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Abstract

Background: Technological advances in next-generation sequencing (NGS) and chromatographic assays [e.g., liquid

chromatography mass spectrometry (LC-MS)] have made it possible to identify thousands of microbe and metabolite

species, and to measure their relative abundance. In this paper, we propose a sparse neural encoder-decoder network

to predict metabolite abundances from microbe abundances.

Results: Using paired data from a cohort of inflammatory bowel disease (IBD) patients, we show that our neural

encoder-decoder model outperforms linear univariate and multivariate methods in terms of accuracy, sparsity, and

stability. Importantly, we show that our neural encoder-decoder model is not simply a black box designed to

maximize predictive accuracy. Rather, the network’s hidden layer (i.e., the latent space, comprised only of sparsely

weighted microbe counts) actually captures key microbe-metabolite relationships that are themselves clinically

meaningful. Although this hidden layer is learned without any knowledge of the patient’s diagnosis, we show that the

learned latent features are structured in a way that predicts IBD and treatment status with high accuracy.

Conclusions: By imposing a non-negative weights constraint, the network becomes a directed graph where each

downstream node is interpretable as the additive combination of the upstream nodes. Here, the middle layer

comprises distinct microbe-metabolite axes that relate key microbial biomarkers with metabolite biomarkers. By

pre-processing the microbiome and metabolome data using compositional data analysis methods, we ensure that

our proposed multi-omics workflow will generalize to any pair of -omics data. To the best of our knowledge, this work

is the first application of neural encoder-decoders for the interpretable integration of multi-omics biological data.
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Background

The human gut is a complex ecosystem in which host

cells and foreign organisms coexist, cooperate, and com-

pete. Suspended in this ecosystem is a milieu of nutrient

metabolites that act like a currency, being exchanged and

converted by the organisms living in the environment.

Technological advances in next-generation sequencing

(NGS) and chromatographic assays [e.g., liquid chro-

matography mass spectrometry (LC-MS)] have made it

possible to identify thousands of microbe and metabo-

lite species, and to measure their relative abundance. By

applying NGS and LC-MS on fecal samples, one gains

two complementary “views” on the complex ecosystem

in which gut bacteria produce, consume, and induce

the metabolic milieu. These data modalities have each

advanced our understanding of elusive gut pathologies

like inflammatory bowel disease [1], and are increasingly

being collected in parallel [2–4].

Once rarely encountered, inflammatory bowel dis-

ease (IBD) has become a major health burden in devel-

oped countries, with its incidence steadily rising since

the second world war [5]. IBD is an umbrella term for

two distinct clinical syndromes, Crohn’s disease (CD)

and ulcerative colitis (UC), that are both characterised

by a chronic immunological disturbance in the gastroin-

testinal (GI) tract, caused by genetic and environmental

factors [6, 7]. While CD presents with patchy transmu-

ral (deep) inflammation in any part of the GI tract, UC is

marked by diffuse mucosal (superficial) inflammation that

extends from the rectum through the colon [8]. Although

the inflammation in IBD does not have an infectious ori-

gin, patients with CD and UC exhibit an irregular gut

microbiome, having less bacterial diversity, a depletion

of healthy bacteria, and an excess of unhealthy bacteria

[5, 9, 10]. These changes have been partly attributed to

an abnormal immune response to benign commensual

organisms [5]. Microbiome irregularity, called dysbiosis,

also associates with concurrent changes inmicrobial func-

tions [11] and in metabolic profiles [12], that together can

disrupt normal gut physiology. For example, Marchesi et

al. found low levels of short chain fatty acids in IBD fecal

samples [13], which may be related to changes in how the

gut bacteria metabolize carbohydrates [1].

Franzosa et al. studied the paired microbial and

metabolic profiles of 164 IBD patients and 56 healthy

controls, producing one of the largest publicly available

multi-omics data set of its kind [14]. In their multi-omics

analysis, the authors report that only 6% of all possible

pairwise associations were statistically significant, con-

cluding that metabolites “tend not to associate mech-

anistically” with the microbiome [14]. However, multi-

omics data integration can be approached in several ways

, ranging from simple to complex. We organize these

approaches into four tiers. The first, and simplest, uses

iterative univariate-univariate regressions, e.g., measur-

ing the Pearson’s correlation between a single bacteria

and a single metabolite (as done by Franzosa et al. [14]).

This straightforward method is implemented in several

microbiome-specific software tools [15]. Although pair-

wise associations can be easy to interpret, they lack the

ability to model the additive effect of bacteria (or metabo-

lite) co-occurence. The second uses iterative univariate-

multivariate regressions, e.g., measuring a single bacteria

as a function of all metabolites (and vice versa). This

method is still easy to interpret, and has been applied to

infer gene expression fromDNAmutations [16], as well as

metabolite variables from the microbiome [2]. The third

uses a single multivariate-multivariate regression, such as

a canonical correlation (CanCor) analysis. CanCor is a

powerful tool that can find a combination of microbes

that maximally correlate with a combination of metabo-

lites. This technique has been applied previously to study

the relationship between volatile breath metabolites and

gut microbiome in IBD patients [17], but its widespread

application is limited by high-dimensionality [1] (at least

without regularization [18]).

Stepping further toward deeper modeling, we explore

the fourth tier which leverages a multi-layer neural net-

work to model a single multivariate-multivariate regres-

sion. The hidden layers of these networks act like a switch-

board to connect the input layer with the output layer

through a set of intermediate nodes that can learn com-

plex (non-linear) patterns between the layers. In biology,

deep neural networks have been used in many applica-

tions, including predicting the expression of 20,000 genes

from 1,000 hallmark genes [19]. While useful, the hidden

layers of these networks do not have a natural mean-

ing that connects the model to real biological processes.

To address this limitation, many neural networks follow

the encoder-decoder pattern in which the network has an

hourglass shape, featuring a narrowmiddle layer that com-

presses the input-output relationship. This layer is regu-

larized to be low dimensional so that it only has enough

information space to describe the input-output transfor-

mation. As such, all other information is filtered out. This

layer divides the network into two specialized parts: the

encoder and the decoder. One could think of a generic

encoder-decoder network as a neural “signal translator”,

designed to turn one data set X into another data set Y,

through a middle representation Z.

Encoder-decoder networks have been studied in com-

puter vision in the form of fully convolutional mod-

els [20], where an image is encoded into a compact

representation that is then decoded into the desired

feature map. In biomedical imaging, U-net [21] has

succeeded in segmenting cell images with the encoder

and decoder forming the two interacting shafts of a

U shape. In biology, autoencoders – a special type of
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encoder-decoder architecture where the input and out-

put are identical – have been used to cluster yeast,

Pseudomonas, and cancer cells, where the hidden layer

supposedly provides a biologically meaningful abstrac-

tion of the data [22]. However, generic encoder-decoders

that transform one data domain to another have not

apparently been used for multi-omics data integration.

In this generalized form, encoder-decoders can act like

a CanCor, predicting multiple outputs from multiple

inputs through a latent space. Unlike CanCor, encoder-

decoders learn deep non-linear relationships between the

features.

Using the encoder-decoder architecture, we seek to find

a good model that can provide simple, descriptive, and

verifiable patterns within the multi-omics data. In this

manuscript, we introduce our highly interpretable neu-

ral encoder-decoder, designed to learn the non-linear and

synergistic relationship between the gut microbiome and

their surrounding metabolites. In doing so, we demon-

strate that (a) neural networks outperform linear models

in microbiome-metabolome predictions, and that (b) net-

work sparsification, along with a non-negative weights

constraint, improves the accuracy, stability, and inter-

pretability of the encoder-decoder model. Importantly, we

show that our neural encoder-decoder model is not sim-

ply a black box designed to maximize predictive accuracy.

Rather, the network’s hidden layer (i.e., the latent space,

comprised only of sparsely weighted microbe counts)

actually captures key microbe-metabolite relationships

that are themselves clinically meaningful. Although this

hidden layer is learned without any knowledge of the

patient’s diagnosis, we show that the learned latent fea-

tures are structured in a way that predicts IBD and

treatment status with high accuracy. Taken together, our

work demonstrates that paired multi-omics data can be

integrated using a neural network whose hidden layer

abstracts a clinically meaningful representation of the

input data without any supervision. By pre-processing the

data using standard compositional methods, we ensure

that our encoder-decoder workflow will generalize to any

pair of -omics data.

Methods

Data acquisition and processing

We acquired paired microbiome and metabolome data

as raw proportions from the supplement of Franzosa et

al. [14]. To reduce the dimensionality of the data, we

removed features in whichmore than 50% of the measure-

ments were zero. We replaced the remaining zeros with a

very small number using the cmultRepl zero-replacement

function implemented in zCompositions, an imputation

tool which explicitly models the relative nature of NGS

and LC-MS data [23]. Next, we processed the data using

one two of pipelines: “Complete” or “Summarized”.

In the “Complete” pipeline, we applied the centered log-

ratio (clr) transformation directly to the bacteria species-

level and metabolite cluster-level abundances. The clr is a

cornerstone in the analysis of compositional data [24–27]:

clr(xi) = log

(

[ xi1, ..., xiD]

D

√

�D
j=1(xij)

)

(1)

where xi is a sample vector of bacteria or metabolite abun-

dances. Beyond transforming the data into real numbers,

the clr is also convenient for machine learning applica-

tions because the “normalization factor” is applied to each

sample independent of all other samples, thus preserving

test set independence.

In the “Summarized” pipeline, we aggregated the bacte-

ria species-level abundance into genus-level abundance by

summing across the respective genus members. We also

aggregated the metabolite cluster-level abundance into

class-level abundance by summing across the respective

class members. We retrieved the species-to-genus con-

version table from the Integrated Taxonomic Information

System (ITIS) (via the R package taxize [28]), and the

metabolite-to-class conversion table from the supplement

of Franzosa et al. [14]. Features that did not belong to

any genus or class were dropped. Table 1 describes the

dimensionality of the data before and after processing.

Our motivation: predicting metabolites frommicrobes

The nature of the relationship between the two data

modalities can be explicitly represented if we can find

a way to predict one from the other. The ideal model

would not only identify correlations between the pairs of

data, but would also reveal the mechanism through which

they influence each other. These complex processes can

be considered from the point-of-view of regression mod-

els that can predict metabolite abundance from bacteria

abundance.

We formulate the prediction problem as a search

for the parametric function f, with parameter set θ ,

that takes as input the (clr-transformed) microbe abun-

dances X to estimate the (clr-transformed) predicted

metabolite abundances Ŷ of the real (clr-transformed)

observations Y :

Ŷ = fθ (X)

Table 1 This table counts the number of features in the data

before and after processing

Raw Complete Summarized

Metabolites 8848 clusters 1692 clusters 143 classes

Bacteria 201 species 191 species 51 genera

Removal of features with mostly zeros reduced the number of metabolite clusters

from 8848 to 1692, and the number of bacteria species from 201 to 191.

Summarization further reduced the dimensionality to 143 classes and 51 genera
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where X ∈ R
Dx×Ncontains Dx microbes and Y , Ŷ ∈

R
Dy×N contains Dy metabolites for the same N subjects.

The parameter set θ is estimated by minimizing the

error between the predicted and real observations, e.g.,

using the mean square error (MSE):

θ∗ = argmin
1

N

∥

∥fθ (X) − Y
∥

∥

2

2
(2)

The choice of the function f and the optimization strat-

egy used to solve Equation 2 is the key to having a

predictive model with better accuracy, stability, and inter-

pretability. In the next section, we will propose a deep

neural network that is specifically designed for this goal.

First, let us consider the most direct and straightforward

baseline to model the functional f : a linear regression

(LR) model, where the abundance of each metabolite is

predicted as a linear combination of all availablemicrobes:

Y = WX + b

where W ∈ R
Dy×Dx is the linear transformation matrix

and b is the bias term. The problem in Equation 2 now has

the form:

W ∗, b∗ = argmin
1

N
‖WX + b − Y‖22

While being the simplest model, LR suffers from oper-

ating on a full transformation matrix. The large number

of parameters (i.e., weights) not only makes the LR prone

to overfit when the data set is small and high-dimensional,

but also makes the model difficult to interpret. To reduce

the density of the linear transformation matrix, Lasso reg-

ularization constraints can be added to reduce the number

of active (i.e., non-zero) weights in the transformation

matrix W [29]. With this regularization, the objective

function turns into

W ∗, b∗ = argmin
1

N
‖WX + b − Y‖22 + α ‖W‖1

where the hyper-parameter α controls the sparsity of the

model and ‖W‖1 is l1-norm of the linear weights. An

example Lasso model is illustrated in Fig 1b.

Our model: a sparse neural encoder-Decoder for data

integration

Although simple and easy to interpret, a univariate multi-

omics model depends on the major assumption that the

processes in which microbes affect metabolites are singu-

lar and independent from each other. On the other hand,

neural networks can learn many sub-processes of a global

process that governs the dynamic, multi-stage interaction

between the two modalities.

The traditional method for learning multivariate-

multivariate relationships is canonical correlation (Can-

Cor) analysis, though like LR it can only find linear rela-

tionships between the data modalities. Instead, we pro-

pose to construct a robust and interpretable deep neural

network. Our model is designed to relax the key assump-

tion behind LR and CCA: that there exists a direct and

linear relationship between the two data modalities. This

relaxation will extend our representation of the predictive

model via two hypotheses:

1. There exists intermediate factors that act in the

middle of the process that transforms microbes to

metabolites.

2. The transformation between these factors may

contain non-linear parts.

The neural encoder-Decoder (NED) network

The neural encoder-decoder (NED) architecture aims to

predict a multivariate random process using the informa-

tion from another multivariate process through an inter-

mediate representation called the latent feature space.

The part of the network that extracts relevant informa-

tion from the input (i.e., microbes) into the latent space

is called the encoder. The part of the network that pre-

dicts the output (i.e., metabolites) from the latent space is

called the decoder. The latent feature space is realized as

the narrowhidden layer lying between the encoder and

decoder. Compared with a direct linear model like linear

regression, the encoder-decoder network should have a

more robust representation because the weights undergo

non-linear activation. As such, we expect the NED to

perform better.

To maintain the interpretability of the model, and to

make it more robust to small amounts of training data,

we restrict the number of hidden layers to one. Our initial

experiments show that a large number of hidden lay-

ers does not improve the predictive performance of the

NED because the model is easily overfitted on the limited

training data.

In operation, the two parts of the model work together

sequentially. First, the encoder extracts the relevant infor-

mation from themicrobesX to store in the latent variables

Z by an encoding function consists of a linear kernel We

followed by a fixed non-linear activation function σe:

Z = f eθe(X) = σe(WeX + be)

Second, the decoder decrypts the latent content in Z

to predict the value of Yas Ŷusing a similar decoding

function:

Ŷ = f dθd (X) = σd(WdZ + bd)

The final predictive model is the composition of the

encoder and decoder:

Ŷ = fθ (X) = (f eθe ◦ f dθd )(X)

This model is trained using the loss function:

L = min
1

N

∥

∥fθ (X) − Y
∥

∥

2

2
(3)
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Fig. 1 This figure compares the computation network of NEDs with their direct linear counterparts. The green circles are components of metabolite

abundances {Xi}, the red circles are components of bacteria abundance {Yj}, and the blue circles are latent variables {Zk}. Arrows denote linear

combinations from the source to the destination, while white circles with the tanh graph denote non-linear activation steps

with the optimized parameter set θ :

θ = θe ∪ θd = {We, be,Wd, bd}

Figure 1 compares the computation network of NEDs

with their direct linear counterparts. Let {Xi}i=1,2,...,Dx

denote the Dx components of X, and let {Yj}j=1,2,...,Dy

denote the Dy components of Y. The number of latent

variables Dz is a meta-parameter that can be chosen by

heuristics (though we set Dz = 70 a priori). To increase

robustness and interpretability, models with fewer con-

nections are preferred. An LR model has CLR = Dx.Dy

connections, while an NED has CNED = Dx.Dz + Dz.Dy

connections. Thus, we see that when Dz << Dx,Dy, then

CNED < CLR. This makes NED less likely to overfit and

easier to interpret. We can further reduce the density of

NED networks using a sparsity procedure that eliminates

redundant connections between the layers.

Sparsifying the nED network

To further improve the stability and interpretability of the

model, we seek to learn an NED model with the fewest

number of active weights: a sparser neural network

wheremost weights equal zero. Research into sparser neu-

ral networks have achieved major advancements recently.

This line of work is motivated by the intuition that deep

networks are generally over-complete, and sparse net-

works could reduce computational overhead [30]. Fur-

thermore, sparser deep networks are also known to ease

the explanability of the underlying process [31, 32]. The

major approaches to sparser networks work by either

pruning unnecessary weights [33] or enforcing sparsity

constraints as an additional regulatory loss [34]. To spar-

sify NED into a new model, called Sparse-NED, we use

a pre-training screening method that is similar to the

one-shot pruning strategy first proposed by Lee et al.

in [35].
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The learning of Sparse-NED consists of two stages:

screening and training. In the screening stage, we iden-

tify the connections that are most useful in extracting

the information needed to predict metabolite abundance

from microbe abundance. All other links are marked as

unnecessary. In the training stage, the network is trained

with these redundant links deactivated from the forward

and backward operations.

The screening stage starts with one training iteration on

the fully connected model, where the derivative g(w;D) of

the loss L (from Equation 3) is estimated through back-

propagation on a sample set of data D. These derivatives

are the key to evaluating the importance of a connection

because when the derivative at a connection has a high

magnitude, that connection will have a measurable effect

on the loss, and hence be more salient to the prediction

of metabolite abundance. Slightly different from [35] –

where only a mini-batch is used as D for sensitivity calcu-

lation – we use all of the available training data instead.

The saliency of each connection sc is calculated as the

normalized magnitude of the derivatives:

sc =

∣

∣gc(w;D)
∣

∣

∑m
k=1

∣

∣gk(w;D)
∣

∣

(4)

Next, the connections in the network are sorted in

descending order of sc, and only top-k connections are

kept for network training and inference. The number of

kept connections k is controlled through the sparsity level

β relative to total number of connections in the fully

connected network.

k = β |θ |

The hyper-parameter β is to balance the accuracy and

sparsity of the model. In our experiment, we choose a β

so that the number of active (i.e., non-zero) connections is

on par with other sparse models in the comparison. Using

the remaining connections, the Sparse-NED is trained via

back-propagation. An example Sparse-NED is illustrated

in Fig 1d.

Interestingly, a hidden node could lose all incoming

connections, causing it to become isolated. For example,

this could happen when there were more hidden nodes

than needed to represent all of the latent information.

Although we did not expect this for our experiment, node

isolation would be favorable because it would mean that

the multi-modal relationship discovered by the model

is of a lower rank (i.e., represented by fewer variables

in total); a lower rank makes for a more interpretable

model. Node isolation could also make the Sparse-NED

model more resilient to changes in the size of the latent

space: if a practitioner specifies too many hidden nodes,

node isolation could cause the excess nodes to auto-

matically deactivate during training, leaving only the

necessary nodes.

The non-Negative weights constraint

With a small number of active connections, Sparse-NED

is significantly easier to understand than a fully connected

NED. However, among the remaining connections, many

of them spontaneously have negative weights. These nega-

tive connections in neural networks have been understood

to inhibit an analysis of how the factors from one layer

affect another [36]. To improve the interpretability of a

network, non-negative constraints can be used to prevent

the weights from falling below zero [37]. In our applica-

tion, the non-negative weights provide a clearer mean-

ing to how microbe abundances contribute to metabolite

abundances, both in encoder and decoder, because the

contribution is always positive.

To implement this insight, we apply the non-negative

constraint on Sparse-NED model by clamping the inter-

mediate estimation of the parameters to [ 0,∞) at every

training iteration:

θ ti = max(0, θ ti )

where θ ti is the i-th parameter of the model at iteration t

in training.

In our experiment, we observe that non-negative con-

straints not only promote interpretability, but also have a

beneficial effect on the overall fitness and sparsity of the

model. When weights are forced to be positive or zero, the

nodes in each layer tend to compete with each other for

influence. This actually makes the Sparse-NED even more

sparse.

Model evaluation

With the goal of deeply understanding the bacteria-

metabolite relationship, we want a model that is not only

accurate, but also highly interpretable, and whose inter-

pretation is stable across different folds of the data. In this

section, we discuss the three criteria used to evaluate our

predictive models: accuracy, sparsity, and stability.

Accuracy The accuracy of a predictive model fθ is cal-

culated by the Pearson correlation coefficient between

the predicted metabolite abundance Ŷ = fθ (X) and the

measured abundance Y for the top 10 best predicted

metabolites. Compared to intensity-based criteria, the

correlation coefficient is not influenced by the scales used

in the signal and is reliable across different data normal-

ization methods. To mitigate the influence of spurious

correlation, correlations are always calculated using the

clr-transformed data. For all experiments, we use a five-

fold cross-validation scheme that validates the model on

five different 80%-20% training-test set splits, and report

the average accuracy.

Sparsity The sparsity of fθ is measured by the number of

active linear connections Cfθ in the model. In the case of
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NED and its variations, it includes the weights from both

the encoder and decoder network sections.

Stability While accuracy and sparsity are desired prop-

erties of a predictive model, their performance and inter-

pretation are only reliable when they are consistent across

changes in the training set composition. For each model

family, we evaluate the stability of predictive models

by measuring the average pair-wise similarity [38] of

the model parameters θ across different training sets.

Specifically, we divide the data set into 5 folds and

learn an instance of the model for each fold. Then, for

each pair of model instances, we calculate the Pearson’s

correlation coefficient between the model parameters.

The main measurement for the stability of a method,

the stability index, is calculated as the average simi-

larity between all pairs of model instances within the

model family.

To concentrate on the stability of the model architec-

ture, we calculate the stability index using the binary

adjacency matrix of the connections between each layer

in the model. For fully connected models (e.g., a linear

regression or CanCor) – where every factor in a layer

affects every factor in the subsequent layer – the binary

adjacency matrix contains all ones. Therefore, the stability

index always equals one and is not worth mentioning. For

sparse methods (e.g., Lasso and NED), the stability index

measures the consistency and reliability of the cross-layer

connections. For multi-layer models like NED and its

variants, we use the first model instance to initialize the

training of the other instances so that we preserve the

correspondence of the mid-layer variables (e.g., the latent

variable “V5” in fold 1 is the same as the latent variable

“V5” in fold 2).

Interpretation of network layers

The neural network contains three layers: the microbe

input layer, the hidden (i.e., latent) layer, and the metabo-

lite output layer. In order to understand the nature of the

latent space, we performed a separate analysis of each

layer and compared their results. All microbe andmetabo-

lite analyses were performed on the clr-transformed data,

while the latent space analyses were performed on the

unaltered (i.e., tanh-compressed) data.

Differential abundance (DA) analysis

We performed an analysis of variance (ANOVA) of

the microbe, metabolite, and latent space feature sets

(separately) for the three experimental groups [ulcer-

ative colitis (UC), Crohn’s disease (CD), and healthy

control (HC)]. We consider any feature with an FDR-

adjusted p-value p < 0.05 to be significant. Note

that the prior clr-transformation makes univariate sta-

tistical testing of relative data valid, so long as the

results get interpreted with regard to the reference

used [26, 27].

Redundancy analysis (RDA)

We performed a redundancy analysis (RDA) of the

microbe, metabolite, and latent space feature sets

(separately) using the rda function from the vegan

R package [39].

Random forests

We used the microbe, metabolite, and latent space fea-

tures to train a random forest classifier to predict several

two-factor outcomes (see Results and Discussion). Ran-

dom forest models were trained using the randomForest

function from the randomForest R package [40] with-

out any feature selection or hyper-parameter turning. For

each feature space, and for each outcome, we compared

the average “out-of-the-box” AUC across 25 randomly

sub-sampled test set splits using the plMonteCarlo func-

tion from the exprso R package [41].

Results and discussion

Summarization preserves data structure

The data sets produced by high-throughput molecular

assays like NGS and LC-MS often have many more fea-

tures than samples. In statistics, high-dimensionality is

a problem because the likelihood of a false discovery

increases with each additional test. In machine learning,

high-dimensionality increases the likelihood of an over-

fit and also makes the resultant model more difficult to

interpret. Therefore, it is sensible to reduce the num-

ber of features before training a model. After removing

zero-laden features, we used domain-knowledge to aggre-

gate the remaining features into biologically meaningful

groups. For metabolites, we used functional classes; for

bacteria, we used assigned genus. Table 1 describes the

dimensionality of the data before and after processing.

Figure 2 shows the first two principal components for

the metabolite data (top) and microbiome data (bottom),

as processed using the “Complete” (left) and “Summa-

rized” (right) pipelines. Here, we see that using domain-

knowledge to summarize the metabolite clusters into

classes, and the bacteria species into genera, does not

appear to alter the fundamental structure of the data. To

quantify the agreement between the two pipelines, we

calculated the Pearson’s correlation between the “Com-

plete” inter-sample distances and the “Summarized” inter-

sample distances. We find that the “Summarized” inter-

sample distances agree with the “Complete” distances for

both metabolites (ρ = .903) and microbes (ρ = .674).

The greater incoherence observed for the microbe data

is consistent with the understanding that different bac-

teria species within the same genus can occupy distinct

ecological niches.
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Fig. 2 This figure shows the first two principal components for the metabolite data (top) and microbiome data (bottom), as processed using the

“Complete” (left) and “Summarized” (right) pipelines. Here, we see that using domain-knowledge to summarize the metabolite clusters into classes,

and the bacteria species into genera, does not appear to alter the fundamental structure of the data

Otherwise, we note that the IBD patients clus-

ter more distinctly according to their gut metabolites

than their gut bacteria. Indeed, a differential abun-

dance analysis of the metabolic data reveals 128 (out

of 143) significant metabolite classes, compared with

15 (out of 51) significant bacterial genera (see Sup-

plement for a complete list). Table 2 shows the aver-

age clr-transformed abundances for select bacteria gen-

era, chosen because they were found previously to

associate with IBD. Two genera, Ruminococcus and
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Table 2 This table shows the average clr-transformed abundances for select bacteria genera, chosen because they were found

previously to associate with IBD

Genus p-value Control IBD UC CD Previous Association Agreement

Clostridium <0.001 3.785 4.898 4.397 5.331 Decreased in IBD No

Ruminococcus <0.001 2.895 -0.352 0.517 -1.102 Decreased in IBD Strong

Lactobacillus 0.006 1.352 2.202 1.586 2.733 Decreased in IBD No

Fusobacterium 0.012 -2.560 -1.866 -2.336 -1.460 Present in IBD Strong

Bifidobacterium 0.097 3.179 3.417 4.262 2.686 Decreased in IBD Mixed

Bacteroides 0.199 5.698 4.939 5.142 4.764 Decreased in IBD Weak

Since abundance is expressed relative to the per-sample mean, positive values signify above-average presence for samples within that group. The evidence for previous

association is taken from [42]. All p-values are FDR-adjusted. Two genera, Ruminococcus and Fusobacterium, show an association that agrees with past literature

Fusobacterium, show an association that agrees with past

literature [42].

Microbe abundance predicts metabolite abundance

Since metabolites and bacteria both associate with IBD,

it is meaningful to explore their mutual dependence. In

the Introduction, we described four approaches to inte-

grating multi-omics data: univariate-univariate regres-

sion, univariate-multivariate regression, multivariate-

multivariate regression, and neural networks. Franzosa

et al. reported weak univariate-univariate regressions

for these data [14]. Here, we evaluate the performance

of the other multi-omics approaches by benchmarking

the performance of microbe-metabolite predictive mod-

els with 5-fold cross-validation. The quantitative eval-

uation is done using the three criteria described in

“Model evaluation” section.

Neural encoder-Decoders outperform linear regression

We do not expect that the microbiome alone can predict

the abundance of all metabolites. Rather, we are motivated

to answer two research questions: (1) Which metabolites

can be predicted by the microbiome? and (2) How reliable

is that prediction? Table 3 and Table 4 show the per-

formance of the microbe-metabolite prediction models

for the “Complete” and “Summarized” data, respectively.

The tables are organized by the multi-omics integra-

tion scheme used: univariate-multivariate, multivariate-

multivariate, or neural network. To answer the two

research questions, we compare the accuracy of each

model for the top 10 best predictions, along with its

sparsity and stability.

Sparsity improves accuracy and interpretability

Without regularization, it is easy for a model to over-

fit. Therefore, it is no surprise that the sparse linear

regression (i.e., LASSO) and the sparse neural encoder-

decoder outperform their fully connected counterparts.

Nevertheless, in both cases, the neural encoder-decoder

outperforms linear regression (although LASSO performs

impressively well).

Non-negative weights improve interpretability

With the default linear regression and the neural encoder-

decoder network, weights can take on any value. Here,

we propose using a non-negative weights constraint to

improve the interpretability of the model. For a neural

network, this constraint means that when an input node

contributes to a hidden node, that contribution is always

additive. This allows us to interpret the hidden layer as

an aggregation of the input activity. Likewise, each out-

put node is computed as an aggregation of the hidden

Table 3 Performance when predicting metabolite (cluster-level) abundance from microbiome (species-level) abundance

Method Top 10 Corr.Coef Active links Stability index

Linear Regression (LR) 0.46 241956 _

+ Sparsity (LASSO) 0.70 6143 0.50

+ Non-neg. weights 0.70 4417* 0.52

CCA 0.47 20449 (E) + 241956 (D) _

Linear NED 0.60 10010 (E) + 118440 (D) _

+ Nonlinear activation (NED) 0.74 10010 (E) + 118440 (D) _

+ Sparsity (Sparse-NED) 0.74 2216 (E) + 4284 (D) 0.79

+ Non-neg. weights (Nonneg-Sparse-NED) 0.74 1522* (E) + 2568*(D) 0.63

Acronyms: NED neural encoder-decoder; E encoder; D decoder. The stability indices of the fully connected models are naturally 1.0 and not worth including



Le et al. BMC Genomics 2020, 21(Suppl 4):256 Page 10 of 15

Table 4 Performance when predicting metabolite (class-level) abundance from microbiome (genus-level) abundance

Method Top 10 Acc Corr.Coef Active links Stability index

Linear Regression (LR) 0.39 9741 _

+ Sparsity (LASSO) 0.62 898 0.57

+ Non-neg. weights 0.58 685 0.61

CCA 0.61 2601 (E) + 9741 (D) _

Linear NED 0.59 7150 (E) + 84600 (D) _

+ Nonlinear activation (NED) 0.63 7150 (E) + 84600 (D) _

+ Sparsity (Sparse-NED) 0.67 551 (E) + 702 (D) 0.80

+ Non-neg. weights (Nonneg-Sparse-NED) 0.66 360* (E) + 428* (D) 0.66

Acronyms: NED neural encoder-decoder; E encoder; D decoder. The stability indices of the fully connected models are naturally 1.0 and not worth including

node activity. Combined with sparsity, the non-negative

weights constraint ensures that each node is the simple

sum of just a few elements. Table 3 and Table 4 show that

this constraint does not seriously reduce accuracy, though

it advantageously does force the network to be even more

sparse (see Active links column).

The latent space is clinically coherent

The latent space of the encoder-deconoder network is a

learned abstraction of the input data, designed to describe

how gut microbes associate with gut metabolites for all

patients. As such, variance within the hidden layer reflects

inter-patient variance within the microbe-metabolite axis.

We focus this section on the sparse and non-negative

neural encoder-decoder model, trained using the “Sum-

marized” data, because we think it nicely balances accu-

racy with interpretability. For this neural network, the

value of each hidden node equals tanh(x · w + b), where

x is the per-sample microbe abundances, w is the weights

associated with each microbe, and b is an offset. Together,

these hidden nodes comprise a new feature space, learned

in a fully unsupervised way, that can be analyzed directly

with routine statistical modelling.

The latent space associates with iBD

For each of the 70 nodes in the hidden layer, we can

compute the variance across all patients: some nodes are

more variable than other nodes. We can also compute

the amount of weight coming in and out of each node:

some nodes have more “traffic” than other nodes. High-

traffic nodes strongly relate multiple microbes to multiple

metabolites, while low-traffic nodes describe fewer or

subtler relationships. Figure 3 plots the node variance

against the node traffic. Here, we see that the high-

variance nodes are usually the high-traffic nodes, suggest-

ing that the nodes which model the strongest microbe-

metabolite interactions also vary the most between indi-

vidual patients. An ANOVA of the latent features reveals

that the high-variance-high-traffic nodes significantly

associate with IBD (FDR-adjusted p-value < 0.05). Since

the latent space is an abstraction of the relationship

between microbes and metabolites, its association with

IBD suggests that the relationship between microbes and

metabolites is itself associated with IBD.

The latent space is a noise filter

While an ANOVA allows us to measure the statistical

association between the latent space and IBD, we can fur-

ther understand the clinical relevance of the latent space

with a redundancy analysis (RDA). RDA is a principal

component analysis that constrains the principal axes so

that they describe the part of the latent space that is

also explained a “conditioning matrix”, L. Here, the condi-

tioning matrix contains the clinical covariates: age, fecal

calprotectin, diagnosis, antibiotic use, immunosupres-

sant use, mesalamine use, and steroid use. In the left

panel of Fig. 4, we see that the first RDA axis involves mul-

tiple correlated nodes that all associate strongly with the

IBD diagnosis (CD vs. HC vs. UC). Although medication

use is confounded by diagnosis, we see that the off-axis

node “V21” is perfectly anti-correlated with antibiotic use

(and CD), while the off-axis node “V66” is correlated

with it. The right panel shows box plots for some of the

longest first-axis and off-axis arrows. By looking at the

RDA eigenvalues, we know that 26.9% of the latent space

can be explained by the clinical covariates in L. This is

more than the 12% of the microbe data, and the 23.6%

of the metabolite data, explained by L. In other words, a

higher fraction of the hidden layer is explained by clini-

cal covariates than the input or output layer. This finding

supports two hypotheses. First, the relationship between

microbes and metabolites is itself associated with IBD.

Second, the encoder-decoder latent space acts like a noise

filter that can extract the clinically relevant part of the

source data in a fully unsupervised way.

The latent space is discriminative

From our differential abundance analyses, we know that

the microbes, metabolites, and latent features all associate

with IBD (though there are more metabolite associations
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Fig. 3 This figure shows the variance of a hidden layer node (y-axis) versus the total weight going in and out of that node (x-axis). There are 70

nodes, named arbitrarily, and colored by their association with IBD (FDR-adjusted p-value < 0.05). The most heavily weighted nodes are the most

important for predicting metabolite abundances. The most variable nodes differ the most between patients. Here, we see that the most variable

and most heavily weighted nodes all associate with IBD

than microbe associations). Although we have shown that

the latent space is clinically coherent, we want to fur-

ther demonstrate its discriminative power in classification

tasks. Table 5 shows the average “out-of-the-box” AUC

for binary classifiers trained on 25 randomly sub-sampled

training sets. For most outcomes, the latent space clas-

sifier performs at least as well as the microbe classifier.

However, when predicting antibiotic use and immunosup-

pressant use, the hidden layer is actually more predictive

than either the microbe or metabolite abundances.

The latent space is interpretable

Figure 5 shows a three layer graph relating microbes

to metabolites, built using the edge overlap across all 5

training set folds. The middle layer contains latent vari-

ables that weigh the microbe abundances so that they

maximally predict the metabolite abundances. The graph

reveals a general structure: the top half describes how

the microbes that are enriched in healthy guts predict

the metabolites that are also enriched in healthy guts,

while the bottom half describes how the microbes that

are depleted in healthy guts predict the metabolites that

are also depleted in healthy guts. Ruminococcus and

Fusobacterium are both replicated IBD biomarkers, and

the latent variables that relate them to metabolites also

associate with IBD.

In the upper graph, we see how Ruminococcus (among

others) contributes to 6 latent variables which go on to

predict several healthy metabolite signatures, including

tropane alkaloids and steroidal saponins, as well as

other plant-derived compounds. It is interesting, though

perhaps not surprising, that some of the plant-derived

compounds enriched in the healthy gut have known

medicinal properties [43, 44]. In the lower graph, we see

how Fusobacterium (among others) contributes to a sin-

gle latent variable; this node, V61, is highly predictive

of the abundance of bile acids, alcohols, and deriva-

tives. This finding is consistent with the literature which
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Fig. 4 The left panel shows the first two RDA axes of the latent feature space, constrained by the known clinical covariates: age, fecal calprotectin,

diagnosis, antibiotic use, immunosupressant use, mesalamine use, and steroid use. The right panel shows box plots for some of the longest first-axis

and off-axis arrows. Several hidden nodes describe clinical events

suggests that the bile acid conjugate taurine is a substrate

for bacteria metabolism, and that a defect in the detoxifi-

cation of taurine by-products is associated with ulcerative

colitis [45].

Conclusions

Inflammatory bowel disease (IBD) presents a major health

burden to developed countries. Although IBD is not

infectious, patients with Crohn’s disease (CD) and ulcer-

ative colitis (UC) exhibit an abnormal gut microbiome as

well as an altered gut metabolome. In this manuscript,

we propose a neural encoder-decoder model to learn a

set of weighted connections that can predict metabo-

lite abundances using only microbe abundances. We

show that this neural network outperforms linear mod-

els for microbiome-metabolome predictions, and that

Table 5 This table shows the average “out-of-the-box” AUC for binary classifiers trained on 25 randomly sub-sampled training sets

Feature Space CD vs. HC UC vs. HC CD vs. UC antibiotic IST mesalamine steroids

Microbes only 0.944 0.741 0.784 0.822 0.713 0.582 0.693

Latent space only 0.932 0.759 0.764 0.866 0.731 0.646 0.670

Metabolites only 0.944 0.930 0.781 0.811 0.682 0.956 0.739

Microbes and metabolites 0.950 0.933 0.799 0.838 0.696 0.956 0.750

All layers 0.952 0.925 0.818 0.854 0.717 0.948 0.729

In most cases, the latent space classifier performs at least as well as the microbe classifier. Acronyms: CD Crohn’s disease; UC ulcerative colitis; HC healthy control; IST

immunosuppressive therapy
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Fig. 5 This figure shows a three layer graph relating microbe abundances to the top 10 best predicted metabolite abundances, built using the edge

overlap across all 5 model instances. Yellow nodes are significantly enriched in healthy guts, while blue nodes are significantly enriched in IBD guts.

The middle layer contains latent variables that weigh the bacteria abundances so that they maximally predict the metabolite abundances. Most of

these latent variables, learned in a fully unsupervised way, are themselves significantly associated with IBD

sparsification, along with a non-negative weights con-

straint, further improves the accuracy, stability, and inter-

pretability of the encoder-decoder model. Importantly,

the neural encoder-decoder model is not simply a black

box designed to maximize predictive accuracy. Rather, the

hidden layer of the model can help visualize the predictive

relationship between microbes and metabolites. More-

over, the learned latent feature space (i.e., the hidden

nodes themselves) appears to structure the data in a clin-

ically coherent way: the latent space associates with, and

predicts, IBD diagnosis and medication use. Our finding

suggests that the microbe-metabolite axis itself, not just



Le et al. BMC Genomics 2020, 21(Suppl 4):256 Page 14 of 15

the microbes and metabolites alone, is an IBD-specific

biomarker signature. To the best of our knowledge, this

work is the first application of neural encoder-decoders

for the interpretable integration of multi-omics biological

data.
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