
Deep Inductive Graph Representation Learning

Ryan A. Rossi , Rong Zhou , and Nesreen K. Ahmed

Abstract—This paper presents a general inductive graph representation learning framework called DeepGL for learning deep node

and edge features that generalize across-networks. In particular, DeepGL begins by deriving a set of base features from the graph

(e.g., graphlet features) and automatically learns a multi-layered hierarchical graph representation where each successive layer

leverages the output from the previous layer to learn features of a higher-order. Contrary to previous work, DeepGL learns

relational functions (each representing a feature) that naturally generalize across-networks and are therefore useful for graph-

based transfer learning tasks. Moreover, DeepGL naturally supports attributed graphs, learns interpretable inductive graph

representations, and is space-efficient (by learning sparse feature vectors). In addition, DeepGL is expressive, flexible with

many interchangeable components, efficient with a time complexity of OðjEjÞ, and scalable for large networks via an efficient

parallel implementation. Compared with recent methods, DeepGL is (1) effective for across-network transfer learning tasks and

large (attributed) graphs, (2) space-efficient requiring up to 6x less memory, (3) fast with up to 106x speedup in runtime

performance, and (4) accurate with an average improvement in AUC of 20 percent or more on many learning tasks and across

a wide variety of networks.

Index Terms—Graph representation learning, inductive representation learning, relational function learning, transfer learning, graph-based

feature learning, higher-order structures

Ç

1 INTRODUCTION

LEARNING a useful graph representation lies at the heart
and success of many machine learning tasks such as

node and link classification [1], [2], anomaly detection [3],
link prediction [4], dynamic network analysis [5], commu-
nity detection [6], role discovery [7], visualization and sense-
making [8], network alignment [9], andmany others. Indeed,
the success of machine learning methods largely depends on
data representation [10], [11]. Methods capable of learning
such representations have many advantages over feature
engineering in terms of cost and effort. For a survey and tax-
onomy of relational representation learning, see [11].

Recent work has largely been based on the popular skip-
gram model [12] originally introduced for learning vector
representations of words in the natural language processing
(NLP) domain. In particular, DeepWalk [13] applied the
successful word embedding framework from [14] (called
word2vec) to embed the nodes such that the co-occurrence
frequencies of pairs in short random walks are preserved.
More recently, node2vec [15] introduced hyperparameters
to DeepWalk that tune the depth and breadth of the random
walks. These approaches have been extremely successful
and have shown to outperform a number of existing meth-
ods on tasks such as node classification.

However, the past work has focused on learning only node
features [13], [15], [16] for a specific graph. Features from these
methods do not generalize to other networks and thus are
unable to be used for across-network transfer learning tasks.1

In contrast, DeepGL learns relational functions that generalize
for computation on any arbitrary graph, and therefore natu-
rally supports across-network transfer learning tasks such as
across-network link classification, network alignment, graph
similarity, among others. Existingmethods are also not space-
efficient as the node feature vectors are completely dense. For
large graphs, the space required to store these dense features
can easily become too large to fit in-memory. The features are
also notoriously difficult to interpret and explain which is
becoming increasingly important in practice [17], [18]. Fur-
thermore, existing embedding methods are also unable to
capture higher-order subgraph structures. Finally, these
methods are also inefficient with runtimes that are orders of
magnitude slower than the algorithms presented in this paper
(as shown later in Section 4). Other key differences and limita-
tions are discussed below.

In this work, we present a general, expressive, and flexi-
ble deep graph representation learning framework called
DeepGL that overcomes many of the above limitations.2,3

Intuitively, DeepGL begins by deriving a set of base features
using the graph structure and any attributes (if available).4

� R. A. Rossi is with Adobe Research, San Jose, CA 95110-2704.
E-mail: rrossi@adobe.com.

� R. Zhou is with Google, Mountain View, CA 94043.
E-mail: rongzhou@google.com.

� N. K. Ahmed is with Intel Labs, Santa Clara, CA 95054.
E-mail: nesreen.k.ahmed@intel.com.

Manuscript received 15 Feb. 2018; revised 1 Oct. 2018; accepted 14 Oct. 2018.
Date of publication 1 Nov. 2018; date of current version 4 Feb. 2020.
(Corresponding author: Ryan A. Rossi.)
Recommended for acceptance by M. Wang.
Digital Object Identifier no. 10.1109/TKDE.2018.2878247

1. The terms transfer learning and inductive learning are used
interchangeably.

2. This manuscript first appeared in [19].
3. Note a deep learning method as defined by Bengio et al. [20],

[21] is one that learns multiple levels of representation with higher
levels capturing more abstract concepts through a deeper composi-
tion of computations [10], [22]. This definition includes neural net-
work approaches as well as DeepGL and many other deep learning
paradigms.

4. The base graph features computed using the graph are functions
since they have precise definitions and can be computed on any graph.

438 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 3, MARCH 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-9758-0635
https://orcid.org/0000-0001-9758-0635
https://orcid.org/0000-0001-9758-0635
https://orcid.org/0000-0001-9758-0635
https://orcid.org/0000-0001-9758-0635
https://orcid.org/0000-0002-5825-1094
https://orcid.org/0000-0002-5825-1094
https://orcid.org/0000-0002-5825-1094
https://orcid.org/0000-0002-5825-1094
https://orcid.org/0000-0002-5825-1094
mailto:rrossi@adobe.com
mailto:rongzhou@google.com
mailto:nesreen.k.ahmed@intel.com

The base features are iteratively composed using a set of
learned relational feature operators that operate over the fea-
ture values of the (distance-‘) neighbors of a graph element
(node, edge; see Table 1) to derive higher-order features
from lower-order ones forming a hierarchical graph repre-
sentation where each layer consists of features of increas-
ingly higher orders. At each feature layer, DeepGL searches
over a space of relational functions defined compositionally
in terms of a set of relational feature operators applied to each
feature given as output in the previous layer. Features (or
relational functions) are retained if they are novel and thus
add important information that is not captured by any other
feature in the set. See below for a summary of the advan-
tages and properties of DeepGL.

1.1 Summary of Contributions

The proposed framework, DeepGL, overcomes many
limitations of existing work and has the following key
properties:

� Novel framework: This paper presents a general induc-
tive graph representation learning framework called
DeepGL for learning inductive node and edge rela-
tional functions (features) that generalize for across-
network transfer learning tasks in large (attributed)
networks.

� Inductive representation learning: Contrary to existing
node embedding methods [13], [15], [16], DeepGL

naturally supports across-network transfer learning
tasks as it learns relational functions that generalize
for computation on any arbitrary graph.

� Sparse feature learning: It is space-efficient by learning
a sparse graph representation that requires up to 6x
less space than existing work.

� Efficient, parallel, and scalable: It is fast with a runtime
that is linear in the number of edges. It scales to large
graphs via a simple and efficient parallelization.
Notably, strong scaling results are observed in
Section 4.

� Attributed graphs:DeepGL is also naturally able to learn
node and edge features (relational functions) from
both attributes (if available) and the graph structure.

2 FRAMEWORK

This section presents the DeepGL framework. Since the
framework naturally generalizes for learning node and
edge representations, it is described generally for a set
of graph elements (e.g., nodes or edges).5 A summary of
notation is provided in Table 1.

2.1 Base Graph Features

The first step of DeepGL (Algorithm 1) is to derive a set of
base graph features6 using the graph topology and attributes
(if available). Initially, the feature matrix XX contains only
the attributes given as input by the user. If no attributes are
provided, then XX will consist of only the base features
derived below. Note that DeepGL can use any arbitrary set
of base features, and thus it is not limited to the base fea-
tures discussed below.

Given a graphG ¼ ðV;EÞ, we first derive simple base fea-
tures such as in/out/total/weighted degree and k-core
numbers for each graph element (node, edge) in G. For
edge feature learning we derive edge degree features for
each edge ðv; uÞ 2 E and each � 2 fþ;�g as follows:

�
dþv � d

þ
u ; d

�
v � d

�
u ; d

�
v � d

þ
u ; d

þ
v � d

�
u ; dv � du

�
; (1)

where dv ¼ dþv � d
�
v and recall from Table 1 that dþv , d

�
v , and

dv denote the out/in/total degree of v. In addition, egonet
features are also used [23]. Given a node v and an integer ‘,
the ‘-egonet of v is defined as the set of nodes ‘-hops away
from v (i.e., distance at most ‘) and all edges and nodes
between that set. More generally, we define the ‘-egonet of
a graph element gi as follows:

Definition 1 (‘-EGONET). Given a graph element gi (node, edge)
and an integer ‘, the ‘-egonet of gi is defined as the set of graph
elements ‘-hops away from gi (i.e., distance at most ‘) and all
edges (or nodes) between that set.

For massive graphs, one may set ‘ ¼ 1 hop to balance the
tradeoffs between accuracy/representativeness and scal-
ability. The ‘ ¼ 1 external and within-egonet features for
nodes are provided in Fig. 1 and used as base features in
DeepGL-node. For all the above base features, we also
derive variations based on direction (in/out/both) and
weights (weighted/unweighted). Observe thatDeepGL natu-
rally supports many other graph properties including effi-
cient/linear-time properties such as PageRank. Moreover,
fast approximation methods with provable bounds can also
be used to derive features such as the local coloring number
and largest clique centered at the neighborhood of each graph

TABLE 1
Summary of Notation

G (un) directed (attributed) graph

AA sparse adjacency matrix of the graph G ¼ ðV;EÞ

N;M number of nodes and edges in the graph

F; L number of learned features and layers

K number of relational operators (aggregator functions)

G set of graph elements fg1; g2; . . .g (nodes, edges)

dþv , d
�
v , dv outdegree, indegree, degree of vertex v

G
þðgiÞ, G

�ðgiÞ out/in neighbors of graph element gi
GðgiÞ neighbors (adjacent graph elements) of gi
G‘ðgiÞ ‘-neighborhood GðgiÞ ¼ fgj 2 G j distðgi; gjÞ � ‘g

distðgi; gjÞ shortest distance between gi and gj
S set of graph elements related to gi, e.g., S ¼ GðgiÞ

XX a feature matrix

xx anN orM-dimensional feature vector

xi the ith element of xx for graph element gi
XXj j number of nonzeros in a matrix XX

F set of feature definitions/functions from DeepGL

F k kth feature layer (where k is the depth)

fi relational function (definition) of xxi
F set of relational operators (aggregators)

F ¼ fF1; . . . ;FKg

Kð�Þ a feature score function

� tolerance/feature similarity threshold

a transformation hyperparameter (e.g., bin size

in log binning 0 � a � 1)

xx0 ¼ Fihxxi relational operator applied to each graph element

Matrices are bold upright roman letters; vectors are bold lowercase letters.

5. For convenience, DeepGL-edge and DeepGL-node are sometimes
used to refer to the edge and node representation learning variants of
DeepGL, respectively.

6. The term graph feature refers to an edge or node feature.

ROSSI ET AL.: DEEP INDUCTIVE GRAPH REPRESENTATION LEARNING 439

element (node, edge) in G. All of the above base features are
concatenated (as columnvectors) to the featurematrixXX.

In addition, we decompose the input graph G into its
smaller subgraph components called graphlets (network
motifs, induced subgraphs) [24] using local graphlet decom-
position methods [25] and concatenate the graphlet count-
based feature vectors to the feature matrix XX.

Definition 2 (GRAPHLET). A graphlet Gt ¼ ðVk; EkÞ is an
induced subgraph consisting of a subset Vk � V of k vertices
from G ¼ ðV;EÞ together with all edges whose endpoints are
both in this subset Ek ¼ f8e 2 E j e ¼ ðu; vÞ ^ u; v 2 Vkg.

A k-graphlet is defined as an induced subgraph with k-ver-
tices. Alternatively, the nodes of every graphlet can be parti-
tioned into a set of automorphism groups called orbits [26].
Each unique node (edge) position in a graphlet is called an
automorphism orbit, or just orbit. More formally,

Definition 3 (ORBIT). An automorphism of a k-vertex graphlet
Gt ¼ ðVk; EkÞ is defined as a permutation of the nodes in Gt

that preserves edges and non-edges. The automorphisms of Gt

form an automorphism group denoted as AutðGtÞ. A set of
nodes Vk of graphlet Gt define an orbit iff (i) for any node
u 2 Vk and any automorphism p of Gt, u 2 Vk()pðuÞ 2 Vk;
and (ii) if v; u 2 Vk then there exists an automorphism p of Gt

and a g > 0 such that pgðuÞ ¼ v.

This work derives such features by counting all node or
edge orbits with up to 4 and/or 5-vertex graphlets. Orbits
(graphlet automorphisms) are counted for each node or
edge in the graph based on whether a node or edge-based
feature representation is warranted (as our approach natu-
rally generalizes to both). Note there are 15 node and 12
edge orbits with 2-4 nodes; and 73 node and 68 edge orbits
with 2-5 nodes. Unless otherwise mentioned, this work uses
all 15 node orbits shown in Fig. 2.

A key advantage of DeepGL lies in its ability to naturally
handle attributed graphs. In particular, any set of initial
attributes given as input can simply be concatenated with XX

and treated the same as any other initial base feature
derived from the topology.

2.2 Relational Function Space & Expressivity

In this section, we formulate the space of relational func-
tions7 that can be expressed and searched over by DeepGL.

Definition 4 (RELATIONAL FUNCTION). A relational function
(feature) is defined as a composition of relational feature opera-
tors applied to an initial base feature xx.

Definition 5. A relational function f is said to be of order-h
iff

�
Fk � � � � �Fj �Fi
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

h times

�
ðxxÞ; (2)

where xx is an arbitrary base feature applied to h relational fea-
ture operators.

Note the relational feature operators can obviously be
repeated in the relational function. For instance, in the
extreme case all h relational feature operators may represent
the mean relational feature operator defined in Table 2.
Recall that unlike recent node embedding methods [13],
[15], [16], the proposed approach learns graph functions
that are transferable across-networks for a variety of impor-
tant graph-based transfer learning tasks such as across-net-
work prediction, anomaly detection, graph similarity,
matching, among others.

2.2.1 Composing Relational Functions

The space of relational functions searched via DeepGL is
defined compositionally in terms of a set of relational feature
operators F ¼ fF1; . . . ;FKg.

8 A few relational feature opera-
tors are defined formally in Table 2; see [11] (pp. 404) for a
wide variety of other useful relational feature operators.
The expressivity of DeepGL (space of relational functions
expressed by DeepGL) depends on a few flexible and inter-
changeable components including:

Fig. 1. Egonet Features. The set of base (‘=1 hop)-egonet graph fea-
tures. (a) The external egonet features; (b) the within egonet features.
See the legend for the vertex types: Ego-center (�), within-egonet vertex
(�), and external egonet vertices (�).

Fig. 2. Summary of the nine node graphlets and 15 orbits (graphlet auto-
morphisms) with 2-4 nodes.

TABLE 2
Examples of Relational Feature Operators

Operator Definition

mean FhS; xxi ¼ 1
jSj

P

sj2S
xj

sum FhS; xxi ¼
P

sj2S
xj

maximum FhS; xxi ¼ maxsj2S xj

Hadamard FhS; xxi ¼
Q

sj2S
xj

Weight. Lp FhS; xxi ¼
P

sj2S
xi � xj

�
�

�
�p

RBF FhS; xxi ¼ exp
�

� 1
s2

P

sj2S

�
xi � xj

�2
	

The term relational operator is used more generally to refer to any relational
function applied over the neighborhood of a node or edge (or more generally
any set S). Note that DeepGL is flexible and generalizes to any arbitrary set of
relational feature operators. The set of relational feature operators can be
learned via cross-validation. Recall the notation from Table 1. For generality,
S is defined in Table 1 as a set of related graph elements (nodes, edges) of gi
and thus sj 2 S may be an edge sj ¼ ej or a node sj ¼ vj; in this work
S 2

G‘ðgiÞ; G

þ
‘ ðgiÞ; G

�
‘ ðgiÞ

�
. The relational operators generalize to ‘-distance

neighborhoods (e.g., G‘ðgiÞ where ‘ is the distance). Note xx ¼
�
x1 x2 � � �

xi � � �
�
is a vector and xi is the ith element of xx for gi.

7. The terms graph function and relational function are used
interchangeably.

8. NoteDeepGLmay also leverage traditional feature operators used
for i:i:d: data.

440 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 3, MARCH 2020

i) the initial base features derived using the graph
structure, initial input attributes (if available), or
both,

ii) a set of relational feature operators F ¼ fF1; . . . ;FKg,
iii) the sets of “related graph elements” S 2 S (e.g., the

in/out/all neighbors within ‘ hops of a given node/
edge) that are used with each relational feature oper-
ator Fp 2 F, and finally,

iv) the number of times each relational function is com-
posed with another (i.e., the depth).

Observe that under this formulation each feature vector
xx0 from XX (that is not a base feature) can be written as a com-
position of relational feature operators applied over a base
feature. For instance, given an initial base feature xx, by abuse
of notation let xx0 ¼ FkðFjðFihxxiÞÞ ¼ ðFk � Fj � FiÞðxxÞ be a
feature vector given as output by applying the relational
function constructed by composing the relational feature oper-
ators Fk � Fj � Fi to every graph element gi 2 G and its set
S of related elements.9 Obviously, more complex relational
functions are easily expressed such as those involving com-
positions of different relational feature operators (and possi-
bly different sets of related graph elements). Furthermore,
DeepGL is able to learn relational functions that often corre-
spond to increasingly higher-order subgraph features based
on a set of initial lower-order (base) subgraph features
(Fig. 3). Intuitively, just as filters are used in Convolutional
Neural Networks (CNNs) [10], one can think of DeepGL in
a similar way, but instead of simple filters, we have features
derived from lower-order subgraphs being combined in
various ways to capture higher-order subgraph patterns of
increasingly complexity at each successive layer.

2.2.2 Summation and Multiplication of Relational

Functions

We can also construct a wide variety of functions composi-
tionally by adding and multiplying relational functions
(e.g., Fi þFj, and Fi �Fj). More specifically, any class of
functions that are closed under addition and multiplication
can be used as base functions in this context. A sum of rela-
tional functions is similar to an OR operation in that two

instances are “close” if either has a large value, and simi-
larly, a product of relational functions can be viewed as an
AND operation as two instances are close if both relational
functions have large values. This is similar to many existing
architectures for learning complex functions such as the
AND-like or OR-like units in convolutional networks [27],
among others [10].

2.3 Searching the Relational Function Space

A general and flexible framework for DeepGL is given in
Algorithm 1. Recall that DeepGL begins by deriving a set of
base features which are used as a basis for learning deeper
and more discriminative features of increasing complexity
(Line 2). The base feature vectors are then transformed
(Line 3). For instance, one may transform each feature vector
xxi using logarithmic binning as follows: sort xxi in ascending
order and set the aN graph elements (nodes/edges) with
smallest values to 0 where 0 < a < 1, then set a fraction of
remaining graph elements with smallest value to 1, and so
on. Observe that we only need to store the nonzero feature
values. Thus, we avoid explicitly storing aN values for each
feature by storing each feature as a sparse feature vector. See
Section 3.2 for further details. Many other techniques exist
for transforming the feature vectors and the selected tech-
niquewill largely depend on the graph structure.

The framework proceeds to learn a hierarchical graph
representation (Fig. 3) where each successive layer repre-
sents increasingly deeper higher-order (edge/node)
graph functions: F 1 < F 2 < � � � < F t s:t: if i < j then
F j is said to be deeper than F i. In particular, the feature
layers F 2;F 3; . . . ;F t are derived as follows (Algorithm 1
Lines 4-10): First, we derive the feature layer F t by
searching over the space of graph functions that arise
from applying the relational feature operators F to each
of the novel features fi 2 F t�1 learned in the previous
layer (Algorithm 1 Line 5). An algorithm for deriving a
feature layer is provided in Algorithm 2. Further, an intu-
itive example is provided in Fig. 4. Next, the feature vec-
tors from layer F t are transformed in Line 6 as discussed
previously.

The resulting features in layer t are then evaluated. The
feature evaluation routine (in Algorithm 1 Line 7) chooses
the important features (relational functions) at each layer t
from the space of novel relational functions (at depth t) con-
structed by applying the relational feature operators to each

Fig. 3. Overview of the DeepGL architecture for graph representation learning. Let WW ¼
�
wij

�
be a matrix of feature weights where wij (or Wij) is the

weight between the feature vectors xxi and xxj. Notice that WW has the constraint that i < j < k and xxi, xxj, and xxk are increasingly deeper. Each fea-
ture layer F h 2 F defines a set of unique relational functions F h ¼ f . . .; fk; . . . g of order h (depth) and each fk 2 F h denotes a relational function.
Further, let F ¼ F 1 [F 2 [� � � [F t and Fj j ¼ jF 1j þ jF 2j þ � � � þ jF t j. Moreover, the layers are ordered where F 1 < F 2 < � � � < F t such that if
i < j then F j is said to be a deeper layer w:r:t: F i. See Table 1 for a summary of notation.

9. For simplicity, we use Fhxxi (whenever clear from context) to refer
to the application of F to all sets S derived from each graph element
gi 2 G and thus the output of Fhxxi in this case is a feature vector with a
single feature-value for each graph element.

ROSSI ET AL.: DEEP INDUCTIVE GRAPH REPRESENTATION LEARNING 441

feature (relational function) learned (and given as output) in
the previous layer t � 1. Notice that DeepGL is extremely
flexible as the feature evaluation routine (Algorithm 3)
called in Line 7 of Algorithm 1 is completely interchange-
able and can be fine-tuned for specific applications and/or
data. This approach derives a score between pairs of fea-
tures. Pairs of features xxi and xxj that are strongly dependent
as determined by the hyperparameter � and evaluation cri-
terion K are assignedWij ¼ Kðxxi; xxjÞ andWij ¼ 0 otherwise
(Algorithm 3 Line 2-6). More formally, let EF denote the set
of connections representing dependencies between features:

EF ¼

ði; jÞ j 8ði; jÞ 2 jF j � jFjs:t:Kðxxi; xxjÞ > �

�
: (3)

The result is a weighted feature dependence graph GF ¼
ðVF ; EF Þ where a relatively large edge weight Kðxxi; xxjÞ ¼
Wij between xxi and xxj indicates a potential dependence (or
similarity/correlation) between these two features. Intui-
tively, xxi and xxj are strongly dependent if Kðxxi; xxjÞ ¼Wij is
larger than �. Therefore, an edge is added between features
xxi and xxj if they are strongly dependent. An edge between
features represents (potential) redundancy. Now, GF is used
to select a subset of important features from layer t. Fea-
tures are selected as follows: First, the feature graph GF is
partitioned into groups of features fC1; C2; . . .g where each
set Ck 2 C represents features that are dependent (though
not necessarily pairwise dependent). To partition the fea-
ture graph GF , Algorithm 3 uses connected components,
though other methods are also possible, e.g., a clustering or
community detection method. Next, one or more represen-
tative features are selected from each group (cluster) of
dependent features. Alternatively, it is also possible to
derive a new feature from the group of dependent features,
e.g., finding a low-dimensional embedding of these features
or taking the principal eigenvector. In Algorithm 3 the earli-
est feature in each connected component Ck ¼ f. . . ; fi; . . . ;
fj; . . .g 2 C is selected and all others are removed. After
pruning the feature layer F t, the discarded features are
removed from XX and DeepGL updates the set of features
learned thus far by setting F F [F t (Algorithm 1:
Line 8). Next, Line 9 increments t and sets F t ? . Finally,
we check for convergence, and if the stopping criterion is
not satisfied, then DeepGL learns an additional feature layer
(Line 4-10).

An important aspect of DeepGL is the specific convergence
criterion used to decide when to stop learning. In

Algorithm 1, DeepGL terminates when either of the follow-
ing conditions are satisfied: (i) no new features emerge (in
the current feature layer t and thus jF tj ¼ 0), or (ii) the max-
imum number of layers is reached. However, DeepGL is not
tied to any particular convergence criterion and others can
easily be used in its place.

Algorithm 1. TheDeepGL Framework for Learning Deep
Graph Representations (node/edge features) from Large
Graphs where the Features are Expressed as Relational
Functions thatNaturally Transfer Across-Networks

Require:
a (un)directed graph G ¼ ðV;EÞ; a set of relational feature
operators F ¼ fF1; . . . ;FKg, and a feature similarity
threshold �.

1: F 1 ? and initialize XX if not given as input
2: Given G, construct base graph features (see Section 2.1 for

further details) and concatenate the feature vectors to XX

and add the function definitions to F 1; and set F F 1.
3: Transform base feature vectors; Set t 2

4: repeat " feature layers F t for t ¼ 2; . . . ;T
5: Search the space of features defined by applying rela-

tional feature operators F ¼ fF1; . . . ;FKg to features
�
� � � xxi xxiþ1 � � �

�
given as output in the previous

layer F t�1 (via Algorithm 2). Add feature vectors to XX

and functions/def. to F t .
6: Transform feature vectors of layer F t

7: Evaluate the features (functions) in layer F t , e.g., using a
criterion K to score feature pairs along with a feature
selection method to select a subset (Algorithm 3) or by
finding a low-rank embedding of the feature matrix and
concatenating the embeddings to XX.

8: Discard features from XX that were pruned (not in F t) and
set F F [F t

9: Set t t þ 1 and initialize F t to ? for next feature layer
10: until no new features emerge or the max number of layers

(depth) is reached
11: return XX and the set of relational functions (definitions) F

In contrast to node embedding methods that output only
a node feature matrix XX, DeepGL also outputs the (hierarchi-
cal) relational functions (definitions) F ¼ fF 1; F 2; . . . g
where each fi 2 F h is a learned relational function of depth
h for the ith feature vector xxi. Maintaining the relational
functions are important for transferring the features to
another arbitrary graph of interest, but also for interpreting
them. Moreover, DeepGL is an inductive representation
learning approach as the relational functions can be used to
derive embeddings for new nodes or even graphs.

There are many methods to evaluate and remove redun-
dant/noisy features at each layer and DeepGL is not tied to
any particular approach. For the experiments, we use the
relational function evaluation and pruning routine in Algo-
rithm 3 as it is computationally efficient and the features
remain interpretable. There are two main classes of techni-
ques for evaluating and removing redundant/noisy fea-
tures at each layer. The first class of techniques use a
criterion K to score the feature pairs along with any feature
selection method (e.g., see Algorithm 3) to select a subset of
representative and non-redundant features. The second
class of techniques compute a low-rank embedding of the
feature matrix at each layer and concatenates the embed-
dings as features for learning the next layer. Alternatively,

Fig. 4. An intuitive example for an edge e ¼ ðv; uÞ and a relational opera-
tor F 2 F. Suppose F ¼ relational sum operator and S ¼ G‘ðeiÞ ¼
fe1; e2; e3; e4; e5g where ‘ ¼ 1 (distance-1 neighborhood), then FhS; xxi ¼
19. Now, suppose S ¼ G

þ
‘ ðeiÞ ¼ fe2; e4g then FhS; xxi ¼ 7 and similarly, if

S ¼ G
�
‘ ðeiÞ ¼ fe1; e3; e5g then FhS; xxi ¼ 12. Note xi is the ith element of

xx for ei.

442 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 3, MARCH 2020

one can also use a hybrid approach that combines the
advantages of both by simply concatenating the features
from each. The above approaches are applied at each fea-
ture layer (iteration). Notice that these methods all have the
same general objective of reducing noise and removing
redundant features (minimality condition).

While previous work learns node embeddings (features),
DeepGL instead learns complex relational functions that rep-
resent compositions of relational operators. Hence, these
relational functions naturally generalize across graphs for
inductive learning tasks. Both the relational operators and
base graph features (which can be thought of as functions
themselves) are independent of the particular graph topol-
ogyG (i.e., they can be computed on any graphG) and there-
fore any arbitrary composition of relational operators
applied to any base feature can be computed on any graphG.

2.4 Feature Diffusion

We introduce the notion of feature diffusion where the fea-
ture matrix at each layer can be smoothed using an arbitrary
feature diffusion process. As an example, suppose XX is the
resulting feature matrix from layer t, then we can set
�XXð0Þ XX and solve

�XXðtÞ ¼ DD�1AA�XXðt�1Þ; (4)

where DD is the diagonal degree matrix and AA is the adja-
cency matrix of G. The diffusion process above is repeated
for a fixed number of iterations t ¼ 1; 2; . . . ; T or until con-
vergence; and �XXðtÞ ¼ DD�1AA�XXðt�1Þ corresponds to a simple
feature propagation. More complex feature diffusion pro-
cesses can also be used in DeepGL such as the normalized
Laplacian feature diffusion defined as

�XXðtÞ ¼ ð1� uÞLL�XXðt�1Þ þ uXX; fort ¼ 1; 2; . . . ; (5)

where LL is the normalized Laplacian:

LL ¼ II�DD
1=2AADD

1=2 : (6)

The resulting diffused feature vectors �XX ¼
�
�xx1 �xx2 � � �

�

are effectively smoothed by the features of related graph
elements (nodes/edges) governed by the particular diffu-
sion process. Notice that feature vectors given as output at
each layer can be diffused (e.g., after Line 5 or 8 of
Algorithm 1). Note �XX can be leveraged in a variety of ways:
XX �XX (replacing previous) or concatenated by XX
�
XX �XX

�
. Feature diffusion can be viewed as a form of graph

regularization as it can improve the generalizability of a
model learned using the graph embedding.

2.5 Supervised Representation Learning

The DeepGL framework naturally generalizes for supervised
representation learning by replacing the feature evaluation
routine (called in Algorithm 1 Line 7) with an appropriate
objective function, e.g., one that seeks to find a set of fea-
tures that (i) maximize relevancy (predictive quality) with
respect to yy (i.e., observed class labels) while (ii) minimizing
redundancy among the features in that set. The objective
function capturing both (i) and (ii) is:

xx ¼ arg max
xxi 62X

(

K
�
yy; xxi

�
� b

X

xxj2X

K
�
xxi; xxj

�

)

; (7)

where K is a measure such as mutual information; X is the
current set of selected features; and b is a hyperparameter
that determines the balance between maximizing relevance
and minimizing redundancy. The first term in Eq. (7) seeks
to find xxi that maximizes the relevancy of xxi to yy whereas
the second term attempts to minimize the redundancy
between xxi and each xxj 2 X of the already selected features.
Initially, we set X fxx0g where xx0 ¼ argmaxxxi K

�
yy; xxi

�
.

Afterwards, we solve Eq. (7) to find xxi (such that xxi 62 X)
which is then added to X (and removed from the set of
remaining features). This is repeated until the stopping cri-
terion is reached.

Algorithm 2. Derive a Feature Layer Using the Features
from the Previous Layer and the Set of Relational Feature
Operators F ¼ fF1; . . . ;FKg

1: procedure FeatureLayer(G, XX, F, F , F t, �)
2: parallel for each graph element gi 2 G do
3: Set t jFj
4: for each feature xxk s.t. fk 2 F t�1 in order do
5: for each S 2

G
þ
‘ ðgiÞ; G

�
‘ ðgiÞ; G‘ðgiÞ

�
do

6: for each relational operator F 2 F do
7: Xit ¼ FðS; xxkÞ and t tþ 1

8: Add feature definitions to F t

9: return feature matrix XX and F t

Algorithm 3. Score and Prune the Feature Layer

1: procedure EvaluateFeatureLayer(G, XX, F , F t)
2: Let GF ¼ ðVF ; EF ;WWÞ
3: parallel for each feature fi 2 F t do
4: for each feature fj 2 ðF t�1 [� � � [F 1Þ do
5: if K

�
xxi; xxj

�
> � then

6: EF ¼ EF [fði; jÞg
7: Wij ¼ K

�
xxi; xxj

�

8: Partition GF using conn. components C ¼ fC1; C2; . . .g
9: parallel for each Ck 2 C do " Remove features
10: Find fi s.t. 8fj 2 Ck : i < j.
11: Remove Ck from F t and set F t F t [ffig

3 ANALYSIS

Let N ¼ jV j denote the number of nodes, M ¼ jEj be the
number of edges, F ¼ number of relational functions
learned by DeepGL, and K ¼ number of relational feature
operators.

3.1 Time Complexity

3.1.1 Learning

Lemma 3.1. The time complexity for learning edge features (rela-
tional functions) using the DeepGL framework is:

O
�
F ðM þMF Þ

�
; (8)

and the time complexity for learning node features using the
DeepGL framework is:

O
�
F ðM þNF Þ

�
; (9)

Hence, the time complexity of both edge (Eq. 8) and node (Eq. 9)
feature learning inDeepGL is linear in the number of edges.

ROSSI ET AL.: DEEP INDUCTIVE GRAPH REPRESENTATION LEARNING 443

Proof. The time complexity of each of the main steps is pro-
vided below. Recall that DeepGL is a general and flexible
framework for inductive graph-based feature learning.
The particular instantiation of DeepGL used in this analy-
sis corresponds to using Algorithm 3 for feature evalua-
tion and pruning where K ¼ agreement scoring defined
in Eq. (12) with logarithmic binning. We also assume the
relational functions are composed of any relational fea-
ture operator (aggregator function) with a worst-case
time complexity of OðjSjÞ where S is the set of related
graph elements (e.g., ‘ ¼ 1 hop neighbors of a node or
edge). Further, the related graph elements S given
as input to a relational feature operator F 2 F ¼
fF1; . . . ;FKg is the ‘ ¼ 1 hop neighborhood of a node in
the worst case. Hence, if G is directed, then we consider
the worst case where S ¼ G‘ðgiÞ ¼ G

þ
‘ ðgiÞ [G

�
‘ ðgiÞ since

jG‘ðgiÞj 	 jG
þ
‘ ðgiÞj and jG‘ðgiÞj 	 jG

�
‘ ðgiÞj. It is straightfor-

ward and trivial to select a subset J
 S of related graph
elements for a given node (or edge) using an arbitrary
uniform or weighted distribution P and derive a feature
value for that node (edge) using J . Moreover, the maxi-
mum size of J can be set by the user as done in [25], [28].tu

Base Graph Features. Recall that all base features discussed in
Section 2.1 can be computed in OðMÞ time (by design).
While DeepGL is not tied to a particular set of base features
and can use any arbitrary set of base features including
those that are more computationally intensive, we neverthe-
less restrict our attention to base features that can be com-
puted in OðMÞ to ensure that DeepGL is fast and efficient
for massive networks. For deriving the graphlet (network
motif) frequencies and egonet features (that are to 3-node
motif variations), we use recent provably accurate estima-
tion methods [25], [28]. As shown in [25], [28], we can
achieve estimates within a guaranteed level of accuracy and
time by setting a few simple parameters in the estimation
algorithm. The time complexity to estimate the frequency of
all 4-node graphlets is OðMDubÞ in the worst case where
Dub �M is a small constant set by the user that represents
the maximum sampled degree [25], [28].

Searching the Space of Relational Functions. The time com-
plexity to derive a novel candidate feature xx using an arbitrary
relational feature operator F 2 F takes at most OðMÞ time.
For a feature fk 2 F with vector xxk, DeepGL derives K ¼ jFj
new candidate features to search. This is repeated at most F
times. Therefore, the worst-case time complexity to search the
space of relational functions isOðKFMÞwhereK �M. Since
K is a small constant, it is disregarded givingOðFMÞ.

Scoring and Pruning Relational Functions. First we score
the feature pairs using a score function K. To assign a score
Kðxxi; xxjÞ to an arbitrary pair of features fi; fj 2 F , it takes at
most OðMÞ time (or OðNÞ time for node feature learning).
Further, if Kðxxi; xxjÞ > �, then we set Wij ¼ Kðxxi; xxjÞ and
add an edge EF ¼ EF [fði; jÞg in oð1Þ constant time. There-
fore, the worst-case time complexity to score all such feature
pairs is OðF 2MÞ for edge feature learning where F �M
and OðF 2NÞ for nodes where F � N . The time complexity
for pruning the feature graph is at most F 2 þ F and thus
can be ignored since the term F 2M (or F 2N) dominate as M
(orN) grows large.

3.1.2 Inductive Relational Functions

We now state the time complexity of directly computing the
set of inductive relational functions F (e.g., that were

previously learned on another arbitrary graph). The set of
relational functions F can be used in two important ways.
First, the relational functions are useful for inductive across-
network transfer learning tasks where one uses the relational
functions that were previously learned from a graph Gi and
wants to extract them on another graph Gj of interest (e.g.,
for graph matching or similarity, across-network classifica-
tion). Second, given new nodes or edges in the same graph
that the relational functions were learned, we can use F to
derive node or edge feature values (embeddings, encod-
ings) for the new nodes/edges without having to relearn
the relational functions each time a new node or edge
appears in the graph.

Lemma 3.2. Given a set of learned edge (node) relational func-
tions F (from Section 3.1.1), the time complexity for directly
deriving (extracting) the edge (or node) relational functions is:

O
�
FM

�
: (10)

Hence, the time complexity is linear in the number of edges.

Computing the set of inductive relational functions on
another arbitrary graph obviously requires less work than
learning the actual set of inductive relational functions
(Section 3.1.1) since there is no learning involved as we
simply derive the previously learned relational functions
F directly from their definitions. Therefore, we avoid
Algorithm 3 completely since we do not need to score or
prune any candidate features from the potential space of
relational functions. The time complexity is therefore
OðFMÞ where F ¼ jFj as shown previously in Section
3.1.1.

3.2 Space Complexity

Lemma 3.3 The space complexity of the learned (sparse) feature
matrix XX given as output by DeepGL is

OðF ð aNd eÞÞ: (11)

Proof. The space complexity stated in Eq. (11) assumes log-
arithmic binning is used to encode the feature values of
each feature vector xx 2 R

N . Notice that without any com-
pression, the space complexity is obviously OðNF Þ. How-
ever, since log binning is used with a bin width of a, we
can avoid storing approximately aNd e values for each
N-dimensional feature by mapping these values to 0 and
explicitly storing only the remaining nonzero feature val-
ues. This is accomplished using a sparse feature vector
representation. Furthermore, we can store these even
more efficiently by leveraging the fact that the same
nodes whom appear within the aN largest (or smallest)
feature values for a particular feature often appear within
the aNd e largest (or smallest) feature values for other
arbitrary features as well. This is likely due to the power-
law observed in many real-world graphs. Similarly, the
space complexity of the sparse edge feature matrix XX is
OðF ð aMd eÞÞ. tu

4 EXPERIMENTS

This section demonstrates the effectiveness of the proposed
framework. In particular, we investigate the predictive per-
formance of DeepGL compared to the state-of-the-art

444 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 3, MARCH 2020

methods across a wide variety of graph-based learning tasks
as well as its scalability, runtime, and parallel performance.

4.1 Experimental Settings

In these experiments, we use the following instantiation of
DeepGL: Features are transformed using logarithmic bin-
ning and evaluated using a simple agreement score function
where Kðxxi; xxjÞ ¼ fraction of graph elements that agree.
More formally, agreement scoring is defined as:

Kðxxi; xxjÞ ¼

ðxik; xjkÞ; 8k ¼ 1; . . . ;N j xik ¼ xjk

��
�

�
�

N
; (12)

where xik and xjk are the kth feature value of the N
-dimensional vectors xxi and xxj, respectively. As an aside,
recall that a key advantage of DeepGL is that the framework
has many interchangeable components including the above
evaluation criterion, base features (Section 2.1), relational
operators (Section 2.2), among others. The expressiveness
and flexibility of DeepGL makes it well-suited for a variety
of application domains, graph types, and learning scenar-
ios [29]. In addition, DeepGL can even leverage features
from an existing method (or any approach proposed in the
future) to discover a more discriminative set of features.
Unless otherwise mentioned, we use the base graph features
mentioned in Section 2.1; set a ¼ 0:5 (bin size of logarithmic
binning) and perform a grid search over � 2 f0:01; 0:05;
0:1; 0:2; 0:3g and F 2

Fmean;Fsum;Fprod; fFmean;Fsumg;

fFprod;Fsumg;fFprod;FmeangfFsum;Fmean;Fprodg
�
: See Table 2.

Note Fprod refers to the Hadamard relational operator
defined formally in Table 2. As an aside, DeepGL has fewer
hyperparameters than node2vec, DeepWalk, and LINE
used in the comparison below. The specific model defined
by the above instantiation of DeepGL is selected using 10-
fold cross-validation on 10 percent of the labeled data.
Experiments are repeated for 10 random seed initializations.
All results are statistically significant with p-value < 0:01.

We evaluate the proposed framework against node2-
vec [15], DeepWalk [13], and LINE [16]. For node2vec, we
use the hyperparameters and grid search over p; q 2
f0:25; 0:50; 1; 2; 4g as mentioned in [15]. The experimental
setup mentioned in [15] is used for DeepWalk and LINE.
Unless otherwise mentioned, we use logistic regression
with an L2 penalty and one-vs-rest for multiclass problems.
Data has been made available at NetworkRepository [30].10

4.2 Within-Network Link Classification

We first evaluate the effectiveness of DeepGL for link classi-
fication. To be able to compare DeepGL to node2vec and the
other methods, we focus in this section on within-network
link classification. For comparison, we use the same set of
binary operators to construct features for the edges indirectly
using the learned node representations: Given the feature
vectors xxi and xxj for node i and j, ðxxi þ xxjÞ

�
2 is the MEAN;

xxi � xxj is the (Hadamard) PRODUCT; xxi � xxj
�
�

�
� and ðxxi � xxjÞ

�2

is the WEIGHTED-L1 and WEIGHTED-L2 binary operators, respec-
tively.11Note that these binary operators (used to create
edge features) are not to be confused with the relational fea-
ture operators defined in Table 2. In Table 3, we observe

that DeepGL outperforms node2vec, DeepWalk, and LINE
with an average gain between 18.09 and 20.80 percent across
all graphs and binary operators.

Notice that node2vec, DeepWalk, and LINE all require
that the training graph contain at least one edge among
each node in G. However, DeepGL overcomes this funda-
mental limitation and can actually predict the class label of
edges that are not in the training graph as well as the class
labels of edges in an entirely different network.

4.3 Inductive Across-Network Transfer Learning

Recall from Section 2 that a key advantage of DeepGL over
existing methods [13], [15], [16] lies in its ability to learn fea-
tures that naturally generalize for inductive across-network
transfer learning tasks. Unlike existing methods [13], [15],
[16], DeepGL learns relational functions that generalize for
extraction on another arbitrary graph and therefore can be
used for graph-based transfer (inductive) learning tasks
such as across-network link classification. In contrast,
node2vec [15], DeepWalk [13] and LINE [16] are unable to
be used for such graph-based transfer learning tasks as the
features from these methods are fundamentally tied to node
identity, as opposed to the general relational functions
learned by DeepGL that can be computed on any arbitrary
graph. Further, these methods require the training graph to
be connected (e.g., see [15]), which implies that each node in
the original graph has at least one edge in the training
graph. This assumption is unrealistic, though is required by
these approaches, otherwise, they would be unable to con-
struct edge features for any edges containing nodes which
did not appear in the test set.

For each experiment, the training graph is fully observed
with all known labels available for learning. The test graph
is completely unlabeled and each classification model is
evaluated on its ability to predict all available labels in the
test graph. Given the training graph G ¼ ðV;EÞ, we use
DeepGL to learn the feature matrix XX and the relational
functions F (definitions). The relational functions F are
then used to extract the same identical features on an

TABLE 3
AUC Scores forWithin-Network Link Classification

escorts yahoo-msg

MEAN
�
xxi þ xxj

��
2

DeepGL 0:6891 0:9410
node2vec 0.6426 0.9397
DeepWalk 0.6308 0.9317

LINE 0.6550 0.7967

PRODUCT xxi � xxj

DeepGL 0.6339 0.9324
node2vec 0.5445 0.8633
DeepWalk 0.5366 0.8522

LINE 0.5735 0.7384

WEIGHTED L1 xxi � xxj
�
�

�
�

DeepGL 0.6857 0.9247
node2vec 0.5050 0.7644
DeepWalk 0.5040 0.7609

LINE 0.6443 0.7492

WEIGHTED L2 ðxxi � xxjÞ
�2

DeepGL 0.6817 0.9160
node2vec 0.4950 0.7623
DeepWalk 0.4936 0.7529

LINE 0.6466 0.5346

10. See http://networkrepository.comfor data description &
statistics

11. Note xx�2 is the element-wise Hadamard power; xxi � xxj is the ele-
ment-wise product.

ROSSI ET AL.: DEEP INDUCTIVE GRAPH REPRESENTATION LEARNING 445

http://networkrepository.com

arbitrary test graph G0 ¼ ðV 0; E0Þ giving as output a feature
matrix XX0. Notice that each node (or edge) is embedded in
the same F -dimensional space, even despite that the set of
nodes/edges between the graphs could be completely dis-
joint, and even from different domains. Thus, an identical
set of features is used for all train and test graphs.

In these experiments, the training graph G1 represents

the first week of data from yahoo-msg,12 whereas the test
graphs fG2; G3; G4g represent the next three weeks of data
(e.g., G2 contains edges that occur only within week 2, and
so on). Hence, the test graphs contain many nodes and
edges not present in the training graph. As such, the predic-
tive performance is expected to decrease significantly over
time as the features become increasingly stale due to the
constant changes in the graph structure with the addition
and deletion of nodes and edges. However, we observe the
performance of DeepGL for across-network link classifica-
tion to be stable with only a small decrease in AUC as a
function of time as shown in Fig. 5a. This is especially true
for edge features constructed using mean. As an aside, the
mean operator gives best performance on average across all
test graphs; with an average AUC of 0.907 over all graphs.

Now we investigate the performance as a function of the
amount of labeled data used. In Fig. 5b, we observe that
DeepGL performs well with very small amounts of labeled
data for training. Strikingly, the difference in AUC scores from
models learned using 1 percent of the labeled data is insignifi-
cant at p < 0:01w:r:t:models learned using larger quantities.

4.4 Analysis of Space-Efficiency

Learning sparse space-efficient node and edge feature repre-
sentations is of vital importance for large networks where
storing even a modest number of dense features is impractical
(especially when stored in-memory). Despite the importance
of learning a sparse space-efficient representation, existing
work has been limited to discovering completely dense
(node) features [13], [15], [16]. To understand the effectiveness
of the proposed framework for learning sparse graph repre-
sentations, we measure the density of each representation
learned from DeepGL and compare these against the state-of-
the-art methods [13], [15]. We focus first on node representa-
tions since existingmethods are limited to only node features.
Results are shown in Fig. 6. In all cases, the node representa-
tions learned by DeepGL are extremely sparse and signifi-
cantly more space-efficient than node2vec [15] as observed

in Fig. 6. DeepWalk and LINE use nearly the same space as
node2vec, and thus are omitted for brevity. Strikingly,
DeepGL uses only a fraction of the space required by existing
methods (Fig. 6). Moreover, the density of node and edge rep-
resentations from DeepGL is between

�
0:162; 0:334

�
for

nodes and
�
0:164; 0:318

�
for edges and up to 6� more

space-efficient than existingmethods.
Notably, recent node embedding methods not only out-

put dense node features, but are also real-valued and often
negative (e.g., [13], [15], [16]). Thus, they require 8 bytes per
feature-value, whereas DeepGL requires only 2 bytes and
can sometimes be reduced to even 1 byte if needed by adjust-
ing a (i.e., the bin size of the log binning transformation). To
understand the impact of this, assume both approaches learn
a node representation with 128 dimensions (features) for a
graph with 10,000,000 nodes. In this case, node2vec, Deep-
Walk, and LINE require 10.2 GB, whereasDeepGL uses only
0.768 GB (assuming a modest 0.3 density) — a significant
reduction in space by a factor of 13.

4.5 Runtime & Scalability

To evaluate the performance and scalability of the proposed
framework, we learn node representations for Erd€os-R�enyi
graphs of increasing size (from 100 to 10,000,000 nodes)
such that each graph has an average degree of 10. We com-
pare the performance of DeepGL against LINE [16] and
node2vec [15] which is designed specifically to be scalable
for large graphs. Default parameters are used for each
method. In Fig. 7a, we observe that DeepGL is significantly
faster and more scalable than node2vec and LINE. In partic-
ular, node2vec takes 1.8 days (45.3 hours) for 10 million
nodes, whereas DeepGL finishes in only 15 minutes; see
Fig. 7a. Strikingly, this is 182 times faster than node2vec and
106 times faster than LINE. In Fig. 7b, we observe that
DeepGL spends the majority of time in the search and opti-
mization phase. In Fig. 8, we also investigate effect on the
number of relational functions learned, sparsity, and run-
time of DeepGL as a and � vary.

4.6 Parallel Scaling

This section investigates the parallel performance of
DeepGL. To evaluate the effectiveness of the parallel algo-
rithm we measure speedup defined as Sp ¼

T1
Tp

where T1 and
Tp are the execution time of the sequential and parallel algo-
rithms (w/ p processing units), respectively. In Fig. 9, we
observe strong parallel scaling for all DeepGL variants with
the edge representation learning variants performing
slightly better than the node representation learning meth-
ods from DeepGL. Results are reported for soc��gowalla

Fig. 5. Effectiveness of the DeepGL framework for across network trans-
fer learning. (a) AUC scores for across-network link classification using
yahoo-msg. Note ^ denotes the mean AUC of each test graph.
(b) Effectiveness of DeepGL for classification with very small amounts of
training labels.

Fig. 6. DeepGL requires up to 6x less space than node2vec and other
existing methods that learn dense node embeddings.

12. https://webscope.sandbox.yahoo.com/

446 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 3, MARCH 2020

https://webscope.sandbox.yahoo.com/

on a machine with 4 Intel Xeon E5-4627 v2 3.3 GHz CPUs.
Other graphs and machines gave similar results.

4.7 Effectiveness on Link Prediction

Given a graph G with a fraction of missing edges, the link
prediction task is to predict these missing edges. We gener-
ate a labeled dataset of edges as done in [15]. Positive
examples are obtained by removing 50 percent of edges ran-
domly, whereas negative examples are generated by ran-
domly sampling an equal number of node pairs that are not
connected with an edge, i.e., each node pair ði; jÞ 62 E. For
each method, we learn features using the remaining graph
that consists of only positive examples. To construct edge fea-
tures from the node embeddings, we use the mean operator
defined as ðxxi þ xxjÞ

�
2. Using the feature representations from

each method, we then learn a model to predict whether a
given edge in the test set exists in E or not. Notice that node
embeddingmethods such as node2vec require that each node
inG appear in at least one edge in the training graph (i.e., the
graph remains connected), otherwise these methods are
unable to derive features for such nodes. This is a significant
limitation especially in practice where nodes (e.g., represent-
ing users) may be added in the future. Furthermore, most
graphs contain many nodes with only a few edges (due to the
small world phenomenon) which are also themost difficult to
predict, yet are avoided in the evaluation of node embedding
methods due to the above restriction. Results are provided in
Table 4. We report both AUC and F1 scores. In all cases,
DeepGL achieves better predictive performance over the
other methods across a wide variety of graphs from different
domains with fundamentally different structural characteris-
tics. In Fig. 10, we summarize the gain in AUC and F1 score of
DeepGL over the baseline methods. Strikingly, DeepGL

achieves an overall gain in AUC of 32 percent and an overall
gain in F1 of 37 percent averaged over all baseline methods
and across a wide variety of graphs with different structural
characteristics. As an aside, common neighbors and other
simple measures are known to perform significantly worse
than node2vec and other embedding approaches (see [15])
and thus are not included here for brevity.

4.8 Sensitivity & Perturbation Analysis

Many real-world networks are partially observed and noisy
(e.g., due to limitations in data collection) and often have
both missing and noisy/spurious edges. In this section, we ana-
lyze the sensitivity of DeepGL under such conditions using
the DD242 network. Results are shown in Fig. 11. In particu-
lar,DeepGL is shown to be robust tomissing and noisy edges
while the number of features (dimensionality) learned by
DeepGL remains relatively stable with only a slight increase
as a function of the number of missing or additional edges.
While one must define the number of dimensions (features)
in existing node embeddingmethods,DeepGL automatically
learns the appropriate number of dimensions and the depth
(number of layers). Furthermore, we find the number of fea-
tures learned byDeepGL is roughly correlated with the com-
plexity and randomness of the graph (i.e., as the graph
becomes more random, the number of features increases to
account for such randomness).

4.9 Interpretability of Learned Features

The features (embeddings, representations) learned by most
existing approaches are notoriously difficult to interpret
and explain which is becoming increasingly important in
practice [17], [18]. In contrast, the features learned by
DeepGL are relatively more interpretable and can be
explained by examining the actual relational functions
learned. While existing work primarily outputs the feature/
embedding matrix XX, DeepGL also outputs the relational
functions F that correspond to each of the learned features.
It is these relational functions that allow us to gain insight
into the meaning of the learned features.

In Table 5, we show a few of the relational functions
learned from an email network (ia-email-EU; nodes repre-
sent users and directed edges indicate an email communica-
tion from one user to another). Recall a feature in DeepGL is
a relational function representing a composition of rela-
tional feature operators applied over a base feature. There-
fore, the interpretableness of a learned feature in DeepGL

depends on two aspects. First, we need to understand
the base feature, e.g., in-degree.13 Second, we need to under-
stand the relational feature operators that are used in the rela-
tional function. As an example, ðF�meanÞðxxÞ in Table 5 where
xx ¼ dd� (in-degree) is interpreted as “the mean in-degree of
the in-neighbors of a node.” Using the semantics of the graph,

Fig. 7. Runtime comparison on Erd€os-R�enyi graphs with an average
degree of 10. Left: The proposed approach is shown to be orders of
magnitude faster than node2vec [15] and LINE [16]. Right: Runtime of
the main DeepGL phases.

Fig. 8. Varying a and �. Impact on the number of relational functions
learned, sparsity, and runtime of DeepGL as a and � vary.

Fig. 9. Parallel speedup of different variants from theDeepGL framework.

13. Notice that base features derived from the graph G are also func-
tions (e.g., degree is a function that sums the adjacent nodes).

ROSSI ET AL.: DEEP INDUCTIVE GRAPH REPRESENTATION LEARNING 447

it can be interpreted further as “the mean number of emails
received by individuals that have sent emails to a given indi-
vidual.” In other words, the mean number of emails received
by users that have sent emails to a given node. This relational
function captures whether individuals that send a given user
emails also receive a lot of emails or not. It is straightforward
to interpret the other relational functions in a similar fashion
and due to space we leave this up to the reader. DeepGL also
learns relational functions involving either frequent (3-stars,
4-paths) or rare (triangles) induced subgraphs as these are
highly discriminative as they characterize the behavioral roles
of nodes in the graph. As shown in Table 5, composing rela-
tional operators allowsDeepGL to learn structured and inter-
pretable relational functions from well understood base

components. The learned relational functions yield decompo-
sitions of a signal into interpretable components that facilitate
model checking by domain experts.

4.10 Visualization

We now explore the properties of the graph that are cap-
tured by the feature matrix XX from DeepGL and node2vec.
In particular, we use k-means to group nodes that are simi-
lar with respect to the node feature vectors given as output
by each method. The number of clusters k is selected auto-
matically using MDL. In Fig. 12, we visualize the graph
structure and color the nodes (and edges in the case of
DeepGL) by their cluster assignments. Strikingly, we find in
Fig. 12a that DeepGL captures the node and edge roles [7]

TABLE 4
Link Prediction Results for a Wide Range of Graphs from Different Domains

AUC F1

graph jV j jEj DeepGL N2V DW LINE DeepGL N2V DW LINE

fb-Stanford3 11.5K 568K 0.828 0.540 0.531 0.603 0.757 0.529 0.519 0.630
fb-MIT 6.4K 251.2K 0.817 0.551 0.550 0.675 0.740 0.535 0.532 0.598
fb-Duke14 9.8K 506.4K 0.794 0.541 0.530 0.679 0.725 0.528 0.518 0.608

tech-WHOIS 7.4K 56.9K 0.946 0.689 0.654 0.622 0.880 0.638 0.610 0.626

web-google 1.2K 2.7K 0.837 0.606 0.595 0.647 0.777 0.540 0.528 0.505
web-indochina 11.3K 47.6K 0.786 0.571 0.550 0.676 0.720 0.546 0.531 0.646

bio-dmela 7.3K 25.6K 0.871 0.591 0.589 0.523 0.793 0.545 0.544 0.534
bio-celegans 453 2.0K 0.877 0.804 0.801 0.689 0.834 0.754 0.746 0.649

ia-emailEU 32.4K 54.3K 0.992 0.774 0.697 0.677 0.965 0.603 0.564 0.546
ia-email-dnc 1K 12K 0.988 0.662 0.654 0.800 0.955 0.621 0.599 0.828
ia-fbmessages 1.2K 6.4K 0.852 0.641 0.637 0.686 0.775 0.604 0.590 0.635
ia-infectdublin 410 2.7K 0.666 0.544 0.534 0.536 0.633 0.533 0.515 0.505

ca-CondMat 21.3K 91.2K 0.771 0.538 0.525 0.556 0.710 0.522 0.513 0.543
ca-cora 2.7K 5.4K 0.697 0.618 0.601 0.611 0.651 0.540 0.520 0.539
ca-citeseer 227K 814K 0.785 0.704 0.683 0.643 0.724 0.653 0.627 0.572
ca-Erdos 5.1K 7.5K 0.961 0.694 0.670 0.768 0.908 0.564 0.524 0.633

soc-wiki-elec 7.1K 107K 0.956 0.688 0.664 0.797 0.884 0.642 0.618 0.726
soc-gplus 23.6K 39.2K 0.998 0.760 0.753 0.780 0.992 0.634 0.622 0.731
soc-BlogCatalog 88.8K 2.1M 0.950 0.918 0.907 0.873 0.882 0.680 0.676 0.648

road-chicago-reg 1.5K 1.3K 0.962 0.830 0.766 0.727 0.772 0.551 0.532 0.536

econ-wm2 259 2.9K 0.904 0.864 0.840 0.832 0.833 0.771 0.727 0.719

?
N2V = node2vec, DW = DeepWalk

Fig. 10. DeepGL is effective for link prediction with significant gain in predictive performance. In particular, DeepGL achieves an overall gain in AUC
of 32 percent and an overall gain in F1 of 37 percent averaged over all baseline methods and graphs. Note N2V = node2vec, DW = DeepWalk.

448 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 3, MARCH 2020

that represent the important structural behaviors of the
nodes and edges in the graph. In contrast, node2vec captures
the community of a node as observed in Fig. 12b. Notably,
the roles given by DeepGL are intuitive and make sense
(Fig. 12a). For example, the red role represents authors (and
co-author links) from the CS PhD co-authorship graph [30]
that are gate-keepers (bridge roles) connecting different
groups of authors. Furthermore, the green role represents
nodes at the peripheral (or edge) of the network and are star
edge nodes (as opposed to nodes at the center of a large star/
hub nodes). This demonstrates the effectiveness of DeepGL

for capturing and revealing the important structural proper-
ties (structural roles [7]) of the nodes and edges.

5 RELATED WORK

Related research is categorized below.
Node Embedding Methods. There has been a lot of interest

recently in learning a set of useful node featuresfrom large-
scale networks automatically [13], [15], [16], [31]. Many of
the techniques initially proposed for solving the node
embedding problem were based on graph factorization [32],
[33], [34]. Recently, the skip-gram model [12] was intro-
duced in NLP to learn vector representations for words.
Inspired by the success of the skip-gram model, various
methods [13], [15], [16], [35], [36] have been proposed to
learn node embeddings using skip-gram by sampling

ordered sequences of node ids (random walks) from the
graph and applying the skip-gram model to these sequences
to learn node embeddings. However, these methods are not
inductive nor are they able to learn sparse space-efficient
node embeddings as achieved by DeepGL. More recently,
Chen et al. [37] proposed a hierarchical approach to net-
work representation learning called HARP whereas
Ma et al.proposed MINES for multi-dimensional network
embedding with hierarchical structure. Other work has
focused specifically on community-based embeddings [13],
[15], [36], [38] as opposed to role-based embeddings [39]. In
contrast, DeepGL learns features that capture the notion of
roles (i.e., structural similarty) defined in [7] as opposed to
communities (Fig. 12).

Heterogeneous networks [40] have also been recently con-
sidered [41], [42], [43], [44] aswell as attributed networks [45],
[46], [47]. Huang et al. [45] proposed an approach for attrib-
uted networks with labels whereas Yang et al. [48] used text
features to learn node representations. Liang et al. [49] pro-
posed a semi-supervised approach for networks with out-
liers. Bojchevski et al. [50] proposed an unsupervised rank-
based approach. Coley et al. [51] introduced a convolutional
approach for attributed molecular graphs that learns graph
embeddings as opposed to node embeddings. Similarly,
Lee et al. [52] proposed a graph attention model that embeds
graphs as opposed to nodes for graph classification. There
has also been some recent work on learning node embedding
in dynamic networks [33], [53], [54], [55], semi-supervised
network embeddings [56], [57] and methods for improving
the learned representations [36], [47], [58], [59], [60], [61].
However, these approaches are designed for entirely differ-
ent problem settings than the one focused on in this work.
Notably, all the above methods are not inductive (for graph-
based transfer learning tasks) nor are they able to learn
sparse space-efficient node embeddings as achieved by
DeepGL. Other key differences were summarized previously
in Section 1.

Inductive Embedding Methods. While most work has
focused on transductive (within-network) learning, there
has been some recent work on graph-based inductive
approaches [19], [62]. Yang et al. [62] proposed an inductive
approach called Planetoid. However, Planetoid is an
embedding-based approach for semi-supervised learning
and does not use any structural features. DeepGL first
appeared in a manuscript published in April 2017 as R.

Fig. 11. DeepGL is robust to missing and noisy edges.

TABLE 5
Relational Functions Learned by DeepGL are Interpretable

relational function f base feature xx
�
F
�
mean

��
xx
�

in-degree
�
F
�
sum � F

�
mean

��
xx
�

frequency of triangles
�
F
�
prod � F

þ
mean

��
xx
�

frequency of induced 4-node paths
�
F
þ
sum � F

�
sum � F

�
mean

��
xx
�

frequency of incoming edges to egonet
�
F
þ
sum � F

�
sum � F

�
sum

��
xx
�

frequency of induced 3-node stars
�
F
�
sum � F

�
sum � F

�
prod � F

þ
mean

��
xx
�

out-degree

Examples of a few important relational functions learned from the ia-email-EU
network are shown below. Recall from Section 2 that a relational function (fea-
ture) of order-h is composed of h relational feature operators and each of the h
relational feature operators takes a set S of related graph elements (Table 2). In
this work, S 2

G
þ
‘ ðgiÞ; G

�
‘ ðgiÞ; G‘ðgiÞ

�
where ‘ ¼ 1. For simplicity, we

denote Fþ;F�;F as the relational feature operators that use out, in, and total
(both in/out) 1-hop neighbors, respectively. See text for discussion.

Fig. 12. Left: Application of DeepGL for edge and node role discovery
(ca-PhD). Link color represents the edge role and node color indicates
the corresponding node role. Right: However, since node2vec uses ran-
dom walks it captures communities [39] as shown in (b) where the color
depicts the community of a node. See text for discussion.

ROSSI ET AL.: DEEP INDUCTIVE GRAPH REPRESENTATION LEARNING 449

Rossi et al., “Deep Feature Learning for Graphs” [19]. A few
months later, Hamilton et al. [63] proposed GraphSage that
shared many of the ideas proposed in [19] for learning
inductive node embeddings. Moreover, GraphSage is a spe-
cial case of DeepGL when the concatenated features at each
layer are simply fed into a fully connected layer with non-
linear activation function s. However, that work focused on
node classification whereas our work focuses on link predic-
tion and link classification.

Many node embedding methods are based on traditional
random walks (using node ids) [13], [15], [35], [36] and
therefore are not inductive nor do they capture roles.
Recently, Ahmed et al. [39] proposed an inductive network
representation framework called role2vec that learns induc-
tive role-based node embeddings by first mapping each
node to a type via a function F and then uses the proposed
notion of attributed (typed) random walks to derive induc-
tive role-based embeddings that capture structural similar-
ity [39]. The role2vec framework [39] was shown to
generalize many existing random walk-based methods for
inductive learning tasks on networks. Other work by
Lee et al. [64] uses a technique to construct artificial graph
data heuristically from input data that can then be used for
transfer learning. However, that work is fundamentally dif-
ferent from our own as it constructs a graph from non-rela-
tional data whereas DeepGL is designed for actual real-
world graph data such as social, biological, and information
networks. Moreover, graphs derived from non-relational
data are often dense and most certainly different in structure
from the real-world graphs investigated in our work [65].

Higher-Order Network Analysis. Graphlets (network motifs)
are small induced subgraphs and have been used for graph
classification [2] and visualization/exploratory analysis [24].
However, DeepGL uses graphlet frequencies as base features
for learning higher-order node and edge functions from large
networks that generalize for inductive learning tasks.

Sparse Graph Feature Learning. This work proposes the
first practical space-efficient approach that learns sparse
node/edge feature vectors. Notably, DeepGL requires sig-
nificantly less space than existing node embedding meth-
ods [13], [15], [16] (see Section 4). In contrast, previous
work learns completely dense feature vectors which is
impractical for any relatively large network, e.g., they
require more than 3TB of memory for a 750 million node
graph with 1K features.

6 CONCLUSION

This work introduced the notion of relational function repre-
senting a composition of relational feature operators
applied over an initial base graph feature. Using this notion
as a basis, we proposed DeepGL, a general, flexible, and
highly expressive framework for learning deep node and
edge relational functions (features) that generalize for
(inductive) across-network transfer learning tasks. The
framework is flexible with many interchangeable compo-
nents, expressive, interpretable, parallel, and is both space-
and time-efficient for large graphs with runtime that is lin-
ear in the number of edges. DeepGL has all the following
desired properties:

� Effective for learning features that generalize for
graph-based transfer learning and large (attributed)
graphs

� Space-efficient requiring up to 6x less memory

� Fastwith up to 106x speedup in runtime performance
� Accurate with a mean improvement in AUC of

20 percent or more on many applications
� Expressive and flexible with many interchangeable

components making it useful for a range of applica-
tions, graph types, and learning scenarios.

REFERENCES

[1] J. Neville and D. Jensen, “Iterative classification in relational
data,” in Proc. AAAI Workshop Learn. Statistical Models Relational
Data, 2000, pp. 13–20.

[2] S. V.N.Vishwanathan,N.N. Schraudolph, R. Kondor, andK.M. Borg-
wardt, “Graph kernels,” J. Mach. Learn. Res., vol. 11, pp. 1201–1242,
2010.

[3] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly detec-
tion and description: A survey,” Data Mining Knowl. Discovery,
vol. 29, no. 3, pp. 626–688, 2015.

[4] M. Al Hasan and M. J. Zaki, “A survey of link prediction in social
networks,” in Social Network Data Analytics, Berlin, Germany:
Springer, 2011, pp. 243–275.

[5] V. Nicosia, J. Tang, C. Mascolo, M. Musolesi, G. Russo, and
V. Latora, “Graph metrics for temporal networks,” in Tempo-
ral Networks, Berlin, Germany: Springer, 2013, pp. 15–40.

[6] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi,
“Defining and identifying communities in networks,” Proc.
National Academy Sci. United States America, vol. 101, no. 9,
pp. 2658–2663, 2004.

[7] R. A. Rossi and N. K. Ahmed, “Role discovery in networks,” IEEE
Trans. Knowl. Data Eng., vol. 27, no. 4, pp. 1112–1131, Apr. 2015.

[8] R. Pienta, J. Abello, M. Kahng, and D. H. Chau, “Scalable graph
exploration and visualization: Sensemaking challenges and
opportunities,” in Proc. Int. Conf. Big Data Smart Comput., 2015,
pp. 271–278.

[9] M. Koyut€urk, Y. Kim, U. Topkara, S. Subramaniam,W. Szpankowski,
and A. Grama, “Pairwise alignment of protein interaction networks,”
J. Comput. Biol., vol. 13, no. 2, pp. 182–199, 2006.

[10] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
Cambridge, MA, USA: MIT Press, 2016.

[11] R. A. Rossi, L. K.McDowell, D.W.Aha, and J. Neville, “Transforming
graph data for statistical relational learning,” J. Artif. Intell. Res., vol.
45, no. 1, pp. 363–441, 2012.

[12] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estima-
tion of word representations in vector space,” in Proc. Int. Conf.
Learn. Representations Workshop, 2013, pp. 1–12.

[13] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proc. ACM SIGKDD Conf. Knowl. Dis-
covery Data Mining, 2014, pp. 701–710.

[14] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in Proc. 26th Int. Conf. Neural Inf. Process. Syst.,
2013, pp. 3111–3119.

[15] A. Grover and J. Leskovec, “node2vec: Scalable feature learning
for networks,” in Proc. ACM SIGKDD Conf. Knowl. Discovery Data
Mining, 2016, pp. 855–864.

[16] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proc. 24th Int.
Conf. World Wide Web, 2015, pp. 1067–1077.

[17] A. Vellido, J. D. Mart�ın-Guerrero, and P. J. Lisboa, “Making
machine learning models interpretable,” in Proc. Eur. Symp. Artif.
Neural Netw. Comput. Intell. Mach. Learn., 2012, pp. 163–172.

[18] A. Bibal and B. Fr�enay, “Interpretability of machine learning
models and representations: An introduction,” in Proc. Eur.
Symp. Artif. Neural Netw. Comput. Intell. Mach. Learn., 2016,
pp. 77–82.

[19] R. A. Rossi, R. Zhou, and N. K. Ahmed, “Deep feature learning for
graphs,” arXiv:1704.08829, 2017, Art. no. 11.

[20] Y. Bengio, “Deep learning of representations: Looking forward,”
in Proc. Int. Conf. Statistical Language Speech Process., 2013, pp. 1–37.

[21] Y. Bengio, “Learning deep architectures for AI,” Foundations
Trends Mach. Learn., vol. 2, no. 1, pp. 1–127, 2009.

[22] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[23] L. Akoglu, M. McGlohon, and C. Faloutsos, “Oddball: Spotting
anomalies in weighted graphs,” in Proc. Pacific-Asia Conf. Knowl.
Discovery Data Mining, 2010, pp. 410–421.

450 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 3, MARCH 2020

[24] N. K. Ahmed, J. Neville, R. A. Rossi, and N. Duffield, “Efficient
graphlet counting for large networks,” in Proc. IEEE Int. Conf.
Data Mining, 2015, Art. no. 10.

[25] N. K. Ahmed, T. L. Willke, and R. A. Rossi, “Estimation of
local subgraph counts,” in Proc. IEEE Int. Conf. Big Data, 2016,
pp. 586–595.

[26] N. Pr�zulj, “Biological network comparison using graphlet degree
distribution,” Bioinf., vol. 23, no. 2, pp. e177–e183, 2007.

[27] Y. LeCun, B. Boser, et al., “Backpropagation applied to handwrit-
ten zip code recognition,” Neural Comput., vol. 1, no. 4, pp. 541–
551, 1989.

[28] R. A. Rossi, R. Zhou, and N. K. Ahmed, “Estimation of graphlet
counts in massive networks,” IEEE Trans. Neural Netw. Learn.
Syst., to be published, doi: 10.1109/TNNLS.2018.2826529.

[29] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82,
Apr. 1997.

[30] R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in Proc. 29th AAAI
Conf. Artif. Intell., 2015. [Online]. Available: http://networkrepository.
com

[31] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional
neural networks for graphs,” in Proc. 33rd Int. Conf. Mach. Learn.,
2016, pp. 2014–2023.

[32] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensional-
ity reduction and data representation,” Neural Comput., vol. 15,
pp. 1373–1396, 2002.

[33] R. A. Rossi, B. Gallagher, J. Neville, and K. Henderson, “Modeling
dynamic behavior in large evolving graphs,” in Proc. 6th ACM Int.
Conf. Web Search Data Mining, 2013, pp. 667–676.

[34] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representa-
tions with global structural information,” in Proc. 24th ACM Int.
Conf. Inf. Knowl. Manage., 2015, pp. 891–900.

[35] L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo, “Struc2vec:
Learning node representations from structural identity,” in Proc.
23rd ACM SIGKDD Conf. Knowl. Discovery Data Mining, 2017.

[36] S. Cavallari, V. W. Zheng, H. Cai, K. C.-C. Chang, and E. Cambria,
“Learning community embedding with community detection and
node embedding on graphs,” in Proc. ACM Conf. Inf. Knowl. Man-
age., 2017, pp. 377–386.

[37] H. Chen, B. Perozzi, Y. Hu, and S. Skiena, “Harp: Hierarchical
representation learning for networks,” arXiv:1706.07845, 2017.

[38] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, “Community
preserving network embedding,” in Proc. 31st AAAI Conf. Artif.
Intell., 2017, pp. 203–209.

[39] N. K. Ahmed, R. Rossi, J. B. Lee, X. Kong, T. L. Willke, R. Zhou,
and H. Eldardiry, “Learning role-based graph embeddings,” in
Proc. Int. Joint Conf. Artif. Intell., 2018, pp. 1–8.

[40] C. Shi, X. Kong, Y. Huang, S. Y. Philip, and B. Wu, “HeteSim: A
General Framework for Relevance Measure in Heterogeneous
Networks,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 10, pp. 2479–
2492, Oct. 2014.

[41] S. Chang, W. Han, J. Tang, G.-J. Qi, C. C. Aggarwal, and T. S. Huang,
“Heterogeneous network embedding via deep architectures,” in
Proc. 21th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
2015, pp. 119–128.

[42] Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec: Scalable
representation learning for heterogeneous networks,” in Proc.
23rd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2017,
pp. 135–144.

[43] T. Chen and Y. Sun, “Task-guided and path-augmented heteroge-
neous network embedding for author identification,” in Proc. 10th
ACM Int. Conf. Web Search Data Mining, 2017, pp. 295–304.

[44] L. Xu, X. Wei, J. Cao, and P. S. Yu, “Embedding of embedding
(EOE): Joint embedding for coupled heterogeneous networks,” in
Proc. 10th ACM Int. Conf. Web Search Data Mining, 2017, pp. 741–
749.

[45] X. Huang, J. Li, and X. Hu, “Label informed attributed network
embedding,” in Proc. 10th ACM Int. Conf. Web Search Data Mining,
2017, pp. 731–739.

[46] X. Huang, J. Li, and X. Hu, “Accelerated attributed network
embedding,” in Proc. SIAM Int. Conf. Data Mining, 2017, pp. 633–
641.

[47] L. Liao, X. He, H. Zhang, and T.-S. Chua, “Attributed social net-
work embedding,” arXiv:1705.04969, 2017.

[48] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, “Network
representation learning with rich text information,” in Proc. 24th
Int. Conf. Artif. Intell., 2015, pp. 2111–2117.

[49] J. Liang, P. Jacobs, J. Sun, and S. Parthasarathy, “Semi-supervised
embedding in attributed networks with outliers,” in Proc. SIAM Int.
Conf. DataMining, 2018, pp. 153–161.

[50] A. Bojchevski and S. G€unnemann, “Deep gaussian embedding of
attributed graphs: Unsupervised inductive learning via ranking,”
arXiv:1707.03815, 2017.

[51] C.W.Coley, R. Barzilay,W.H.Green, T. S. Jaakkola, andK. F. Jensen,
“Convolutional embedding of attributedmolecular graphs for physi-
cal property prediction,” J. Chemical Inf. Modeling, vol. 57, pp. 1757–
1772, 2017.

[52] J. B. Lee, R. A. Rossi, and X. Kong, “Graph classification using
structural attention,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2018, pp. 1–9.

[53] L. Zhou, Y. Yang, X. Ren, F. Wu, and Y. Zhuang, “Dynamic net-
work embedding by modeling triadic closure process,” in Proc.
32nd AAAI Conf. Artif. Intell., 2018, pp. 571–578.

[54] J. Li, H. Dani, X. Hu, J. Tang, Y. Chang, and H. Liu, “Attributed
network embedding for learning in a dynamic environment,” in
Proc. ACM Conf. Inf. Knowl. Manage., 2017, pp. 387–396.

[55] G. H. Nguyen, J. B. Lee, R. A. Rossi, N. K. Ahmed, E. Koh, and
S. Kim, “Continuous-time dynamic network embeddings,” in
Proc. Companion Proc. Web Conf., 2018, pp. 969–976.

[56] Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Revisiting semi-
supervised learning with graph embeddings,” arXiv:1603.08861,
2016.

[57] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in Proc. Int. Conf. Learn. Represen-
tations, 2017.

[58] J. Weston, F. Ratle, and R. Collobert, “Deep learning via semi-
supervised embedding,” in Proc. 25th Int. Conf. Mach. Learn., 2008,
pp. 1168–1175.

[59] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G.
Monfardini, “The graph neural network model,” IEEE Trans.
Neural Netw., vol. 20, no. 1, pp. 61–80, Jan. 2009.

[60] D.Wang, P. Cui, andW. Zhu, “Structural deep network embedding,”
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
2016, pp. 1225–1234.

[61] R. A. Rossi, N. K. Ahmed, and E. Koh, “Higher-order network
representation learning,” in Proc. Companion Proc. Web Conf., 2018,
pp. 3–4.

[62] Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Revisiting semi-
supervised learning with graph embeddings,” arXiv:1603.08861,
2016.

[63] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Adv. Neural Inf. Process. Syst.,
pp. 1024–1034, 2017.

[64] J. Lee, H. Kim, J. Lee, and S. Yoon, “Transfer learning for deep
learning on graph-structured data,” in Proc. 31st AAAI Conf. Artif.
Intell., 2017, pp. 2154–2160.

[65] J. P. Canning, et al., “Network classification and categorization,”
in Proc. Int. Conf. Complex Netw., 2018, pp. 1–3.

Ryan A. Rossi received the MS and PhD
degrees in computer science from Purdue Uni-
versity. He is a machine learning research scien-
tist at Adobe Research. His research lies in the
fields of machine learning; and spans theory,
algorithms, and applications of large complex
relational (network/graph) data from social and
physical phenomena. Before joining Adobe
Research, he had the opportunity to work at a
number of industrial, government, and academic
research labs including the Palo Alto Research

Center (Xerox PARC), Lawrence Livermore National Laboratory (LLNL),
Naval Research Laboratory (NRL), NASA Jet Propulsion Laboratory
(JPL)/California Institute of Technology, and University of Massachu-
setts Amherst, among others. He was a recipient of the National Science
Foundation Graduate Research Fellowship (NSF GRFP), National
Defense Science and Engineering Graduate Fellowship (NDSEG), the
Purdue Frederick N. Andrews Fellowship, and Bilsland Dissertation Fel-
lowship awarded to Outstanding PhD candidates.

ROSSI ET AL.: DEEP INDUCTIVE GRAPH REPRESENTATION LEARNING 451

http://dx.doi.org/10.1109/TNNLS.2018.2826529
http://networkrepository.com
http://networkrepository.com

Rong Zhou is currently at Google. Prior to that,
he was a senior researcher and manager of the
High-Performance Analytics area of the Interac-
tion and Analytics Laboratory at PARC. His
research interests include large-scale graph algo-
rithms, heuristic search, machine learning, auto-
mated planning, and parallel model checking. He
has published extensively in top journals and con-
ferences in the field of artificial intelligence, and
his work received two Best Paper Awards from
the International Conferences on Automated

Planning and Scheduling (ICAPS) in 2004 and 2005, respectively. He is
the co-chair of the First International Symposium on Search Techniques
in Artificial Intelligence and Robotics (STAIR) 2008, the co-chair of the
International Symposium on Combinatorial Search (SoCS) 2009, and
the tutorial co-chair of ICAPS 2011. He holds 21 US and 14 international
patents in the areas of parallel algorithms, planning and scheduling,
disk-based search, and diagnosis. He is the recipient of four Golden
Acorn Awards from PARC. He currently serves on the editorial board of
the Journal of Artificial Intelligence Research.

Nesreen K. Ahmed received the MS degree in
statistics and computer science from Purdue Uni-
versity, in 2014, and the PhD degree from the
Computer Science Department, Purdue Univer-
sity, in 2015. She is a senior research scientist at
Intel Labs. In 2018, she is the PC Chair of the
IEEE Big Data Conference. She was a visiting
researcher at Facebook, Adobe Research, Tech-
nicolor, and Intel analytics. Her research interests
in machine learning and data mining spans the
theory and algorithms of large-scale machine

learning, graph theory, and their applications in social and information
networks. She has authored numerous papers/tutorials in top-tier con-
ferences/journals. Her research was selected among the best papers of
ICDM in 2015, BigMine in 2012, and covered by popular press such as
the MIT Technology Review. She was selected by UC Berkeley among
the top female rising stars in computer science and engineering in 2014.
She holds two US patents filed by Adobe, and coauthored the open
source network data repository (http://networkrepository.com).

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

452 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 3, MARCH 2020

