winter Conference on Applications of

Computer Vision, 1449–1458, 2019.

[118] Chen, L. C.; Papandreou, G.; Kokkinos, I.;

Murphy, K.; Yuille, A. L. DeepLab: Semantic

image segmentation with deep convolutional nets,

atrous convolution, and fully connected CRFs. IEEE

Transactions on Pattern Analysis and Machine

Intelligence Vol. 40, No. 4, 834–848, 2018.

[119] Chen, L. C.; Zhu, Y. K.; Papandreou, G.; Schroff,

F.; Adam, H. Encoder-decoder with atrous separable

convolution for semantic image segmentation. In:

Computer Vision – ECCV 2018. Lecture Notes in

Computer Science, Vol. 11211. Ferrari, V.; Hebert,

M.; Sminchisescu, C.; Weiss, Y. Eds. Springer Cham,

833–851, 2018.



Deep image synthesis from intuitive user input: A review and perspectives 29

[120] Balakrishnan, G.; Zhao, A.; Dalca, A. V.; Durand, F.;

Guttag, J. Synthesizing images of humans in unseen

poses. In: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 8340–

8348, 2018.

[121] Pumarola, A.; Agudo, A.; Sanfeliu, A.; Moreno-

Noguer, F. Unsupervised person image synthesis in

arbitrary poses. In: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern

Recognition, 8620–8628, 2018.

[122] Dong, H.; Liang, X.; Gong, K.; Lai, H.; Zhu, J.;

Yin, J. Soft-gated warping-GAN for pose-guided

person image synthesis. In: Proceedings of the 32nd

Conference on Neural Information Processing Systems,

474–484, 2018.

[123] Li, Y. N.; Huang, C.; Loy, C. C. Dense intrinsic

appearance flow for human pose transfer. In:

Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 3688–3697,

2019.

[124] Zheng, L.; Shen, L. Y.; Tian, L.; Wang, S. J.; Wang,

J. D.; Tian, Q. Scalable person re-identification: A

benchmark. In: Proceedings of the IEEE International

Conference on Computer Vision, 1116–1124, 2015.

[125] Yan, X. C.; Yang, J. M.; Sohn, K.; Lee, H.

Attribute2Image: Conditional image generation from

visual attributes. In: Computer Vision – ECCV 2016.

Lecture Notes in Computer Science, Vol. 9908. Leibe,

B.; Matas, J.; Sebe, N.; Welling, M. Eds. Springer

Cham, 776–791, 2016.

[126] Huang, G. B.; Ramesh, M.; Berg, T.; Learned-Miller,

E. Labeled faces in the wild: A database for studying

face recognition in unconstrained environments.

Technical Report 07-49. University of Massachusetts,

2007.

[127] He, Z. L.; Zuo, W. M.; Kan, M. N.; Shan, S. G.;

Chen, X. L. AttGAN: Facial attribute editing by only

changing what you want. IEEE Transactions on Image

Processing Vol. 28, No. 11, 5464–5478, 2019.

[128] Zhang, G.; Kan, M. N.; Shan, S. G.; Chen, X. L.

Generative adversarial network with spatial attention

for face attribute editing. In: Computer Vision –

ECCV 2018. Lecture Notes in Computer Science,

Vol. 11210. Ferrari, V.; Hebert, M.; Sminchisescu,

C.; Weiss, Y. Eds. Springer Cham, 422–437, 2018.

[129] Qian, S. J.; Lin, K. Y.; Wu, W.; Liu, Y.; Wang,

Q.; Shen, F. M.; Qian, C.; He, R. Make a face:

Towards arbitrary high fidelity face manipulation.

In: Proceedings of the IEEE/CVF International

Conference on Computer Vision, 10032–10041, 2019.

[130] Men, Y. F.; Mao, Y. M.; Jiang, Y. N.; Ma, W.

Y.; Lian, Z. H. Controllable person image synthesis

with attribute-decomposed GAN. In: Proceedings of

the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 5083–5092, 2020.

[131] Lee, H.; Lee, S. G. Fashion attributes-to-image

synthesis using attention-based generative adversarial

network. In: Proceedings of the IEEE Winter

Conference on Applications of Computer Vision, 462–

470, 2019.

[132] Dinh, L.; Sohl-Dickstein, J.; Bengio, S. Density

estimation using real NVP. arXiv preprint arXiv:

1605.08803, 2016.

[133] Zhao, B.; Meng, L. L.; Yin, W. D.; Sigal, L.

Image generation from layout. In Proceedings of

the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 8576–8585, 2019.

[134] Luo, A.; Zhang, Z. T.; Wu, J. J.; Tenenbaum,

J. B. End-to-end optimization of scene layout.

In: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 3753–3762,

2020.

[135] Song, S. R.; Yu, F.; Zeng, A.; Chang, A. X.;

Savva, M.; Funkhouser, T. Semantic scene completion

from a single depth image. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern

Recognition, 190–198, 2017.

[136] Choi, Y.; Choi, M.; Kim, M.; Ha, J. W.; Kim, S.;

Choo, J. StarGAN: Unified generative adversarial

networks for multi-domain image-to-image translation.

In: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 8789–8797,

2018.

[137] Vahdat, A.; Kautz, J. NVAE: A deep hierarchical

variational autoencoder. In: Proceedings of the 34th

Conference on Neural Information Processing Systems,

2020.

[138] Zhang, H.; Goodfellow, I. J.; Metaxas, D.; Odena,

A. Self-attention generative adversarial networks.

In: Proceedings of the International Conference on

Machine Learning, 7354–7363, 2019.

[139] De Vries, H.; Strub, F.; Mary, J.; Larochelle, H.;

Pietquin, O.; Courville A. Modulating early visual

processing by language. In: Proceedings of the 30th

Conference on Neural Information Processing Systems

6594–6604, 2017.

[140] Miyato, T.; Kataoka, T.; Koyama, M.; Yoshida,

Y. Spectral normalization for generative adversarial

networks. In: Proceedings of the International

Conference on Learning Representations, 2018.

[141] Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein

generative adversarial networks. In: Proceedings

of the 34th International Conference on Machine

Learning, Vol. 70, 214–223, 2017.



30 Y. Xue, Y.-C. Guo, H. Zhang, et al.

[142] Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin,

V.; Courville, A. C. Improved training of Wasserstein

GANs. In: Proceedings of the 30th Conference on

Neural Information Processing Systems, 5767–5777,

2017.

[143] Mao, X. D.; Li, Q.; Xie, H. R.; Lau, R. Y. K.; Wang,

Z.; Smolley, S. P. Least squares generative adversarial

networks. In: Proceedings of the IEEE International

Conference on Computer Vision, 2813–2821, 2017.

[144] Lim, J. H.; Ye, J. C. Geometric GAN. arXiv preprint

arXiv:1705.02894, 2017.

[145] Johnson, J.; Alahi, A.; Li, F. F. Perceptual losses

for real-time style transfer and super-resolution. In:

Computer Vision – ECCV 2016. Lecture Notes in

Computer Science, Vol. 9906. Leibem, B.; Matas, J.;

Sebe, N.; Welling, M. Eds. Springer Cham, 694–711,

2016.

[146] Velifickovific, P.; Cucurull, G.; Casanova, A.; Romero,

A.; Lifio, P.; Bengio, Y. Graph attention networks.

In: Proceedings of the International Conference on

Learning Representations, 2018.

[147] Ionescu, C.; Papava, D.; Olaru, V.; Sminchisescu,

C. Human3.6M: Large scale datasets and predictive

methods for 3D human sensing in natural environments.

IEEE Transactions on Pattern Analysis and Machine

Intelligence Vol. 36, No. 7, 1325–1339, 2014.

[148] Li, Y. T.; Gan, Z.; Shen, Y. L.; Liu, J. J.;

Cheng, Y.; Wu, Y. X.; Carin, L.; Carlson, D.;

Gao, J. F. StoryGAN: A sequential conditional

GAN for story visualization. In: Proceedings of the

IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 6322–6331, 2019.

[149] Pan, Y. W.; Qiu, Z. F.; Yao, T.; Li, H. Q.; Mei, T. To

create what you tell: Generating videos from captions.

In: Proceedings of the 25th ACM international

Conference on Multimedia, 1789–1798, 2017.

[150] Li, Y.; Min, M. R.; Shen, D.; Carlson, D.; Carin, L.

Video generation from text. In: Proceedings of the

AAAI Conference on Artificial Intelligence, 2018.

[151] Wang, M.; Yang, G.-W.; Hu, S.-M.; Yau, S.-T.;

Shamir, A. Write-a-video: Computational video

montage from themed text. ACM Transactions on

Graphics Vol. 38, No. 6, Article No. 177, 2019.

[152] Chen, L. L.; Maddox, R. K.; Duan, Z. Y.; Xu, C.

L. Hierarchical cross-modal talking face generation

with dynamic pixel-wise loss. In: Proceedings of

the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 7824–7833, 2019.

[153] Zhou, H.; Liu, Y.; Liu, Z. W.; Luo, P.; Wang, X. G.

Talking face generation by adversarially disentangled

audio-visual representation. Proceedings of the AAAI

Conference on Artificial Intelligence Vol. 33, 9299–

9306, 2019.

[154] Wen, X.; Wang, M.; Richardt, C.; Chen, Z. Y.; Hu, S.

M. Photorealistic audio-driven video portraits. IEEE

Transactions on Visualization and Computer Graphics

Vol. 26, No. 12, 3457–3466, 2020.

[155] Mescheder, L.; Nowozin, S.; Geiger, A. Adversarial

variational bayes: Unifying variational autoencoders

and generative adversarial networks. In: Proceedings

of the 34th International Conference on Machine

Learning, 2391–2400, 2017.

Yuan Xue received his bachelor degree

in electrical engineering from Huazhong

University of Science and Technology,

Wuhan, China, in 2015, and his master

degree in computer science from Lehigh

University, Bethlehem, USA. He is now

working towards his Ph.D. degree in

the College of Information Sciences and

Technology at the Pennsylvania State University, USA. His

current research interests include computer vision, machine

learning, and biomedical image analysis.

Yuan-Chen Guo received his bachelor

degree from Tsinghua University in 2019,

where he is currently pursuing his Ph.D.

degree in the Department of Computer

Science and Technology. His research

interests include computer graphics and

computer vision.

Han Zhang is currently a research

scientist in Google Brain, USA. He

received his Ph.D. degree in computer

science from Rutgers University, USA

in 2018. His research interests include

generative modeling, semi-supervised

learning, and vision-language inter-

action.

Tao Xu is currently a research scientist

in Facebook, USA. She received her

Ph.D. degree in computer Science from

Lehigh University in 2018, her M.S.

degree in computer science from the

Institute of Computing Technology,

Chinese Academy of Sciences, Beijing,

China, in 2013, and her B.E. degree from

China Agricultural University, Beijing, China, in 2010. Her

research interests include deep learning and computer vision.



Deep image synthesis from intuitive user input: A review and perspectives 31

Song-Hai Zhang received his Ph.D.

degree in computer science and

technology from Tsinghua University,

in 2007. He is currently an associate

professor in the Department of Computer

Science and Technology at Tsinghua

University. His research interests include

image and video analysis and processing

as well as computer graphics.

Xiaolei Huang is an associate professor

in the College of Information Sciences

and Technology at the Pennsylvania

State University. Her research interests

lie at the intersection of computer vision,

machine learning, and biomedical image

analysis, focusing on methods for image

segmentation, image synthesis, object

recognition, computer-assisted diagnosis, among others. She

has over 150 publications and 7 patents in these areas.

She is an associate editor for the Computer Vision and

Image Understanding journal. She received her bachelor

degree in computer science from Tsinghua University, and

her master and doctoral degrees in computer science from

Rutgers University.

Open Access This article is licensed under a Creative

Commons Attribution 4.0 International License, which permits

use, sharing, adaptation, distribution and reproduc-tion in any

medium or format, as long as you give appropriate credit to

the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are

included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material

is not included in the article’s Creative Commons licence and

your intended use is not permitted by statutory regulation or

exceeds the permitted use, you will need to obtain permission

directly from the copyright holder.

To view a copy of this licence, visit http://

creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available

free of charge from http://www.springer.com/journal/41095.

To submit a manuscript, please go to https://www.

editorialmanager.com/cvmj.


