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Deep inelastic reactions: a probe of the collective properties
of nuclear matterf

L G Morettot and R P Schmitt§ ' .

t Department of Chemistry and Nuclear Science Division, Lawrence Berkeley Laboratory,
University of California, Berkeley, California 94720, USA

§ Department of Chemistry and Cyclotron Institute, Texas A&M University, College Station,
Texas 77843, USA

Quibus ommibus auditis et consideratis,

nolo verbis contendere; ad nihil enim utile est

nisi ad subversionem audientium )

(After having listened to all sides and considered all arguments

I do not want to argue; it would only end up confusing the listeners)
(Augustinus Confessions XII1827)

Abstract

: The general features of deep inelastic heavy-ion reactions are reviewed. The most prom-

inent collective degrees of freedom excited in these reactions are discussed within the
framework provided by the natural hierarchy of their characteristic relaxation times.
Both the quantal and classical aspects of these modes are described.. The limitations of
the Lagrangian treatment of heavy-ion reactions are pointed out, and a more general
approach using transport theory is outlined. This latter approach is illustrated by the
Langevin, Master and Fokker-Planck equations. The four most widely studied collective
modes are then described in detail. The damping of the relative motion is dealt with first.
The general features of the energy loss spectra are described along with the energy
dissipation mechanisms which have been suggested. Evidence for the thermalisation of
the dissipated energy is considered. Next the discussion focuses on the mass asymmetry
degree of freedom. It is shown that the complex experimental features associated with the
charge distributions of the fragments can be interpreted as evidence for a diffusion pro-
cess. Transport theory is applied to the charge transfer process. The coupling between
the charge transfer process and the energy damping is also described and empirical
prescriptions for deducing transport coefficients are discussed. Simultaneous measure-
ments of the charge and mass of deep inelastic fragments are then considered. The
roles of isospin fluctuations and giant isovector modes are analysed. Lastly, the various
rotational degrees of freedom excited in heavy-ion reactions are described in connection
with measurements of gamma-ray mulitiplicities and anisotropies and with the angular
distributions of light particles and fission fragments. Both the magmtude and the
alignment of the transferred angular momentum are explored.

" This review was received in December 1980.

t This work was supported in part by the Nuclear Science Division of the US Department of Energy
under Contract No W-7405-ENG-48.
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1. Introduction
1.1. Why should one care about nuclear science

Historically, atomic nuclei have played a variety of roles in scientific and social thought.
More frequently than not, these roles have been ancillary to some other branch of science,
at least in the eyes of the non-specialists. Rutherford and Bohr used nuclei as the sturdy,
though inert, pillars of their atomic models. Fermi and the scientists of the Manhattan
Project introduced nuclei into a social and political role from which they have yet to
recover. Mdssbauer took advantage of the incredibly narrow natural width of some
‘gamma lines to provide not only chemistry and solid-state physics, but also relativity,
with a tool most exquisitely sensitive to detect minute field changes. Many other examples
could be added which, under the pen of more skilled writers, would illustrate the some-
what ambiguous and perhaps tarnished image that nuclear science has in the perception
of some scientists and laymen alike. )

Yet, from a suitable vantage point, one quickly discovers that the nucleus stands at
the crossroads of many scientific disciplines. In a single system, it incorporates features
which are seen in a wide variety of other systems. This becomes apparent as soon as the
quantal many-body aspects of nuclear systems are considered. Indeed, it is difficult to
think of a quantal many-body system that can rival the nucleus in its richness of features.
For example, superfluid 3He (and 4He), metals and superconductors alike find their
nearly exact counterparts in the nuclear domain. So it may not be presumptuous to
consider the nucleus as the many-body system ‘par excellence’.

Nuclei and nuclear systems are collections of two very similar yet distinct hadrons,
i.e. neutrons and protons. The density of nuclear systems in the range of excitation
energy of concern to nuclear physics is such that both components can be considered
strongly degenerate Fermi gases. In other words, the Pauli principle is of overwhelming
importance. This feature is evident from the one-body nature of many nuclear excitations,
and from the shell model of nuclear structure. The latter is a manifestation of the sym-
metry of the boundary conditions on the nucleonic wavefunctions dictated by the nuclear
shape. The Pauli principle inhibits nucleon-nucieon scattering by blocking nearly all of
the final phase space, forcing the complicated nucleon-nucleon interactions to resurface
as a2 mean field in which nucleons move nearly independently. In this sense, the shell
model is remarkably similar to the band structure of solids. In both situations the Pauli
principle dominates, there is the appearance of a mean field, and shells or bands are
defined by the symmetries of the nuclear shape and crystal lattice, respectively.

In the same vein, one can compare the effect of short-range interactions on pairs of
fermions close to the Fermi surface in metallic superconductors and in paired nuclei. Of
course, the origin of the interaction is different. While the short-range attractive electron—
electron interaction in superconductors is mediated by the phonon field, the short-range
attractive nuclear interaction responsible for pairing is a leftover or ‘residual’ part of the
nucleon-nucleon interaction which is not exhausted by the mean field. Nevertheless, the
overall form of the Hamiltonian is essentially the same; consequently, the physical
implications are very similar. In most nuclei and superconductors the spectra of intrinsic_
excitations, or quasiparticles, are anomalous. In other words, there is a gap separating
the ground state from the first quasiparticle excited state. The effect of the anomalous
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spectrum in superconductors is well known. In nuclei, superfluid properties are par-
ticularly evident in their rotational moments of inertia at low temperature. Just as
temperature breaks down superconductivity, excitation energy breaks down pairing. An
analogy also exists between the collapse of superconductivity induced by a magnetic
field and the collapse of pairing induced by angular momentum.

The story could go on and on, showing, as we indeed believe, that nuclear science can
be identified with the rich intellectual quest to understand many-body systems. In so far
as the many-body problem remains at the forefront of physical investigation so too
should nuclear science.

1.2. The role of light and heavy ions in nuclear physics, old and new

The classical probes of nuclear physics are neutrons, protons, deuterons, tritons, 3He
and 4He. Since these are very small objects compared to the average size of a nucleus,
most of the nuclear reactions involving these projectiles lead to the excitation of rather
elementary degrees of freedom (typically single-particle degrees of freedom) and are
known as direct reactions. This mechanism is illustrated by stripping and pick-up reac-
tions in which the projectile either adds or removes a nucleon in a well-defined quantal
state in the target nucleus. The beautiful selectivity of these reactions has resulted in the
development of a highly sophisticated ‘particle spectroscopy’. In these reactions the shell
model and its descendant, the Hartree—Fock model, has found a beautiful and challenging
testing ground.

Another class of reactions occurs with light pro;ectlles, namely compound-nucleus
reactions. In these processes the projectile is absorbed by the target, producing a long-
lived intermediate, or compound nucleus. During its long and undescriptive (better
undescribed) life, the compound nucleus undergoes senile amnesia, forgetting all that it
can about its origin without violating the conservation rules, resulting in a decoupling
between the entrance channel and exit channel of the reaction. The compound nucleus
decays ‘statistically’; that is, the branching ratios and spectral shapes of the emitted
particles are mainly determined by the available phase space for a particular decay mode.
This is how statistical mechanics and thermodynamics crept into the field of nuclear
physics. Since the discovery of these reactions, temperature, level density, entropy and
even chemical potential have been added to the vernacular of a large number of nuclear
physicists.

The dichotomy between direct reactions and compound-nucleus reactions can be
seen more clearly if one considers them, respectively, as the initial and the final phase of
a relaxation process. In the first case one has a simple, relatively well-defined excitation
of one (perhaps a few) degree of freedom which promptly decays. In the second case,
one probably begins with a simple excitation which relaxes through a hierarchy of more
and more complicated nuclear excitations until it achieves equilibrium, i.e. the compound
nucleus.

What is really missing in direct reactions and in compound-nucleus reactions is the
story in between, namely the relaxation phase. This phase contains all the tantalising
dynamical details and non-equilibrium statistical-mechanical aspects. However, even if
the story in between were accessible (and it is to some extent, in the so-called pre-
equilibrium decay) it would be dull if only simple nucleonic degrees of freedom were
involved. However, the nucleus also exhibits some spectacular degrees of freedom which
are collective, macroscopic and statistical in nature. Although these modes are not excited
to any great extent by light ions, they have been known since fission made its debut to
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nuclear science and to the world. To the surprised and literally flabbergasted eyes of the
scientists of the time, fission showed that a nucleus could coherently evolve through a
sequence of shapes, eventually leading to two fragments which are subsequently pushed
apart by their mutual Coulomb repulsion. Despite the fact that fission has been inten-
sively studied over the last 40 years, the charge and mass distributions, the sharing of the
energy between translational and internal modes, the sharing of the excitation energy
between the two fragments, the most obvious features of fission, have resisted the best
efforts of theoreticians to understand them in a unified way.

The very slow progress in the understanding of nuclear fission is largely due to the
fact that fission occurs through compound-nucleus decay. The initial conditions for all
the collective motions are left to the whim of statistical fluctuations, rather than to the
design of the experimenter. This fundamental inability to control the initial conditions
has been the major difficulty facing the researchers in the field.

With the advent of heavy-ion reactions this difficulty has largely been removed. When
two large nuclei like Kr and Au are brought into contact they do not fuse. Rather, they
interact, exchanging particles, energy and angular momentum, and yet they retain their
gross identities. Clearly, the same degrees of freedom involved in fission are called into
play. However, now we can control many of them by adjusting the kinetic energy of
relative motion, the mass asymmetry, the target and projectile neutron-to-neutron
ratios, the angular momentum, and so on. .

This newly found freedom has opened a new field of nuclear physics. An understand-
ing of this new physics can occur at various levels. As expected, phenomenological
models have taken the lead in interpreting the new data. But this field needs more than
phenomenology. It needs to integrate with the conservative sectors of nuclear physics.

Therein lies the microscopic quest—the recasting of the new theories into the frame-
work of the old well-understocd spectroscopy. To be sure, we are now witnessing attempts
to explain the new physics in terms of the shell model, and even in terms of nucleon-
nucleon interactions as in the TDHF model (e.g. Davies et al 1979, Cusson et al 1980).
The role of the giant resonances (Broglia et a/ 1974) in deep inelastic processes is prompt-
ing attempts to explain energy and angular momentum transfer with the same language
used in the interpretation of the collective strength functions.

In what follows we shall review what we consider to be the most salient features of
deep inelastic reactions and shall point out the relevant theoretical interpretations.
Obviously, the authors of this or any other review necessarily commit some sins of
omission. We hope that none of our colleagues in the field will deem our sins as mortal.
To the neophyte and to the scientist in another field who desires a deeper view of the
subject we suggest other reviews on the topic of heavy-ion reactions (e.g. Fleury and
Alexander 1974, Galin 1976, Moretto and Schmitt 1976, Schroder and Huizenga 1977,
Volkov 1978, Lefort and Ng& 1978) as well as the lists of references contained therein.

2. Collective modes excited in deep inelastic reactions and their associated relaxation times
2.1. General features of deep inelastic collisions

When two fairly massive nuclei approach each other, they must overcome both Coulomb
and centrifugal barriers to make contact. If the Coulomb and centrifugal fields are
sufficiently small, the two nuclei can fuse, forming a compound nucleus. However, if the
dynamics is dominated by Coulomb and centrifugal effects, the nuclei, after interacting
for a short time, will instead part again somewhat but not dramatically modified. We
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shall restrict ourselves to collisions of this latter variety: that is, deep inelastic collisions.
It is important to appreciate that the collisions considered here are ‘gentle’. They involve
energies of a few MeV per nucleon over the Coulomb barrier, typically <10 MeV/A.
In this regime nuclei are not shocked or shattered because the relative velocity is smaller
than the various sound velocities associated with compressional or shape distortions.

To date, most of the experimental information concerning deep inelastic collisions
has been obtained from the measurement of one or more of the following properties of the
final reaction products: kinetic energies, charge, mass and angular distributions (for
examples of early work see Kaufmann and Wolfgang 1959, Galin ez a/ 1970, Artukh ez a/
1973, Moretto et al 1973, Kratz et al 1974, Hanappe et al 1974, Wolf et al 1974). Multi-
parameter coincidence measurements of secondary emission products (those products
emitted during the de-excitation of the primary products) have also been performed
providing further insight into the various properties of the short-lived di-nuclear system
(or intermediate complex). From these studies, the following general features of deep
inelastic collisions have emerged.

(i) The primary process is essentially binary in nature. .

(ii) The final kinetic energies of the products display varying degrees of dampmg of the
entrance channel kinetic energy, ranging from essentially elastic energies down to the
Coulomb interaction energy between highly deformed fragments.

.(iii) An exchange of nucleons occurs during the interaction between the two nuclei,
leading to distributions in the masses of the fragments. The mass transfer process is
controlled by both the mteractxon time and by the potential energy of the 1ntermed1ate.
complex.

(iv) The angular distributions of projectile-like fragments are either side-peaked or
forward-peaked, indicating that the interaction times are typically shorter than the
rotational period of the di-nuclear system.

(v) The average neutron-to-proton (N/Z) ratio of both fragments develops towards
the value which minimises the potential energy of the intermediate complex.

(vi) Angular momentum is transferred from relative orbital motion to the intrinsic
spin of the two primary fragments.

(vii) The primary fragments produced in these reactions de-excite largely through the
evaporation of light particles (n, p, «) and y-rays, and occasionally via fission.

2.2. An open list of ‘relevant’ degrees of freedom

The experimental situation described above suggests that a wealth of new degrees of
freedom is accessible to investigation. While it is tempting to list the degrees of freedom,
it is difficult to define them uniquely. Some of them like the fragment separation are
essential to the characterisation of the reaction and are directly connected with physical
observables. Others are perhaps less essential and, in fact, may not be related to physical
observables in a straightforward way. High multipole modes, associated with shape and
density distributions (isoscalar) and with the distributions of neutrons and protons (iso-
vector) in the fragments, are part of this latter class. From a theoretical standpoint these
modes become less defined as their multipolarity increases in view of the surface diffuse-
ness. A pragmatic position has often been taken in the treatment of these modes: only
those modes which are directly called into cause by experimental observations should be
taken into account. However, an a priori judgement on the relevance of a given mode
has occasionally led to experiments which have substantiated the original expectations.
Consequently, without introducing any specific model, let us list some degrees of
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freedom which are of demonstrated importance along with some which, in our judgement,
may play an important role in the future.

(a) The fragment separation distance is well documented expenmentally in terms of the
asymptotic kinetic energy, even though it may not be so clearly defined for the inter-
mediate complex.

, (b) The neck degree of freedom together with the fragment separation distance is in
principle of dramatic importance. Unfortunately, its relevance spreads over many
observables. So far, no clear-cut experiment has characterised it.

(c) The mass asymmetry is a beautifully documented degree of freedom. The great
variety of mass distributions observed experimentally has made it one of the pet degrees
of freedom of this field.

(d) The fragment neutron-to-proton ratios are now the subject of intensive study. The
distribution of charge at fixed mass asymmetry has a strong and direct connection with the
El mode.

" (e) The rotational degrees of freedom are of obvious importance in their role of deter-
mining the angular distributions. Moreover, they appear to affect the alignment of the

‘fragment spins. While various vibrational' modes (bending, twisting, wriggling and
tilting) may not appear to belong to this class, they do in fact bear angular momentum
and are worth considering in this category.

(f) The (many) fragment deformation coordinates may play a role in the dissipation of .
energy and could be responsible for part of the width of the relaxed kinetic energy peak.

(g) Higher multipole isovector modes are conceivably important in controlling the
neutron-to-proton ratio of the fragments. Very little attention has been dedicated to
them so far.

(h) Thermodynamic degrees of freedom such as the temperatures of the fragments may
play a substantial role in view of the large degree of relaxation observed in these reactions.

2.3. Gross relaxation times

In order to follow the time evolution of the collective degrees of freedom excited in heavy
reactions one needs a clock. Nature has provided one which, although not very accurate,
can span incredibly short times. This clock is the angular deflection of the fragments
(Nérenberg 1974, Bondorf ez al 1974, Moretto and Sventek 1975). In reactions involving
relatively light projectiles, deep inelastic reactions are confined to a fairly narrow range of
impact parameters, which is limited on the lower end by the compound-nucleus formation
and on the upper end by the finite radii of target and projectile. In this case, one can
estimate the average angular velocity from the average angular momentum and the
moment of inertia of the intermediate complex. Since the angular deflection is propor-
tional to the time, one can then establish an approximate time scale.

This becomes more evident if one plots contours of constant cross section in the
kinetic energy-angle plane (see figure 1). This plot, called a Wilczynski (1973) plot,
shows a quasi-elastic ridge which moves from elastic energies at the grazing angle towards
lower kinetic energies at smaller angles. Note that this ridge appears to cross 0° towards
negative angles, producing the low-energy ‘relaxed’ ridge.

2.3.1. Kinetic energy. In order to estimate the relaxation time for the kinetic energy, let
us assume that the system rotates with an angular frequency given by

w= Iavﬁ/#roz. (2. 1)
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Figure 1. Contours of constant cross section in the ‘8cu—Ecum plane for potassium ions (K) in the reaction
40Ar 4 232Th. :

In this equation /v is the average / value leading to a deep inelastic collision, x is the
reduced mass, and ro is the interaction radius. By assuming an exponential decay of the
centroid of the ‘quasi-elastic’ component with time, one can derive the following expres-
sion for the relaxation time rx:

(R e

where 0 is the observed angle, 0 is the grazing angle, (E(6)) is the centroid of the ridge
of cross section at angle 6, and Ey is the centroid of the ‘relaxed’ component. Analysis
of the data displayed in figure 1 yields re~3 x 10-22 s,

2.3.2. Neutron-to-proton ratio. Since most reactions involve projectiles and targets with
different neutron-to-proton (N/Z) ratios, some of the earliest work in the heavy-ion field
was concerned with the relaxation of these ratios (Gatty et al 1975, Jacmart et al 1975,
Galin et al 1976). One of the first experiments involved the bombardment of 58Ni and
84N targets with 90Ar and 490Ca projectiles. A typical isotope yield distribution for chlorine
is displayed in figure 2 for 49°Ar +58Ni reaction at an angle near the grazing. The separa-
tion between ‘relaxed’ and ‘quasi-elastic’ energy components is well-defined. In grazing
(quasi-elastic) collisions, the most probable isotope formed is 3¢Cl, which results from the -
stripping of a single proton from the projectile. Further examination shows that lighter
isotopes tend to have lower average kinetic energies, indicating that lighter isotopes are
produced in collisions involving larger energy losses and longer interaction times. In
fact, the heaviest isotopes are actually missing from the relaxed component. Since the
highest masses correspond to the entrance channel asymmetry N/Z, that of a neutron-rich
projectile and a neutron-poor target, this indicates that the N/Z ratio has more time to
relax. For angles forward of the grazing angle (see figure 2(b)), the two-peaked structure
of the kinetic energy spectra disappears. However, the broad distributions still reflect
the N/Z ratio of the relaxed component observed at the grazing angle.
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Figure 2. (a) Contours of constant number of events in the Eian~mass plane for Cl isotopes formed in the

reaction 280 MeV “9Ar+38Ni. (b) Same as (a) for K isotopes at two different Iaboratory
angles. Left: $1an=18°; right:than=8°.

After correcting for the effects of particle emission from the primary fragments, an
estimate of the relaxation time, 7x/z, can be made from the angular correlation observed
in figures 2(a) and () using equation (2.2). By substituting the appropriate Z value for E,
one arrives at ry/z~1.3x10-22s, Comparing this with the estimate of rg from the
preceding subsection, one immediately sees that the N/Z mode relaxes even faster than the.

- kinetic energy.

2.3.3. Orbital angular momentum. During the course of a deep inelastic collision, angular
momentum is transferred from the orbital motion of the nuclei into intrinsic spin. One
way this aspect can be studied is by measuring the multiplicity of y-rays, M, emitted
from the primary fragments (Albrecht et al 1975, Ishihara et al 1976, Glassel et al 1977,
Natowitz et al 1978). The connection between M, and the spin is well known from
compound-nuclear studies.

After a collision, the two primary fragments possess both excitation energy and spin
angular momentum. Whilst the most efficient method for disposing of both quantities
is through charged-particle emission, this de-excitation mode is strongly inhibited by
Coulomb effects. Therefore, the fragments usually rely upon low /~wave neutron emission
to remove the bulk of the excitation energy. After neutron emission each fragment has
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approximately 8 MeV of excitation energy and most of the spin generated during the
collision. A few y-rays of El multipolarity are then emitted bringing the fragment near
the lowest energy state consistent with its spin (the yrast level). For the large class of
nuclei the yrast levels form collective rotational bands which decay primarily by E2
gamma emission to the next lowest level in the band. These collective (or ‘stretched”)
E2 are emitted until the fragment reaches its ground state, removing the bulk of the
spin angular momentum in the process. Thus the relationship between M, and the
fragment spin 1 + I3 is approximately , ‘

M,=¥h+1)+2a 2.3)

where a is the number of statistical transitions per fragment.

In a macroscopic sense, one can develop a simple picture of the angular momentum
transfer process. Initially the two nuclei slide upon one another. Tangential friction
exerts a torque on the fragments, causing them to rotate. When the peripheral velocities
are equal, the tangential friction no longer acts, and the system reaches the ‘rolling’
stage. Rolling friction reduces the difference in rotational frequencies of the two nuclei,
resulting in rigid rotation of the complex. While both tangential and rolling friction
actually act in concert, the relaxation time for the tangential friction appears to be
shorter so the above description is essentially correct. :

~ For the rolling case, the spin angular momentum of the fragments is 7 of the total
angular momentum, independent of the mass asymmetry. For rigid rotation, the fraction
of the total angular momentum converted into fragment spin varies from # to 1, the for-
mer for symmetric fragmentation and the latter for compound-nucleus formation.
Thus rigid rotation corresponds to the equilibrium limit for the angular momentum
transfer.

From inspection of figure 3 (Glassel et al 1977), one sees that the 90° data exhibit the
pattern expected for rigid rotation. . From these data, an upper limit on the relaxation
time for the angular momentum transfer can be calculated. Assuming that the relaxed

T T T T T

10F

My

0 0 20 -
Zz

Figure 3. y-ray multiplicities for various Z at various laboratory angles (A, 90°; @, 35°; (J, 25°) for the
reaction 175 MeV 20Ne+197Ag. The full curves are the values expected for rigid rotation for
two [ values. The broken lines correspond to the rolling limit.
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- energy component for the entrance channel asymmetry observed at 61a» =90° corresponds
to systems which have orbited through 0°, the total angle through which the complex
has rotated is 150°. For this asymmetry the rotational frequency for rigidly rotating
touching spheres is 10 1022 deg s~1 for /=704. Therefore, one obtains an upper limit
on the relaxation time of ,

71=A0lw=15x10-223,

2.3.4. Charge (mass) distributions. The charge or mass distributions for deep inelastic
reactions display the following characteristics.

(i) At angles near the grazing the measured charge distributions are narrow, mdxcatmg
very short iteration times. The centroids of the distributions coincide with the
projectile Z.

(ii) At forward angla, the distributions are somewhat broadet Drift of the centroid
may or may not be observed.

(iii) At backward angles, the dxstnbutlons are very broad, and measurable drifts of
the centroid are often seen.

If the charge distribution were relaxed, one would observe dxstnbutlons similar to
those seen in fission, i.e. the yield for a given Z would depend upon the potential energy
of the saddle point shape through which the system must evolve in order to produce the
specified asymmetry Z. An example of this ridge line potential is shown in figure 4
(Russo et al 1977). The probability of decaying with asymmetry Z depends upon the
potential, V(Z), through the density of states at the saddle point, p, which is a function
of the excitation energy and of the shape:

Y2)<pE-V(Z) 2.4
where E is the excitation energy of the corresponding compound nucleus. If V(Z)<E,
Y(Z)cexp (- V(Z)/T) 2.9

where T is the nuclear temperature.

A comparison of figures 4(q) and (b) indicates that the charge distributions at all
observed angles are still far from equilibrium. A comparison of the data taken at 10°
and 35.4° from figure 4(b), using appropriate substitutions in equation (2.5), results in
the estimate

rz= 60x10-22g

which is the largest relaxation time observed thus far.
The aforementioned hierarchy in relaxation times is now complete:

ryiz21.3<rex3<n=15<7rz260

where all times are in units of 10-22s, From this hierarchy, one observes that all modes
equilibrate much faster than the charge (mass) asymmetry mode. We shall see that this
. fact supports diffusion models which assume that the evolution of charge-asymmetry
mode is a stochastic process.

3. The time dependence as an essential aspect of heavy-ion reactions
3.1. Characterisation of the dynamical regimes

Let us now consider which kind of dynamical regime should prevail in heavy-ion col-
lisions. One of the first questions is whether a quantum or a classical regime applies. As

35
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a statement of principle, nuclear systems are quantum mechanical since they are highly
degenerate Fermi fluids. However, this does not mean that semiclassical or altogether
classical approaches may not be applicable for specific collective modes, For instance,
the rotational modes.can be treated classically if I>#4. Yet, the moments of inertia will
almost surely be controlled by quantal features : .
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Figure 4. (a) Laboratory cross section as a function of Z for the reaction 197Au+ 620 MeV 8K(r at various
laboratory angles. x, uncertain decomposition from quasi-elastic. (b) Liquid drop potential
energy of two touching spheres for 19?Au+8Kr for various angular momenta (n=///max).
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- The treatment of low multipole vibrations depends upon the sharpness of their
strength function. The presence of sharp peaks dictates, at least at low temperature, a
quantal treatment (Broglia et al 1974, 1976). On the other hand, if the strength function
becomes very broad, the coordinate cannot be properly quantised, because one loses the
ability to define its kinetic energy or its inertia (classically the mode is over-damped).
In this case the coordinate is no longer a dynamical variable and can be treated as a
parameter characterised by the potential energy alone. Thus, the associated distribution
should be a classical Boltzmann distribution (Moretto ez al 1979).

3.2. Lagrangian and diffusive approaches to the description of time-dependent processes

The fission process has been one of the first nuclear processes to be treated in a time-
dependent fashion. Many authors have described the time evolution from saddle to
scission point by introducing a Lagrangian in the collective variables, using the liquid
drop model for the potential energy, and assuming irrotational flow to calculate the
inertia tensor (e.g. Nix and Swiatecki 1965, Nix 1969). In principle, these calculations
can be extended to heavy-ion reactions. In fact, this has been done (e.g. Nix and Sierk
1977). 1t is not clear, however, if this approach is sufficiently general.

The Lagrangian approach establishes a point-to-point correspondence between the
initial and the final phase space and thus is completely deterministic. The trajectory, in a
Lagrangian formulation, is a well-defined entity: for a given initial condition (point in
phase space) there is one and only one trajectory.

While such an approach, generalised by including the Rayleigh dissipation function
to handle viscous forces, is applicable in some cases, it actually has serious deficiencies
which prevent it from describing the overall evolution of the shape parameters in heavy-
ion reactions. The shortcomings of the Lagrangian approach arise from the neglect of the
internal degrees of freedom. If one considers an ensemble of systems, all having the same
initial conditions in collective phase space, their time evolution will be described by not
one but a set of diverging trajectories because of the unspecified initial conditions of the
internal degrees of freedom. Therefore, an accurate description of the time evolution of
the ensemble cannot be completely deterministic, but must also contain the statistical
influence of the internal degrees of freedom in determining the distribution of the elements
of the ensemble in collective phase space.

One can look at this problem more concretely as follows. After the kinetic energy is
dissipated, the intermediate complex has a temperature that may range, typically,
between 1 and 4 MeV. As this system follows a Lagrangian trajectory in collective phase
. space with a few tens of MeV kinetic energy, it is subjected to random Brownian impulses
which are comparable to the momentum of the system along the collective coordinate.
Consequently, the Lagrangian trajectory is seriously perturbed, causing the actual -
trajectories of the various elements of the ensemble to diverge.

The key problem is then associated with the handling of fluctuations arising from the
action of the degrees of freedom which are not explicitly taken into account. This subject
belongs to the vast and still developing field of non-equilibrium statistical mechanics.
We shall illustrate two equations which have been used in dealing with heavy-ion dynam-
ics, namely the Langevin equation and the Master equation, together with its offspring
the Fokker-Planck equation.

3.3. Langevin analysis

Let us consider the simplest case of a collective mode in the absence of a conservative
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force (the generahsat:on is left to the diligent reader). The equation of motion can be
written as

M do/dt=F(t)
where o is the velocity, M is the inertia and F(¢) is the force. This force can be written as
F(t)——- —kv+£(t). 3.1

The first term is the long time average (frictional force) and the second is the fast
fluctuating component (Brownian force).
* We can rewrite the above equation as

do v

dt+——.4(t)
where 7 is the relaxation time
Integration leads to
| o(t)=o0 exp (—t/r) +exp (—jr) [}, exp (v/r) A(Y) dy. G

In order to proceed we need to make the following assumptions:
A(r)=0; A(r)? is positive definite; and A(f) A(f2) =0

except when 32 #;. The bars indicate time averages. The first assumption stems from the

decomposition in equation (3.1). The second implies that the system has short memory

as compared to r. The third says that the fluctuating component of the force is sizeable.
Taking the time average of equation (3.2) we obtain

o0 =00 exp (—t/r)+exp (~t/r) | exp (7/r) AG) dy=v0 exp (t}7).
We see that the mean velocity tends to zero for large times. On the other hand, if we
consider the mean square velocity we obtain
0%(8) =vo? exp (—2t/7)+ C[1 —exp (—2t/r)]=vo? exp (—2t/7)+(T|M) [1 - exp (~2t/7)]

where we have set C=T/M in order to make the long time behaviour coincide with the
equilibrium limit. The temperature T is associated with the thermostat composed of the
microscopic degrees of freedom. This result is interesting because it coincides with the
Lagrangian limit for 1<+ and tends towards statistical equilibrium for ¢>r.

Additional integration of equation (3.2) and takmg the mean square average for the
. coordinate gives

X¥@) =vo2r2[1 =2 exp (—t/r)+exp ( 2t/7)]
+(Tr3/M) [-3+4 exp (—t/r)—exp (—2t/7)]+(2r TIM) ¢

Again notice that for r>1
X%(1) = vo2t2
and inertia dominates the picture. On the other hand, for t>r
(D) =27 /M) T

This is the well-known random walk result, which dominates the picture in the long time

limit. In this framework one can attempt to describe both energy damping and the time

evolution of a large class of collective degrees of freedom associated with deep inelastic
" reactions.
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3.4. Master equation and Fokker-Planck analysis

Although these nearly equivalent equations have been applied to a number of degrees of
freedom, they have been most extensively applied in the analysis of the mass distributions
(Nérenberg 1974, 1975, 1976, Moretto and Sventek 1975). Therefore, we are going to
present them in a form directly applicable to the mass asymmetry coordinate x. In its
simple form the Master equation describes the time evolution of a population ¢(x, )
as follows: :

#x, 0= [ &AL ) o7, D-AK, D px, 0] (.9

where ¢ is the time derivative of ¢ and A(x, x"), A(x’, x) are the direct and inverse transi-
tion probabilities. Gain and loss terms are identifiable on the right-hand side of the
equation. In words, the net increase of the population per unit time at x is the difference
between the flow into x from any x” and the flow outward from x into any x’. To proceed
one must make assumptions about the A. If the A are space local and time-independent
they will obey additional statistical assumptions, like

A(x, x)=Xx, x) p=z A(x', x)= A(Jé’ s X) pz’ A(x’, x)=A(x, x")

where pz, pz- are the state densities at x, x". The Fokker-Planck approximation arises
when one sets x’=x+ /4 and expands all the quantities in powers of /4 about x:

e ad 1 92
Hx, t)= —a(ﬂ-l <P)+§53c—2(ll'2¢)- : (3.9
The quantities u; and ug are the first and second moment of the transition probabilities
A ie. .
m=[hA, B)dh  pa=[ BAGx, k) dh.
The Fokker-Planck equation has simple analytical solutions when {41, p2 are constants
and for the initial condition ¢(x, 0)=38(x—xo): ‘
@(x, 1)=(2mpat)~12 exp { — [x—(xo+ p1#)]2p2t}. (3.5)

Notice that the centroid of the Gaussian moves with a velocity w1 which can be related

to the driving force F= —V;’ and to the friction coefficient X by the relation K=y, F.

The second moments o2= uat is again the well-known random walk result. '
When the force is harmonic,

Vx= 0/2(x—XQym)2=i ch?

an analytic solution is also available:

olh, 1)=cl2 [znr( 1-exp—2—1?)_l/2 exp (-;[;ah_":g ((:202/,%;)] ©¢.6

where we have made use of the Einsfein relation u1/ps=—V;'/2T. Notice that the
solution is a Gaussian whose centroid moves following the familiar differential equation

K c
— — h=
h+ Mh+ 7 0
which, in the limit K/M =~ c/M> 1, has the solution
h=hgexp [—(c/K) t].
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This corresponds to over-critical damping of the motion. Similarly the second moment
is given by
02=Z [l —exp ( 2“)].
c K

, ad 2Tt K _

the spreading is similar to that of a random walk. On the other hand, for t> K/2¢
e2=Tlc

which is the statistical equilibrium limit.

" The difficulties arise in the choice of the transition probabilities. Assuming that no

doorway states play any special role, the golden rule implies that

 AEX)=Mx ) pe

" where A(x, x’) is the 'microscopic transition probability and p. is the level density of the
configuration associated with x. On general grounds one could guess the form

In the limit t<r=K]c

Pz
A, x)=xrf —— ( pzpz')uz or A(", x)=2xf —— patpo

where «f is the rate-controlling factor, related to the particle transfer rate. The transition
probabilities can be written as '

- A(x, h)=rxfexp (— V,’h/z )
in the former case, and
A(x, h)=2K f e €Xp (_ Vz'hlzT)

(= VZh2T)+exp (V= h2T)

in the latter case.

Assuming that only adjacent configurations are coupled by the transfer of uncorrelated
parucles, one obtains .
pr= —2xfsmh V2T~ —xf V. |T

: pa=2«fcosh V' [2T~2«f
in the former case, and .
m= —2«ftanh V' 2T~ —xf V' |T

pa=2xf

in the latter case. In both cases the Einstein relation is approximately satisfied (i.e.
p1/pne=V7'[2T).

Alternatively, if particle transfer is specifically assumed to be to the doorway state,
one can consider the transfer of a particle between two fragments with chemical potential
differing by an energy a=V'h. The transition probability is then (Moretto 1978)

1 _ Veh
| A, By=xf f 1+exp (s &) T (1 1+exp (s/T)) = exp (= VIHTY
From this we obtain
pr=—xf Vs’ pz=«f Vg coth V7' [2T=2xfT.

Again the Einstein relation is approximately satisfied.
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The foundation and applicability of transport equations to heavy-ion collisions have
been the subject of a large amount of theoretical work that cannot be reported here.
The inquisitive reader will find a more profound analysis and documentation of this
problem in Nérenberg and Weidenmuller (1980). :

4. The damping of the relative motion -
4.1. General features of the energy spectra

Terms like deep inelastic scattering and strongly damped collisions tend to emphasise
the very large energy losses which can occur in heavy-ion reactions. As advertised earlier
the centroids of the fully relaxed peaks are close to the Coulomb repulsion energy for
touching fragments. This can be seen in figure 5 where the mean energy is plotted as a
function of the atomic number of the projectile-like fragment (Moretto et al 1976). The
experimental data lie between the calculated curves for touching spheres and spheroids
at their equilibrium deformation, indicating substantial deformations of the fragments.
This trend and the observation that the mean centre-of-mass energies of the com-
pletely relaxed component is angle-independent provided the earliest evidence that the
reaction is essentially binary even for large energy losses (Moretto et al 1973).

An examination of the energy spectra (see figure 6(a)) or Wilczynski diagram (figure
1) reveals a continuous range of energy losses, extending from zero to very large values.
While the detailed behaviour of the energy spectra depends on the particular reaction, a
number of rather general observations can be made. First of all, the energy spectra tend
to be broadest for fragments with charges close to that of the projectile and at angles
close to the grazing angle. For this range of masses and angles one can frequently
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" Figure 5, Centroids of the relaxed energy componenf of the kinetic energy distributions for the reaction

197Au+- 288 MeV 49Ar as a function of observed Z. The two full curves are the expected values
assuming that the complex consists of two touching spheres (A) and two touching spheroids
(B), respectively. @, <Ecu); @, FWEM)cu. -
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identify two distinct components in the energy spectra: a high-energy or quasi-elastic
component, and a low-energy or relaxed component. For progressively larger mass
transfers either to or from the projectile, the strength of the quasi-elastic component
gradually diminishes and eventually disappears altogether. Similarly, as the observation
angle is moved away from the grazing angle in either direction, the energy spectra tend to
become more and more relaxed. At angles very far from the grazing, the energy spectra
consist of just a single Gaussian-shaped relaxed peak.
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Figure 6. (@) Energy spectra for selected elements produced in the 232Th+49Ar reaction at various
laboratory angiles. (b) Interpretation of the energy spectra proposed by Wilczynski.
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Insight into the variation of the energy spectra with angle and charge transfer can be
gained by considering figure 6(b). For angular momenta close to the maximum the two
nuclei undergo grazing collisions. Because the two nuclei barely overlap the kinetic
energies and masses are not altered appreciably, so the nuclei continue along Coulomb-
like trajectories. Hence, the yield for these quasi-elastic products are concentrated
around the grazing angle. For smaller impact parameters, or lower / waves, more
intimate contact is made between the nuclei, leading to stronger damping of the kinetic
energy and more extensive mass transfer. In this case, the trajectories are more strongly
altered. For a strongly attractive force between the fragments, the trajectories will be
pulled in, resulting in scattering towards smaller angles. At still lower impact parameters
negative angle scattering and even orbiting can occur. These / waves produce the lower
energy ridge in figure 1. For light systems the lowest partial waves can actually become
trapped, producing a compound nucleus.

In single-particle inclusive measurements, negative and positive angle scattering are
not distinguished. Hence, one expects to observe two overlapping ridges of cross section
in agreement with data from Ar+Th and similar reactions. Supportive evidence for the
above picture is found in the coincidence measurements involving the circular polarisa-
tion of y-rays emitted by deep inelastic fragments. Positive and negative angle scattering
should lead to different spin polarisations of the fragments. Experiments on the reactions
Ar+ Ag and O+ Ni indicate that negative angle scattering does indeed occur (Trautmann
et al 1977, Lauterbach et al 1978). ' v

It should be pointed out that there is nothing sacred about the pattern observed in the
Wilcynski plot for the Ar+Th. For very different internuclear potentials, different
patterns are observed in the E-0 plane. Consider a Wilczynski plot for the reaction
Xe+Bi (see figure 7). In this case the quasi-elastic ridge is vertical rather than oblique
(Schréder et al 1978). Such behaviour, which is exhibited in reactions involving very
heavy ions, is largely due to the strong Coulomb forces which tend to make the inter-
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Figure 7. Wilczynski plot for the reaction 209Bi+ 1130 MeV 138Xe (Schréder er al 1978).
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nuclear potential repulsive. Hence one applies the phrase ‘Coulomb-dominated’ to these
systems,

4.2. Nuclear friction | -

The ‘bare bones’ approach to energy dissipation processes is epxtomxsed in classical fnctlon
models. In these models one adopts the deterministic point of view of classical mechanics.
Due to the neglect of fluctuations, these models are limited to reproducing average values.
Despite this limitation, friction models are very popular. In fact, they form the basis for

_our current understanding of compound-nucleus formation (e.g. Bondorf et al 1974,
Gross and Kalinowski 1978, Birkelund et al 1979).

To build a model of dissipative processes, one needs three ingredients to substitute
into the equations of motion: (i) inertial forces, (ii) conservative forces and (iii) dissipa-
tive forces. Let us now consider each of these terms.

For large separations, the inertia is just the reduced mass, x. Generally it is assumed
that one can continue to use u throughout the trajectory even though it is clear that this
assumption must break down for large interpenetrations.

The conservative terms arise from centrifugal, electromagnetic and nuclear forces.
Given a knowledge of the shape of the system, the first two terms can be dealt within a
relatively straightforward manner. The last term presents more of a problem since the
nuclear force is a complicated beast indeed. To make the problem tractable, one gener-
ally assumes that the nuclear forces can be derived from a potential which depends only
on the separation of the fragments. This potential has been calculated using a variety
of approaches, employing both microscopic and macroscopic starting points. Of par- .
ticular interest is the proximity potential, which is based on replacing the interaction
energy associated with two juxtaposed diffuse surfaces by a sum of contributions from
parallel surface elements (Blocki er al 1977). This approach yields a potential energy
of the form

V (s)=4myRb®(s/b) - @4.1)

where R is a measure of the curvature of the two objects, y is the surface energy per unit
area, b is the width of the diffuse surface, and ® is a universal function which depends
only on the separation of the surfaces, expressed in units of the diffuseness, s/b.

Whatever prescription is employed in calculating the potential, one generally ends up
with curves like those shown in figure 8(a). For light systems and for small / values, there
is a pocket due to the attractive part of the nuclear potential. As / increases the pocket
is ‘filled in’ by the centrifugal potential. Similarly, increasing the size of the ions increases
the Coulomb forces and also destroys the pocket. Hence one sees that only scattering is
possible for very heavy systems and for light systems at high angular momenta.

Obviously, the strength of the dissipative forces plays an important role too. The
effect of varying the radial friction is illustrated in figure 8(b). Very strong or very weak
radial friction results in scattering. In the presence of a moderate frictional force, how-
ever, the system can become trapped in the pocket, possibly leading to fusion.

Several forms have been suggested for the frictional forces which are operative in
heavy-ion collisions. Using the hydrodynamic analogy, a number of authors (e.g.
Tsang 1974, Albrecht and Stocker 1977) have employed the form

F=—k [ @xp(x,r) palx, ) otx,r) “.2

where the p¢(x, r) are the matter densities of the nuclei at point x when the ions are
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Figure 8. (a) Potential energies at a function of r/re for various values of 7={//max. (b) Schematic show-
ing the trajectories in the presence of weak (full curve), moderate (dotted curve) and strong
(broken curve) radial friction (from Schréder and Huizenga 1977).

separated by a distance 7, and v is the relative velocity at that point. Equation (4.2)
states that the energy is dissipated in the region where the two ions overlap and are
moving relative to one another. At the microscopic level equation (4.2) implies that the
source of the viscosity is nucleon-nucleon collisions, and is an example of what has come
to be called two-body dissipation.

For a two-body dissipation mechanism to be effective, the mean free path of the
nucleons must be short compared to the dimensions of the interaction region. However,
the success of mean field theories like the shell model has taught us that the mean free
path is actually long due to the Pauli principle, which prevents scattering into occupied
levels. In the spirit of the mean field theories a nuclear one-body dissipation mechanism
has been proposed (Blocki et a/ 1978) in which the energy damping occurs via inelastic
collisions of the individual nucleons with the time-dependent average single-particle
potential. Randrup (1978) has shown that the Rayleigh dissipation function for one-body
proximity friction is given by

F=mnoRb¥ (s/b) (20:2 + v4?) 4.3)
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where vr and v, are, respectively, the radial and tangential velocities, 7o is the bulk flux
of nucleons within the nucleus (x2.5x 10-23 MeV s fm—4), and ¥ is a universal func-
tion which depends on the separation expressed in units of the surface thickness 5. The
analogy between equations (4.1) and (4.3) is readily apparent.

Another energy dissipation mechanism has been proposed by Broglia and co-workers
(Broglia et al 1976, 1979). In contrast to the mechanisms mentioned above which rely
on the assumption that the response time for the nucleonic degrees of freedom is short
compared with that of collective modes, Broglia has argued that the relative motion may
be strongly coupled with other collective modes, like giant resonances. Damping of
these modes then converts the collective energy into intrinsic excitation of the fragments.
A number of experimental studies (Frascaria et al 1977, 1980) have revealed a number of
structures in the kinetic energy spectra (see figure 9). It has been suggested that these
structures might be due to giant resonances; however, other explanations have been
offered. Until alternative explanations, like the emission of light particles (Hilscher et a/
1979), have been ruled out, one must reserve judgement on the matter.

Although it is not yet clear which (if any) of the three mechanisms considered above
plays the dominant role in the energy dissipation process, it is certainly clear from the
low kinetic energies of the fragments that shape deformations are important at least in
the final stages of the reaction. By including shape degrees of freedom in friction models,
one can reproduce the final kinetic energies with reasonable success (e.g. Deubler and
Dietrich 1975, Siwek-Wilczynska and Wilczynski 1976). Moreover, shape degrees of
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Figure 9. Centre-of-mass energy spectra for Ca isotopes produced in the 4°Ca+400 MeV 49Ca reaction
at 10° in the laboratory system. Arrows indicate the positions of structures which might be
due to the excitation of giant resonances (Frascaria er al 1980).
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freedom also provide a mechanism for producing fluctuations in the kinetic energy, i.e.
a system in contact with the heat reservoir provided by the internal degrees of freedom
can undergo shape fluctuations by drawing energy out of the reservoir and investing it
in an energetically less favourable shape (Moretto 1975).

Wolschin (1979) has taken a more general approach to the problem utilising
transport theory. - In his shape relaxation model, the initially spherical fragments grad-
ually deform towards their equilibrium deformations. At the same time, the heat bath
provided by the dissipated kinetic energy allows the deformations to fluctuate. Reason-
able agreement with experiment is achieved in this treatment (see figure 10).

PP PPN AL L B SRS L R
il inetic energy__ )
300
- .
2
=
g
[™
®
-]
hd —
2
=
=
LM
o
o
~
+
f~]
:" L "
~
3 1 L] 1 L 1 [] 11 ] ) S
0 2 ) 60

AEIMS) 8 fdeg)

Figure 10. (a) Calculated energy spectrum and angular momentum distribution in comparison with the
data of Olmi et af (1978) for 5.99 MeV amu—! 86Kr+-188Er, The mean absolute value of the
intrinsic angular momentum has been deduced from the measured y-multiplicity. Calculated
curves are without consideration of deformation and fluctuations (broken), including deforma-
tion (chain) and including both deformation and angular momentum plus energy fluctuations
(full). (b) Calculated Wilczynski plot for the reaction 23¢Th+ 388 MeV 40Ar. Broken curve is
the centroid of the ridge obtained from figure 1. The chain curve is the centroid of the
calculated resuit. ) :

Fluctuations about these mean values of any collective degree of freedom can also

be considered within the framework of transport theory. As an example,.a calculation

- for the Ar +Th reaction is shown in figure 10 (Berlanger er al 1978). Clearly the general
features of the experimental Wilczynski plot are well reproduced.

4.3. The fate of the dissipated energy

Although it is apparent from the energy spectra that a very large fraction of the entrance
channel kinetic energy can be dissipated, the fate of this ‘lost’ energy is not so obvious.
By analogy to other systems in which dissipative forces are operative, one suspects that
much of the damped energy might be converted into thermal excitation. However, since
the time scale for the energy dissipation process appears to be short, in fact uncomfortably
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close to the nucleonic tlme scale, other scenarios such as prompt particle emission are not
easily ruled out.

Thus, it is rather surprising to note that a vanety of experiments have shown that the.
dissipated energy is largely thermalised even at high bombarding energies. This has been
demonstrated in the study of the reactions 88Cu+ 158,252 and 343 MeV 20Ne (Schmitt
et al 1978). In light systems like this one, the de-excitation of the fragments is dominated
by the emission of light charged particles. This feature was exploited in the experiments

" by simultaneously measuring the atomic numbers of the two heavy fragments. In figure
11 the missing charge AZ is plotted against the kinetic energy and the available excitation
energy as inferred from the kinetic energies. Although the AZ varies dramatically with
bombarding energy, it is a linear function of the excitation energy. The slope is approxi-
mately 25 MeV/AZ. Since one expects that the total mass loss should be approximately
twice the missing charge, this slope implies an energy loss of about 12.5 MeV/amu,
which is consistent with energy thermalisation.
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Figure 11. {a) Missing charge plotted agamst total exit channel kinetic energy for various bombarding
energies in the reaction 2Ne+8%3Cu. O, 0=50°, E=158 MeV; [, §=42°, E=252 MeV;
A, §=138°, E=343 MeV. (b) Missing charge plotted against excitation energy. -

Even though the dissipated energy appears to be largely thermalised, this does not
. imply that the two fragments are in thermal equilibrium. For a given mass asymmetry
the excitation energy can be divided between the fragments in a variety of ways as
dictated by the product of the level densities of the fragments:

P(x) dxoc p1(x) p2(E* —x) dx.

The quantity In P(x) is readily identified with the total entropy of the system. At
equilibrium a necessary condition is
d 1nP(x)=o=d In p1(x)+d Inpe(x) _1_1
dx dx dx Ty T

where Ti, T» are the thermodynamic temperatures of the two fragments. In the Fermi
gas model, the excitation energy is related to the temperature by E* =aT? where a is the
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level density parameter. For a broad range of masses and excitation energies, a= 4/8
where A is the fragment mass. Hence it is easily seen that the equilibrium condition
T1=T3 implies that the excitation energy is divided according to the mass ratio of the
fragments.  The question of energy equilibration has been explored in two types of
experiments: heavy-ion-heavy-ion coincidence studies and heavy-lon—hght-partxcle

The basis of the former techmque (Gelbke et al 1976, Babinet et al 1978, Cauvin et al
1978) is largely kinematical. For a purely binary process, conservation of linear momen-
tum can be expressed in the laboratory system as

, sin? O j=3 and k=4 » _
Ay Ey=A\Ey ot 4.4
et sin2(03+ 64) {or.j=4 | and k=3 @9

where the subscript 1 refers to the projectile and the subscripts 3, 4 refer to the reaction
products. The symbols E and 8 denote the laboratory energies and angles, respectively.
Obviously the emission of light particles will alter the energies and angles of the fragments
from their initial values. For an evaporation process the average final fragment energies,

Ey', are approximately
'=Ef(1 v/ 45)

where v is the number of nucleons lost in the decay. The angles in equation (4.4) can
be replaced by the average experimental values for a large number of events without
introducing any appreciable error. '

Using the above equations together with conservation of nucleon number, 4; + A3=
As+As, one can determine the pre-evaporative mass of the fragments and the total
number of evaporated mass vs+vs. Conservation of energy provides another equation
allowing one to extract vs and v4 separately.

Results from the study on 38Ni+4Ar (Babinet et al 1978) are shown in figure 12.
The average number of evaporated nucleons is plotted against the atomic number of the
light fragment. Since Z3 is approximately proportional to 4s, the linear increase implies
‘that the excitation energy is divided according to the mass ratio of the fragments. This
is further supported by the very good agreement between experiment and evaporation
calculations which are based on this assumption (Cauvin et al 1978).
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Figure 12. Number of evaporated neutrons plotted against the atomic number of the fragment prior to
evaporation for the 68N +-40Ar reaction.
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Results from a direct measurement of neutrons emitted in the reaction 197Au+
400 MeV $3Cu are shown in figure 13 (Tamain et al 1979). These data and others like
them (Eyal et al 1978, Hilscher et al 1979, Gould et al 1980) verify directly that the energy
is indeed split according to the masses and that the fragments have equal temperatures
(since the slopes of the energy spectra are equal). Moreover, these neutron experiments
have shown that this energy partition occurs not only for completely relaxed events, but
also for the whole range of Q values up to very small energy losses.

Although experiments described in the preceding paragraph have shown little evidence
for non-thermal decay of the primary fragments, a number of «-particle-heavy-fragment
coincidence experiments have been interpreted in terms of a sometimes large probability
for prompt a-emission (e.g. Harris et al 1977, Ho et al 1977; Gelbke et al 1977, Gamp -
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Figure 13. (a) Centre-of-mass kinetic energy spectra of the neutrons associated with the two fragments
in the Cu+ Au reaction. @, detected fragment at 40°; +, detected fragment at 63°. (b) Ratio -

between the number of neutrons emitted by the two fragments plotted against the mass ratio

of -the two fragments in the reaction 400 MeV Cu+Au. O, detected fragment; @, partner

fragment. (c) Ratio of the mean number of neutrons emitted by the two fragments vi/vs

plotted against the mean kinetic energy loss for the Cu+ Au reaction.
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et al 1978, Bhowmik et al 1978, Miller et al 1978). These so-called pre-equilibrium
a-particles are frequently (but not always) focused at small angles, i.e. along the beam
direction, and often have energies substantially higher than those expected for evaporation
from equilibrated fragments.

These experimental observations have prompted theorists to suggest a number of
mechanisms. One possibility is that a ‘hot spot’ (Bethe 1938) is produced in the region
of contact between the two heavy ions (Weiner and Westrom 1975, Gottschalk and
Westrém 1977, Nomura et al 1978). Such a hot zone could be produced in the presence of ’
strong two-body viscosity. Another possible mechanism which has been advanced is the
Fermi jet (Robel 1979) or the PEP jet (Bondorf et al 1980). In contrast to the hot
spot model, this mechanism starts with one-body viscosity: the fast particles are produced
via the coupling of the relative motion to the Fermi motion within the nuclei.

Thus far no experiment has provided a clear signature of the production mechanism
for prompt particles. In fact, it is fair to say that the conditions for fast particle emission
in deep inelastic heavy-ion collisions at energies <20 MeV/nucleon are poorly understood.
Perhaps when we do achieve a reasonable understanding of these phenomena we will at
the same time establish the dominant mechanism for the energy loss process.

5. The mass asymmetry mode

5.1. The ridge line revisited

As discussed earlier, the charge distributions at equilibrium should be of the form
Y(Z)ocexp (—V(2)/T) .1

where T is the nuclear temperature and V is the potential energy as a function of charge
asymmetry, or ridge line potential energy (Moretto 1975). Despite the fact that the mass
asymmetry degree of freedom is usually far from equilibrated in heavy-ion reactions, it
frequently plays an important role in determining the shape of the charge and mass
distributions. In fact, with some knowledge of V(Z) and a rough idea of the interaction
time one can often explain the general features of the charge distributions.

In order to calculate the ridge line potential one must resort to a model. Because of
its simplicity and proven success in reproducing macroscopic nuclear properties, we will
use the liquid drop model. Within the framework of the liquid drop model, the potential
energy as a function of the Z of one fragment is

V(Z1, Zr)=V1p(Z1) + Vin(Z1r—2Z1)+ Vint+ Vrodl)

where [ is the total angular momentum, Fip is the liquid drop (i.e. surface + Coulomb)
energy of a fragment, Vi is the interaction energy, and Vro¢ is rotational energy. To
calculate V(Z,, Z7) it is necessary to make some assumptions concerning the geometry
of the di-nuclear intermediate complex. - For simplicity we shall assume that the complex
consists of two touching spheres.

A number of general topological features of the ridge line potential are illustrated by
calculations for the systems N+Ag and Kr+Au (see figures 14 and 4, respectively).
For low values of the angular momentum, light systems like N+ Ag exhibit 2 maximum
in the potential energy at symmetry, whereas heavy systems like Kr+ Au display a local
minimum at symmetry. However, at sufficiently high / values the potential energy
always possesses a local minimum at symmetry. As the calculations for Kr+ Au show,

36
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Figure 14. Liquid drop potential energy of two toucliing spheres for N+ Ag for various values of the
angular momentum. The broken curve displays the expected yield distribution for the
{=50k curve, assuming that the temperature of the complex is 3 MeV.

the depth of this minimum increases with /. The local maxima which flank this minima
at symmetry are sometimes referred to as the Businaro-Gallone mountains (1955).

In light of equation (5.1) the equilibrium mass or charge distributions for light
systems at low angular momentum are expected to be asymmetric. This is illustrated by
the broken curve in figure 14. At higher / values symmetric decay will become progres-

sively more important. On the other hand, the equilibrium mass distributions for heavy

systems should always peak at symmetry. Obviously, one should be cautious in applying
these predictions to heavy-ion reactions since the mass asymmetry mode relaxes very
slowly. '

5.2. Lifetime regimes of the mass distributions

Like the energy spectra the charge distributions of the fragments produced in heavy-ion
collisions attest to a broad range of interaction times. Consider for example the reaction
Kr+Au (see figure 4). Two components are discernible in these charge distributions:
(i) a quasi-elastic component which is strongly peaked at the projectile atomic number
and is visible in the angular region around the grazing angle (about 40°), and (ii) a much
broader relaxed component which is visible throughout the entire angular range. In so
far as the breadth of the charge distribution is reflective of the interaction time, one can
associate the narrow (quasi-elastic) component with short interaction times and the
broader (relaxed) component with long interaction times.

A more striking illustration of the great variety of interaction times is apparent from
a comparison (figures 4 and 15) of the Kr+ Au charge distributions with those observed

~
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for the reaction Ne+Ag (Babinet et al 1976). Except at forward angles where contri-
butions from partially damped processes are in evidence, the charge distributions for
Ne+Ag are very broad. Thus it appears that in the Kr+ Au reaction the mass asym-
metry mode is far from equilibrated while in the case of Ne+ Ag the mass asymmetry
mode is close to equilibrium (that equilibrium is not fully achieved in the latter system
will become apparent in the next section). :

A comparison of data from a wide variety of heavy-ion reaction studies shows that
many of the charge distributions can be assigned to one of two categories: (i) the short-
lifetime regime (narrow charge distributions like Kr+Au); or (ii) the long-lifetime
regime (broad distributions like Ne+Ag). Most of the short-lifetime systems which
have been studied have involved massive projectiles like Cu, Kr, Xe while most of the
long-lifetime systems are associated with relatively light projectiles like Ne and Ar.
Hence it is not surprising that early investigators suggested that the lifetime regime was

-
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Figure 15. (a) Laboratory charge distributions for the reaction "8tAg-+ 175 MeV 20Ne. (b) Angular
distributions in the centre of mass for the various Z given on each set of curves in the reactions
175 MeV (]) and 252 MeV (§) 2*Ne+2atAg.
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" determined by the masses of the heavy ions. That this is not the case was demonstrated
in studies in which both kinds of charge distributions were produced for the same
target-projectile combination (Moretto and Schmitt 1976, Mathews et al 1977, Agarwal
" et al 1977, Rivet et al 1977) by varying the ratio of the centre-of-mass kinetic energy to
the interaction barrier, E/B. For values of E/B< 1.5, the charge distributions are narrow
and are peaked in the vicinity of the projectile. For larger values of E/B, the distributions
are broader and show substantial drifts in their centroids. 4

While the widths of the charge distributions give some indication of the interaction
time, the most direct handle on the time scale is the angular deflection of the fragments.
For interaction times which are short compared to the rotational period, the system
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Figure 16. Centre-of-mass angular distributions for the reaction 197Au+ 620 MeV #Kr for atomic num-
bers 20-47, given for each curve. :

barely rotates before it decays, leading to angular distributions which are peaked on the
side of impact. For longer lifetimes the system can undergo larger angular deflections,
leading to angular distributions which are forward-peaked. If the interaction time is
comparable to or larger than the rotational period of the di-nuclear system, the centre-of-
mass angular distributions will tend towards 1/sin 8 (Ericson 1960). .

In figures 15 and 16 the angular distributions as a function of fragment charge are
shown for the systems Ne + Ag and Kr+ Au. Note that the characteristics of the angular
distributions are in accord with our observation about the widths of the charge distri-
butions. The angular distributions for the system Kr+ Au, which displays narrow charge
distributions, are extensively side-peaked, whereas the angular distributions for the
. Ne+ Ag system, which exhibits broad Z distributions, are largely forward-peaked.
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5.3. Evidence for diffusive evolution of the mass asymmetry

Insight into the mechanism of the mass transfer process can be gained by a closer examina-
tion of the angular distributions as a function of Z. Let us first consider the short-lifetime
regime as exemplified by the reactions Kr+ Au (figure 16). The angular distributions
for elements with atomic numbers close to that of the projectile are strongly side-peaked.
As the atomic number of the fragment is increased or decreased with respect to the
projectile Z, the peak in the angular distribution gradually moves toward smaller angles,
first producing a shoulder for intermediate charge transfer and eventually disappearing,
leading to forward-peaked angular distributions for the largest transfers.

The pattern of the angular distributions suggests that small net charge transfers to
or from the projectile are associated with short interaction times while larger net trans-
fers are associated with progressively longer interaction times. These observations are
readily explained in terms of a diffusive evolution of the mass asymmetry mode. For a
diffusive mechanism the spread in the mass distribution increases with time; therefore,
the time delay in populating a particular Z in the exit channel should increase as the
quantity |Z—2Zpro5] increases. Thus the time delay associated with larger and larger
charge transfers can be correlated with the continuous transition from side-peaked to
forward-peaked angular distributions.

The patterns of the charge and angular distributions for long-hfeume regime systems
are more diverse. Let us consider two systems with similar total 4 and Z: Ne+Ag and
Ar+Ni (Gatty et al 1975). For the reaction Ne+ Ag one observes 2 minimum in the
cross section at about Z =135, a rapid increase in the cross section at lower Z values, and
a weak increase at higher Z values. In contrast the pattern for the Ar+ Ni reaction (see
figure 17) is radically different: the yield increases steadlly with mcrmmg Z until it
reaches a maximum at symmetry.

These differences can be explained in terms of a diffusive evolution of the mass
asymmetry along the ridge line. Let us see how this comes about. For the Ne+Ag
reaction the entrance channel asymmetry, or injection point, will lie to the left of the
Businaro-Gallone mountains for a large number of / waves. Consequently, as the mass
asymmetry begins to evolve, the system will be rapidly pushed towards more asymmetric
configurations. In contrast, for Ar+ Ni the potential energy in the vicinity of the injec-
tion point, which is near symmetry, exhibits a minimum. Hence for most / waves the
system is trapped in the valley between the Businaro—Gallone mountains.

The angular distributions as a function of charge support this interpretation (see
figures 15 and 17). For Ne+ Ag the reaction products close to the entrance channel are
strongly forward-peaked, indicating that they are produced on a short time scale. This
forward peaking persists for elements with Z values smaller than the projectile, indicating
that the population of these exit channels also occurs very rapidly. In contrast, the for-
ward peaking of the angular distributions diminishes very rapidly for progressively
larger transfers to the projectile. After the transfer of only about four Z units, the
forward peaking has vanished and the angular distributions are essentially 1/sin 6.
The interpretation of the Ar+Ni angular distributions proceeds along similar lines.
(Note that for Ar+ Ni the quantity do/df has been plotted rather than de/dQ; a 1/sin
angular distribution appears as a horizontal line when in terms of do/df.) For Ar+Ni
one again observes strong forward peaking close to the projectile atomic number due to
the short average interaction time. As the charge of the fragment decreases, the angular
distributions gradually evolve toward the long-lifetime limit indicating an increasing time
delay associated with the production of these products.
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Figure 17. (a) Centre-of-mass charge distributions at various angles for the reaction 58Ni + 280 MeV 40Ar.
(b) Centre-of-mass charge distributions at various angles for the reaction 58Ni+ 280 MeV ¥Ar
for various Z values given for each curve. Note that the quantity do/d8 (= 21r sin 4 do/dQ)

is plotted on the vertical axis.

5.4. Applications of transport theory

In view of the myriad of transport models which have been applied to deep inelastic
reactions, it is impractical to make a.really extensive comparison with experiment.
Instead we shall focus on a single approach employing the Fokker-Planck equation.
Though simple, this approach nicely illustrates most of the important physics.

For heavy systems and for asymmetries between the Businaro—Gallone mountains,
the ridge line potential is approximately parabolic for a broad range of angular momenta.
Thus one can readily make use of the analytical solutlon of the Fokker-Planck equation
to calculate the charge distribution @(Z, ¢).

«h
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Both the ridge line potential energy and the diffusion rate, which enters through the
quantity K (see equation (3.6)), depend on the interpenetration of the fragments and
their shapes. Furthermore, calculation of the interaction time ¢ requires knowledge of
the dynamics. In the absence of detailed information concerning the time evolution of
the system, we shall limit ourselves to an extremely simplistic approach which neverthe-
less closely respects the experimental data (Moretto 1978).

Let us first assume that the time-dependent curvature of the ridge potential can be
replaced by a time-independent quantity which reflects the average shape of the system.
Since we know that a ridge potential for interpenetrating spheres can qualitatively
explain many of the experimental features, we shall make this assumption. The curvature
is then easily obtained from a parabolic fit to the ridge line potential as calculated from
the liquid drop model.

The diffusion rate can be obtained from the work of Randrup (1978):

xf=2mnoREY ()

where ny is the particle flux in nuclear matter at its saturation density (2.5 x 10-23 MeV s
fm—4), R=C1Ca (C1+ Cz)™! is the reduced radius of the system expressed in terms of the
central radius (C1 and C3) of the two fragments, b (= 1 fm) is the skin thickness, and the
quantity ¥({) is a universal function which depends only on the separation between the
sharp surfaces of the fragments expressed in units of the skin thickness. This approach
neatly factors out the geometrical features of the problem.

The radial potential can be written as

Z(Zr-2) e2+ fiz]?

- 0 (5.2)

V(D) Vprox +

J(0) being the appropriate moment of inertia.

It is not very clear how much the fragments must interpenetrate before the above
equation breaks down. This makes it difficult to formulate the dynamical problem. We
shall just use the above potential to calculate the average force Fr(l) at the interaction
distance Din¢: Fr(l)=0V(D)/dD|p,,,. From the knowledge of the reduced mass pu, the
radial velocity vg, and the radial force Fg for each / value at the interaction radius, one
can introduce the following two ansatz for the interaction time ¢ and the average inter-
penetration x of the fragments: ’

‘)= Zp.vn 2[2,»(:‘}'? l!19)]1'2( - n::x )“3 x(1)=£‘f‘_”_3 (5-3)

In a more serious attempi to fit the experimental data one could resort to a more detailed
dynamical calculation. Obviously, it is a trivial matter to substitute the ansatz in
equation (5.3) with more reliable expressions. The diffusion along the asymmetry
coordinate is then allowed to proceed with a form factor dependent upon %(/) for a time
t().

The tangential motion is treated assuming for the equation of motion the sxmple
form: '

Fr=py(wo— wrig) : (5.9

where wo and wrg are the two limiting orbital angular velocities corresponding to
sliding and sticking. The constant y is chosen to approximately reproduce the mean
kinetic energies as a function of angle, assuming that all of the radial energy is lost.
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The interaction times calculated for the reaction Au-+ Kr at three energies are shown
in figure 18(a) as a function of angular momentum. There is good experimental
evidence for the angular momentum dependence predicted by our ansatz. It is interesting
to notice the rather mild increase in the average lifetime with increasing bombarding
energy. The average deflection function is also shown in figure 18(a). Notice

¢ the well-pronounced deep inelastic rainbow which moves from ‘positive to negative
angles as the bombarding energy increases. The 600 MeV curve predicts a rainbow

5 angle of about 50° in excellent agreement with experiment. The movement of the rain-

. bow angle towards smaller and eventually negative angles results from the combination
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Figure 18. (a) Calculated deflection functions (A, 600 MeV; B, 800 MeV; C, 1000 MeV) and interaction
times (D, 1000 MeV; E, 800 MeV; F, 600 MeV) for the reaction. 1%7Au+8Kr at various
bombarding energies. (b) Calculated (full curve) and experimental (points) angle-integrated
charge distributions for the 197Au+28Kr reaction. (c) Calculated (full curves) and experi-
mental (points) cM angular distributions for the 197Au+88Kr reaction for selected atomic
numbers given on each curve. The broken curves are to guide the eye.
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of three factors: (i) increasing lifetime, (ii) increasing angular momentum, (iii) decreasing
average moment of inertia due to the increasing average penetration.

At this point the cross section can be calculated as a function of exit channel
asymmetry for each / wave. Summing over / waves yields the angle-integrated charge
distribution. In figure 18(b) the calculated angle-integrated Z distributions are compared
with experiment for the reaction Au+XKr at 620 MeV. The agreement is reasonable
over more than two orders of magnitude. Some of the apparent discrepancies arise from
the fact that the experimental angular distributions have been integrated over an
incomplete angular range.

A fortiori, the angular distributions can be calculated from the angular deflections
of the fragments during the interaction and from their deflection in the Coulomb field.
Angular distributions for the Kr+Au are shown in figure 18(c). The theory nicely
tracks the experiment in predicting forward-peaked angular distributions at small Z
which develop into side-peaked-angular distributions close to the projectile. For Z
above the projectile, the angular distributions slowly lose their side peak and become
forward-peaked. The satisfactory agreement with both the Z distribution and the
angular distribution shows that the calculated dependence of the interaction times and
of the diffusion constant upon angular momentum and radial velocity is reasonably
good. Even better agreement can be obtained with a more realistic treatment of the

dynamics.

5.5. Long-lifetime components

-In addition to deep inelastic reactions, many experimental mass and charge distributions

show another component which is peaked at symmetry (e.g. Plasil et al 1966, Britt et al
1976, Otto et al 1976, Oeschler et al 1979, Lebrun et al 1979). Because this latter
component is often apparent in reactions in which complete fusion is also an important
process, it has generally been attributed to the fission of a compound nucleus, and is
thus referred to as fusion-fission. The kinetic energies and angular distributions of
the fusion-fission fragments are also consistent with this interpretation. The former
correspond to the Coulomb repulsion energies for touching fragments while the latter
are essentially 1/sin 6.

From previous discussions of the characteristics of deep inelastic reactions it should
be apparent that the identification of the symmetric component with compound-nucleus
fission is not conclusive. For all but very light systems, the ridge line potential energy
possesses a minimum at symmetry. Thus for relatively long lifetimes (260 x 10-225)
deep inelastic processes will also yield mass distributions which peak at symmetry.
Furthermore, the kinetic energies for fully relaxed deep inelastic products are essentially
indistinguishable from those observed in fission (as far as we know). Lastly, for lifetimes
somewhat larger than a rotational period, the angular distributions of deep inelastic
fragments are also 1/sin 6.

While this latter scenario, that of a long-lived deep inelastic reaction, may seem rather
speculative, there is growing experimental evidence that such a process does indeed exist.
Early evidence for this mechanism is found in studies of the reaction 197Au+4%Ar. The
compound nucleus formed in this reaction (if it is actually formed at all) is 237Bk. Only
for low / values would this nucleus have a non-vanishing fission barrier. At higher
angular momentum the compound nucleus simply does not exist (Cohen ef a/ 1974).
Thus, purely on the basis of statics, one concludes that only a fraction of the reaction
cross section could be accurately called compound-nucleus fission. Contrary to these
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expectations the experimental charge distributions show a large cross section for the
‘fusion—fission’ process, implying the existence of another reaction mechanism which
does not proceed via the formation of a compound nucleus. More recent evidence comes
from the work of Heusch et al (1978) who studied the reaction Xe+ Fe. Their findings
show that the charge distributions for this reaction are also difficult to explain with
either the fission of a compound nucleus or with standard diffusion model treatments.

Recently systematic surveys of the ‘fusion—fission’ component have been made by
Lebrun et al (1979). In these studies a number of composite systems have been prepared
with different angular moment by employing different entrance channels. They have
observed that the symmetric component persists even at angular momenta well above
the / value at which the fission barrier is expected to vanish. Moreover, they find that the
width of the mass distribution increases rapidly for / values in excess of the liquid drop
limit, :

Further evidence that one is not dealing with the fission of a true compound nucleus
has come to light in the attempts by Beckermann and Blann (1978) to fit the excitation
functions of the ‘fusion-fission’ component of the reaction Ag+ Ar. They have shown
that it is not possible to fit the experimental cross sections over a broad energy range
without scaling down the liquid drop fission barrier by about 409,. This reduction is
apparently necessary to allow fission to compete favourably with the evaporation of
neutrons and light charged particles. On the other hand, the ‘discrepancy’ between data
and theory could be avoided without sacrificing the liquid drop fission barrier by assuming
that at least some fraction of the ‘fission’ yield is due to another mechanism which
does not have to compete with particle evaporation.

Only recently have theorists tackled the problem of the long-lifetime component.
Norenberg and Riedel (1979) have developed a model in which the interaction times for
the mass diffusion process is calculated with a time-dependent ion—ion potential. This
potential is a time-dependent mixture of the diabatic and adiabatic potentials. A trajec-
tory calculation is shown in figure 19. Three distinct processes can be identified in the
model calculations for the reaction 208Pb+400 MeV “0Ar. For the highest /, the ions
scatter inelastically (deep inelastic scattering). For low /, the ions fuse (compound-
nucleus formation). For intermediate /, the trajectories become trapped for times com-
parable to the relaxation time for the mass asymmetry mode (‘fusion—fission’).

A somewhat different approach has been taken by Mathews and Moretto (1979).
In their model they consider the effect of thermal barrier penetration on trajectories
which are trapped in the pocket of the ion—ion potential (see figure 8). These trapped
systems can live for long times and equilibrate with respect to the mass asymmetry
coordinate before they decay. Figure 20 shows the quality of the fit obtained from this
model. Clearly both the deep inelastic and fusion—fission components are well reproduced.

Another possible explanation of the mass-equilibrated component is neck formation
between the fragments comprising the di-nuclear complex. If a sizeabie neck formed dur-
ing the interaction, the entrance channel asymmetry might quickly be forgotten, leading
to a rapid equilibration of the mass asymmetry mode. This line of investigation has
recently been pursued by Swiatecki (1979).

5.6. Coupling between mass transfer and energy dissipation

During the collision of two heavy ions the dissipation of kinetic energy and the transfer
of mass proceed simultancously. Consequently, it is clear that there is correlation between
these two processes. The coupling between the energy loss and the mass transfer, which
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Figure 19. Caiculated trajectories for the three / values in the plaﬁe defined by the mass asymmetry «
(2=0.5 corresponds to symmetric decay) and the fragment separation distance r. ——,
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was first emphasised by Huizenga et al (1976), is readily observable in a plot of the width
of the angle-integrated charge distributions as a function of kinetic energy loss. Such a
plot is shown in figure 21 for the reaction 209Bi + 136Xe (data from Schrdder et al 1978).
At small energy losses the charge distributions consist of a very narrow peak close to the
entrance channel asymmetry. At progressively larger energy losses (smaller kinetic
energies), one observes a continuous broadening of the Z distributions.
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Figure 20. Deep inelastic and fusion-fission components in the reaction 170 MeV 40Ar+-107.100Ag, The
full curve represents the data and the broken curve the calculated cross section.
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Figure 21. Total energy loss plotted against the variance of the charge distribution for the reaction
2098 4 1130 MeV 138Xe,

At the qualitative level these trends are easy to understand in terms of notions
developed earlier. Larger and larger energy losses correspond to longer and longer
_interaction times. The longer the interaction time, the more extensive the relaxation of
the mass asymmetry and hence the broader the Z distributions. As a general observation,
it should be pointed out that any of the collective modes excited in deep inelastic col-
lisions can provide us with at least a relative time scale. For example, we have seen that
the angular rotation of the fragments is very useful in this regard. Likewise the energy
loss also proves to be a useful measure of the interaction time, particularly because it is
so easy to determine experimentally.

In order to use the energy loss as an absolute measure of the time smle a calibration
procedure has been developed (e.g. Schréder et al 1978). The first step involves establish-
ing the relationship between the energy loss and the orbital angular momentum. This is
accomplished by dividing the angie and charge-integrated energy spectrum into energy
loss bins. The cross section in each of these bins can be associated with an average
I value given a knowledge of the total reaction cross section (which defines the number of
I waves which contribute) using the relationship

o=mR(n+1)2

where o is the cross section and A is the de Broglie wavelength divided by 2#. This
procedure is illustrated in figure 22(a).

The absolute interaction times can now be calculated from the experimental average
angular deflection, 80, of the fragments in each energy bin via the relation

t(l)=36(h) s(1)/(Aikk)

where # is the moment of inertia, /; is the initial orbital angular momentum and / is the
.final orbital angular momentum. In order to caiculate /t and  additional assumptions

must be made. As limiting cases one can consider non-sticking (no / transfer) and

sticking (rigid rotation) of the fragments. The former implies that /t=/; and 4 =pur?
while the latter implies ly=1; ur2/s,, where #, is the total moment of inertia of the rigid
di-nuclear system. In view of y-ray multiplicity measurements, the first assumption is

&
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Figure 22. (a) Illustration of the procedure to correlate the measured energy loss with the initial angular

momentum. The experimental energy loss distribution is shown at the top. The differential
cross section do/d(2 is plotted against / at the bottom using the sharp cut-off approximation.
(5) Values of the parameter « obtained from fits to available data plotted against the initially
available energy per nucleon above the Coulomb barrier. (c) Comparison of model predictions
for the correlation Eioss(az2) with data (O) for the reactions 209Bi+136Xe at 940 MeV (left)
and 209Bj+36Fe at 465 MeV (right). The broken curves represent the classical limits and the
full curves are the full calculations.
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close to reality in the region of small energy losses whereas the second assumption
should be approached for large energy losses (see §7).

Having established a time scale, one can use the experimental charge distributions
and solutions to the Fokker-Planck equation to determine transport coefficients. For
a linear driving potential the variance of the Z distributions 22 is given by

=2uat(7).

Diffusion constants extracted using this prescription are comparable to those obtained
with other methods. For example, an analysis of the Bi+ Xe reaction yields (Schréder
et al 1978) a mass diffusion constant in the range 0.7 x 1022 s—1'(sticking) to 1.1 x 1022 s-1
(non-sticking) which are to be compared with a value of 0.5 x 1022 s—1 obtained in an
analysis of the Au+ Kr reaction (Russo et al 1977).

If the charge transfer process is truly a random walk problem, the number of exchanged
protons is related to the variance of the charge distribution by Nz=0z2. If the exchange
of neutrons and protons is correlated, the total number of exchanges N4 is related to
oz Via

N42(A[Z)2 022

. In the spirit of a one-body dissipation mechanism the number of exchanged nucleons is
related to the energy loss. Hence one can attempt to relate the measured energy loss
with the width of the Z distribution using the above equation (Schréder et al 1978).

When a nucleon is exchanged between the fragments, its relatlve momentum p=mv
is dissipated, resulting in an energy loss ,

SE= —(m/#) E

where E is the total available energy (E=Eem— Vcoul,—Eloss) Predictions based on this
equation are compared with experiments in figure 22(c). Since the predicted energy
loss curves (broken curv&s) fall well below the experimental data, it would appear
that nucleon exchange alone cannot be responsible for the energy dissipation. This
observation has led to the suggestion (Randrup 1979, Schroder et al 1980) that a sub-
stantial number of classically allowed exchanges are blocked because of the Pauli
exclusion principle. As a result the energy loss per nucleon exchange is given by

SE=(m/) oE

where the parameter « depends on the reaction. Values of « obtained from fits to
experimental data are shown in figure 22(b) as a function of the available energy
per nucleon above the Coulomb barrier. Note that for many reactions « is substantially
larger than unity (which corresponds to no Pauli blocking). Calculations including the
effect of Pauli blocking are shown in figure 22(c) (full curves) for two reactions. The
agreement with experiment is vastly improved over the classical calculation.

Despite the agreement with experiment the reader should be cautioned that the above
may not represent the final word on the energy dissipation mechanism. The above
conclusions depend on the validity of empirical prescriptions which have not yet been
fully justified. In fact, the procedure for deducing the angular momentum and hence
the time scale from the energy loss spectrum has been challenged (Sventek and Moretto
1978).

&
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6. Isospin fluctuations and giant isovector modes as seen through the isobaric charge
distributions

Neutrons and protons are a narrowly split hadron doublet which we call the nucleon.
The two components of the doublet are distinguished by a quantum number called iso-
spin, in analogy with spin doublets. The proton has isospin projection 4 and the neutron
—34. The coexistence of both neutrons and protons in nuclear systems implies the
coexistence of two very similar but distinct Fermi systems coupled to each other by the
nuclear mean field. The exchange component of nucleon-nucleon interaction allows for
the transformation of a proton into a neutron through the exchange of a charged virtual
= meson. The strong degeneracy of the two Fermi components implies a tendency of
nuclei to match their Fermi surfaces. This is realised by equalising the number of
neutrons and protons to the extent permitted by the Coulomb energy.

Local disturbances in the neutron-to-proton ratio propagate as a sound wave called
isospin sound. In this collective motion the neutrons move out of phase with respect to
the protons. The isospin sound has a velocity given by

u=(Qx/m1/2=0.21c (6.1)

where m is the nucleon mass and y is defined in terms of the potential energy associated -
with a given fluctuation in neutron-to-proton ratio

V=x f (———--Pn — Pz)a dr
PO

where pn, p; and po are the neutron, proton and total density, respectively.

Standing waves associated with isospin sound are known as isovector modes. These
modes are to be distinguished from the isoscalar modes which involve an in-phase
motion of neutrons and protons.

These isovector modes are to be compared to plasmonic excitations observed in other
many-body systems, like plasmas and solids where collective fluctuations in charge
density can occur. Like plasmons, the isovector modes in nuclei can be excited electro-
magnetically. By far the best known is the lowest multxpole isovector mode called the
giant E1 mode. It appears in nuclei as a resonance in the y-ray absorption cross section
at an energy Ex80 A-1/3 MeV and with a width of 46 MeV. The quadrupole deforma-
tion present in certain nuclei splits the resonance into two components. The lower-energy
component corresponds to oscillations occurring along the major axis of the football-like
nuclear spheroid, while the higher-energy component corresponds to the two degenerate
oscillations perpendicular to the elongation axis.

Isovector modes are thought to play a role in the determination of the charge of the
fragments at fixed mass asymmetry since the variation of the charge can be produced by
out-of-phase movement of neutrons and protons (Brosa and Krappe 1978, Moretto
et al 1979,.1980, Brosa 1979, Hofmann et al 1979). Various observations suggest that
the mass asymmetry degree of freedom develops quite slowly in time so that the charge
of each of the two fragments adjusts adiabatically, namely at fixed mass asymmetry.

The first moments of the charge distributions at fixed mass asymmetry can be repro-
duced by requiring that the potential energy of the system at fixed mass asymmetry as a
function of charge be at a minimum (Gatty er al 1975, Kratz et al 1977, Chiang et al
1979, Breuer et al 1979), or :

dV[0Z; | 4,=0.
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More specific information regarding the role of the isovector modes is obtained from the
second moment of the charge distribution at fixed mass asymmetry. Since the observed
distributions are approximately Gaussian, the ﬂuctuatlons can be characterised by the
standard deviation o2 of the distributions..

An immediate, though not necessarily warranted, approxxmatxon has been made by
assuming that only the lowest isovector multipole (corresponding to the E1 mode, like
in the giant dipole resonance) is involved in the isobaric charge fluctuations. If the
phonon energy of the dipole mode is fiw and the stiffness constant is c, then two limiting
situations arise. The first corresponds to the case in which the collective mode is weakly

coupled to the other modes. In this limit and for T<€#w one would expect only ground-

state quantal fluctuations for which
- o2=fwf2c.

On the other hand, if T>#%w (always vwak coupﬁng) or if the collective mode is so
strongly coupled to the continuum that its strength function is very spread out, one
obtains the classical limit in which the fluctuations depend only upon the temperature T

a2=T]e.

If, during the decay stage the decoupling from adiabaticity occurs while the neck between
the two fragments is still very large and the weak coupling limit holds, one would expect
fiw>~96/d MeV where d is the distance between the two. fragment centres. In this case
#fiw>T in most reactions and Jarge fluctuations, of the order of o2x1 2, should be
observed, independent of excitation energy. On the other hand, if the strong coupling
limit prevails, one would expect fluctuations of perhaps o20.3 2 which increase with
excitation energy.

Extraordmanly enough, both situations are observed in various reactions as illus-
trated in figure 23. It is conceivable that this ambiguity can be resolved by considering
the role of the higher-order isovector modes on the one hand, and of the mass asymmetry

on the other. This can be shown with the aid of a simple model which points out import-

ant facts which have been overlooked (Moretto er al 1980).

We shall disregard the extremely important dynamical aspects of the problem and
assume that the particular shapes considered in our model just precede the rapid division
into two fragments. In particular, let us consider the axial isovector modes in a cylinder
of length 2a, radius r, which is suddenly split at a distance b from one of the bases. The
standing isovector waves are trigonometric functions and the boundary conditions require
them to be cosine functions.

The fluctuation of the charge densnty for the mode of order n is

pz=—%pz0an cos knx

where p,0 is the equilibrium charge density, a, is the amplitude of the mode, x is the
distance along the cylinder axis from one of the bases, and the wavenumber kj is given
by kn=(7r/2a) n. The frequency of each mode is given by ws="Fknu, where u is the isospin
sound velocity given in equation (6.1)

If we cut the cylinder at b, we can define the charge excess of one of the fragments
by the relation:

anZ sin (nQ)

27 n

b
Zp=—% play wr2 f cos Kpxdx= —
0

&
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Figure 23. (a) Variances of the Z distributions-at fixed mass asymmetry plotted against excitation energy -
in the reaction Xe+Au. The broken and full curves indicate the expected variance from
quantal and classical statistical fluctuations (Wirth er al 1979). @, 4=195; O, A=196;
0, A=197; V, A=198; A, A=199; R, A=200. =, oz2=/liw/2c; —, az2=T/c. (b)
Widths of the Z distributions for several masses plotted against the total kinetic energy for the
reaction 8Kr + 98Mo at 430 MeV (Berlanger er al 1979). A, M=87; @, M=88; @, M=86;
O, M=85; A, M=84; 0, M=83.

where the degree of symmetry Q=>5/2a. Since the transformation from the coordinate
x to the variable Z, does not involve time, we can conclude that Z, oscillates harmonic-
ally, because a, does. Classically, for a fixed value of Q, each Z, is a separate normal
mode. The potential energy is indeed quadratic in Z,: V=% ¢, Z,% with the stiffness
constant ¢, given by
: A n?
=X 73 e SE 0 6.2)
Note that the stiffness constant strongly depends on n. For any n some of the charge
fluctuations average out and do not contribute to the fragment charge fluctuation; this
is all the more true for large n since it takes more energy to displace a given amount of
charge into any given fragment. Even for the lowest mode (n=1), some of the energy
goes into polarising the fragments rather than displacing charge. This is to be contrasted
with the standard way in which cpp has been calculated by using a potential which
neglects fragment polarisation. In figure 24, ¢1 and cLp can be compared as a function
of Q. The large error introduced by neglecting the fragment polarisation is obvious,
especially at large asymmetries.

Notice also that for the special values of Q for which sin (n7Q) is zero, the stiffness
constant is infinite; no matter how much work is done, no charge displacement arises.
This is true in particular at symmetry (Q= %), where none of the even modes contributes
to the charge displacement.
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Figure 24. The stiffness constant for the oscillation of the charge excess is plotted against asymmetry for
A=100. The broken curve corresponds to the liquid drop potential for two touching spheres.
The full curve corresponds to the cylinder model for the lowest mode. The contributions of
the Coulomb energy have been included for both.

After having identified the Z, as classical normal modes, we can immediately quantise
them. For each mode we obtain a phonon energy

| ficwon =ﬁ—;-‘-:-r n. |
These phonon energies are very large even for the lowest modes, so that the limit T/Aws <1
is typically encountered (7= nuclear temperature) and only zero-point fluctuations need
‘to be considered. ,
For each mode »n, the zero-point charge width is given by

a,.2="%"— 12 (symmetry) S22 070 | 6.3)

From figure 25 and equation (6.3), one expects these widths to be smaller at large asym-
metries than those calculated neglecting fragment polarisation. The contribution of the
nth mode to o2 goes like 1/n, so that the contribution of the higher modes becomes less

relevant at higher values of n. However, the total charge width in this model dxverges
logarithmically:

o*=01? (symmetry) > ﬂ-“_(’:’_”gl 6.4)

This is not surprising because we are assigning an infinite number of degrees of freedom
to a system of finite particle number. Furthermore, it is likely that the higher-frequency
modes ‘drown’ in the doorway states directly coupled to them, thus removing the collec-
tiveness from the respective degrees of freedom.

A very important feature of this model is that the role of each mode strongly depends
upon the asymmetry of the system. In figure 25(a) the normalised partial width is given
as a function of asymmetry for a few values of n. In figure 25(5), they are given as a

-
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function of n for a few asymmetries. At values close to symmetry, the lowest mode
dominates, but with increasing asymmetry the higher » modes play an ever-increasing
role. The widths are zero when a half-multiple of the wavelength for a mode matches the
value of b. In figure 26 the width arising from the first » modes is given for a few »
values as a function of Q. This shows that an experimentally observed width, especially
in asymmetric systems, may include the comparable contribution of several modes.

It is clear that any attempt to relate such a width to a single E1 mode rather than to
the combination of several isovector modes may be doomed to failure. The difficulties
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Figure 26. The sum of the squares of the normalised partial width up to #uax is plotted against asymmetry.
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are compounded by the use of a stiffness constant whxch may dramatically depend on
the form of the standing wave.

In conclusion, information on the isovector modes from the measurement of the
charge fluctuation at high temperatures can only be obtained by properly accounting for
the effect of mass asymmetry and the role of higher-order modes. Potentiaily, hidden in

the charge distribution and in its dependence upon mass asymmetry and excitation

energy lies valuable information on the spreading width of giant isovector modes at
high excitation energy which is not accessible by means of conventional techniques like
electron scattering or y-ray absorption.

' 7. The relaxation of the rotational degrees of freedom
7.1. The equilibrium limit
The relaxation of the rotational degrees of freedom can be best appreciated if one con-
siders two spheres which, during the collision, interact through conservative and dissipa-
tive forces. The torques so generated induce a rotation of the fragments. The secular
equilibrinm, which is eventually attained if the two spheres interact for a sufficiently long
time, corresponds to rigid rotation, namely to the regime characterised by the matching
of the orbital and intrinsic angular velocities. The angular momentum partition between
orbital and intrinsic angular momentum is then fixed, and depends upon the mass ratio
of the two fragments

I A1 +53

Lot pdi+S1+53

where Iint, Iios are the intrinsic and total angular momenta, u is the reduced mass, d is
the distance between centres, f, 3 are the momenta of inertia for the two fragments.
This ratio is 4 at symmetry (for two touching equal spheres) and increases with increasing
mass asymmetry until it reaches 1 for the maximum asymmetry in which one of the
~ two spheres is vanishingly small. '

In literature an intermediate limit is often quoted: the ‘rolling limit’. This somewhat
artificial limit corresponds to the assumption that only ‘sliding friction’ is acting, until
the two touching surfaces do not slide any longer, and no ‘rolling friction’ is acting on the
system. This limit requires the matching of peripheral velocities and, for two touching
spheres, predicts an angular momentum ratio:

Iine/Tear=2(7

- irrespective of the asymmetry. A lack of practical significance for.this limit is expected

in the general case in which both ‘sliding’ and ‘rolling friction’ are simultaneously active.
Under these circumstances the rolling limit is never attained.

The rigid rotation limit is visibly attained in certain reactions where the deep inelastic
process is associated with a rather narrow angular momentum window (Ishihara et al
1976, Glissel et al 1977, Natowitz et al 1978). Such a limit is demonstrated by the rising
y-ray multiplicity with increasing mass or charge asymmetry (figure 3).

The techniques commonly used to measure the angular momentum transferred from
orbital motion into fragment rotation or spin rely on the sequential emission of particles
or y-rays from the outgoing fragments. Perhaps the easiest technique to understand, if
not to apply, is the measurement of the mean y-ray multiplicities, or the mean number of

o
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y-rays emitted by the fragments after collision. Other techniques that have been used to
measure the fragment angular momentum are based upon the angular distributions of
particles («) emitted by the fragments (Ho et al 1977, Babinet et al 1980) or the angular
distributions of the fragments arising from sequential fission of one of the deep inelastic
fragments (Dyer et al 1977, Wozniak et al 1978, Harrach et al 1979, Specht 1979,
Glissel et al 1979). The principle of these methods is more involved and will be discussed
later on. Basically, the larger the fragment spin, the more tightly the sequential fragments
are concentrated in the reaction plane. The advantage of this technique is that frequently
one can measure the spin of one fragment at a time, rather than the sum of the two
fragment spins, as is the case in y-ray multiplicity measurement.

7.2. The relation between angular momentum transfer and energy dissipation

The correlation between energy dissipation and angular momentum transfer is expected
to be quite strong because-the dissipative forces associated with energy damping should be
well localised and should give rise to strong torques between the two fragments. This
effect is abundantly verified experimentally as illustrated, for instance, in figure 27. A

20p= -
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'Figure 27. y-ray multiplicity (@) and sigma (M) of the multiplicity distribution as a function of the

Q value for the reaction Sm+ Kr (Christensen e al 1978) at 43° in the laboratory.

‘rapid rise of the y-ray multiplicity with decreasing exit channel kinetic energy is typically

observed, followed by a saturation and, at times, by an actual decrease of the y-ray
multiplicity at the very lowest kinetic energies. The rise is, of course, due to the increase
in strength and/or duration of the torques, the saturation and the decrease is due to the
progressively lower / waves contributing to the low kinetic energy region and also to
neutron emission. _ :

Two extreme models for the process of energy dissipation have been proposed, the
excitation of giant modes on the one hand and the nucleon transfer on the other. Both
of these models predict the large energy losses compatible with experimental observations.
There has been some hope that the correlation between energy loss and angular momen-
tum transfer predicted by the two models may be so different that the experimental
data could decide in favour of either one, or point to a combination of the two
mechanisms.

7.3. Dependence of the y-ray multiplicity upon mass asymmetry

In the light of the above discussion, a study of the angular momentum transfer as a func-
tion of energy and mass asymmetry should be more useful, because the varying asymmetry
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is certainly associated with net mass transfer, although the total number of nucleon
exchanges back and forth may not be easy to determine experimentally.

From the relatively scant experimental evidence, one can summarise the experimental
situation as follows: (@) in the quasi-elastic region, the dependence of the y-ray multi-
plicity upon mass asymmetry is V-shaped, with the minimum at the entrance channel
asymmetry (figure 28(B, D)); (b) in the deep inelastic region, the y-ray multiplicity in-
creases with increasing asymmetry when the deep inelastic process involves a narrow /
window (figure 3) but usually stays more or less constant with mass asymmetry (Berlanger
et al 1976, Aleonard et al 1978, Christensen et al 1978, Olmi et al 1978) when the deep
inelastic process involves a very large / window (figure 28(A, C)).

The V-shaped dependence of the y-ray multiplicity in the quasi-elastic regxon can be
explained either in terms of the angular momentum transfer associated with mass transfer
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Figure 28. y-ray multiplicitia as a function of Z for the reactions Kr+ Ag (curves A and B) and Kr+ Ho
(curves C and D) (Regimbart et af 1978). The full symbols represent deep inelastic reactions
while the open symbols represent quasi-elastic reactions. The full curves are fits to the data.

or (and it may be the same thing) by the fact that the average energy loss increases as one
moves away from the entrance channel asymmetry.

The rising y-ray multiplicity with increasing asymmetry for narrow / windows may be
directly attributed to rigid rotation. On the other hand, the flat dependence of the
y-ray multiplicity against mass asymmetry for broad [ windows does not necessarily
imply the absence of rigid rotation. Rather it is most likely due to angular momentum
fractionation along the mass asymmetry coordinate. The experiments suggest that the
interaction times are a decreasing function of angular momentum. Furthermore the
spreading of the cross section along the mass asymmetry appears to increase with increas-
ing interaction times. As a consequence the high / waves populate configurations with
asymmetries close to the injection asymmetry, while the low / waves can spread further
out to much greater asymmetries. Thus the average entrance channel angular momentum
should decrease as one moves away from the entrance channel asymmetry. In particular,
the decrease in the average / wave as one moves towards larger asymmetries: (lower Z)

(w3
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may compensate for the rising trend required by the rigid rotation condition, leading to
a very weak dependence of the fragment spin (and hence the y-ray multiplicity) upon
mass asymmetry (Regimbart et al 1978, Wolschin and N&renberg 1978a, b, Gerschel et al
1979, Moretto and Schmitt 1980). Additional evidence supporting this angular momentum
fractionation along the mass asymmetry coordinate has been obtained in studies of the
variation of the mean energy of the relaxed peak with exit channel asymmetry (Simbel
and Adul-Magd 1980, Adler et al 1980). ‘

7.4. Alignment and polarisation of the fragment angular momentum

The torques associated with the frictional forces acting between target and projectile
during their interaction should induce a spin in the fragments which is aligned with the
total angular momentum, and perpendicular to the reaction plane. This alignment and
polarisation can be used to determine whether the fragments are scattered at positive or
negative angles by measuring, for instance, the circular polarisation of the y-rays emitted
by the fragments. Clear-cut cases of positive scattering angles have been demonstrated
for the strongly focused reaction 612 MeV 8Kr+ 197Au through the substantial negative
circular polarisation of the emitted y-rays. Cases of weak polarisation have been
observed in the reaction Kr+Ag and have been interpreted in terms of contributions
to the cross section from opposite sides of the interaction region (Trautmann et al 1977,
Lauterbach et al 1978). ' :

Angular momentum misalignment occurs when in-plane components of the angular
momentum are present. These components can be generated either directly by some
feature of the reaction mechanism (Ayik et al 1978, Zielinska-Pfabe 1978, Vandenbosch
1979) or can be associated with thermal fluctuations of the angular-momentum-bearing
modes (Wozniak et al 1978, Moretto and Schmitt 1980). The angular momentum
misalignment can be determined by measuring the angular distributions of particles or
photons emitted by one or both fragments, or of sequential fission fragments. Measure-
ments of the sequential fission fragment angular distributions (Dyer et al 1977, Wozniak
et al 1978, Harrach et al 1979) as well as of «-particles (Ho et al 1977, Babinet et al 1980)
and y-rays (Van Bibber et al 1977, Berlanger et al 1976, Dayras et al 1979, Aguer et al
1979, Wozniak ef al 1980, Puigh et al 1980) have been performed. The analysis of these
data requires expressions for the in- and out-of-plane angular distribution, and their
specific dependence upon the distributions of the three angular momentum components.
We shall use the assumption that the angular momentum misalignment actually arises
from equilibrium statistical fluctuations. This assumption has been verified in a variety
of experiments, as we shall see later on.

7.5. Statistical excitation of angular-momentum-bearing modes

Let us consider a frame of reference where the z axis is parallel to the entrance channel
angular momentum, the x axis is parallel to the recoil direction of one of the fragments,
and the y axis is perpendicular to the z, x plane. A misalignment of the fragment angular
momentum arises when non-vanishing x and y components of the fragment angular
momentum are present. Among the possible sources of these components, the thermal
excitation of angular-momentum-bearing modes of the intermediate complex appears
very likely and can be readily investigated. Such modes are excited in fission (Wilhelmy
etal 1972).

If the intermediate complex is assumed to have the shape of two equal touching
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spheres, the angular-momentum-bearing normal modes are easily identifiable. In figure
29 these modes are illustrated. We shall call them ‘bending’ B (doubly degenerate),
‘twisting’ Tw (degenerate with bending), ‘wriggling’ W (double degenerate) and ‘tilting’
" Ti. In a recent work, the statistical-mechanical aspects of the excitation of these modes
has been studied in detail (Moretto and Schmitt 1980). Here we report only the relevant
conclusions.

The thermal excitation of these collective modes leads to Gaussian distributions in the
three components I;, Iy, I, namely:

Izz I 3 Iz"’z 2
P(Decexp— (52 + s 2023) ) a.1

- Twisting - Titting

Bending j Wriggling

Bending / \iriggling

{a) b}

Figure 29. (2) Schematic illustrating the twisting mode and the doubly-degenerate bending modes for a two
equal spheres model. In each case the spin vectors of the fragments (symbolised by arrows)
are of equal length but point in opposite directions. (b) Schematic illustrating the tilting mode
and the doubly-degenerate wriggling modes for the equal spheres model. The short arrows
represent the spin vectors of the fragments. The long arrows originating at the point of
tangency of the two spheres represent the orbital angular momentum vectors (see Motetto
and Schmitt 1980).

where
ot =opi+owi=d T+ &ST=3ST »
=opi+ oWt =4S T+ S T=9T.
The quantity . is the moment of inertia of one of the two touching spheres, and T is the

temperature. The assumption of two equal touching spheres is admittedly schematic.
However, the generalisation to two equal touching spheroids is completely trivial.

7.6. Angular distributions associated with sequential fission and sequential light particle
emission

The magnitude of the angular momentum misalignment can be measured through the

4
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in- and out-of-plane angular distribution of the decay products of one of the two frag-
ments (e.g. Back and Bjarnholm 1978). Examples of the sequential fission fragment
angular distributions can be seen in figure 30.

The angular distribution of fission fragments and light partleles emitted by a com-
pound nucleus can be treated within a single framework. The direction of emission of a
decay product (fission fragment, «-particle, etc) is defined by the projection K of the
fragment angular momentum on the disintegration axis. Simple statistical-mechanical
considerations show that the distribution in X values is Gaussian:

) P(x)ocexp (— K?(2Ko?)
where Ko2=fi-2(1/#,-1/r )-1T; 5, " s . are the prmcxpal moments of inertia of the
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Figure 30. Fission coincidence yield, fission probabilities (ratio of ternaries to total), RMs angles of the
polar distributions and a lower limit for the average oriented part {Iz) of the heavy-fragment
spin assuming complete alignment (from Harrach et a/ 1979). (a) 208Pb, (b) 238U, @, %8Ni,
A, *Zr. ‘

decaying system with particle and residual nucleus just in contact about axes parallel
and perpendicular to the disintegration axis, respectively.

Let us now express the particle decay probability in terms of the emission angle «
measured with respect to the angular momentum direction. Since K=Icos « and
dKX=Id (cos a)=1dQ, we obtain for the decay width:

I(o) dQocexp ( -1 2;;:: “) dQ.

If the angular momentum has an arbitrary orientation with respect to our chosen frame
of reference, defined by its components Iz, Iy, I, the angular distribution can be easily
rewritten by noticing that

K=1Icos a=Ien=1;sin 0 cos ¢+1y sin 0 sin p+ 1 cos 8§

where a is a unit vector pointing in the direction of particle emission with polar angles
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6, . If the orientation of the angular momentum is given by the distribution expressed
by equation (7.1) we can integrate over the distribution of orientations and obtain,
dropping angular-momentum-independent factors (Broglia et. a/ 1979),

; mere {1 1 1’ [ I2cos? 0\
J { —_ ) o~
Ti(6, ¢) dQecexp [ 3T, .(-n .rc) 50, «p)] exp ( 2570, qo)) da

where :
S%(0, )= K2+ (022 cos? p+ ay? sin? @) sin2 6+ 0,2 cos 20

and . is the moment of inertia of the compound nucleus.

The final angular distribution is obtained by integration over the fragment angular
momentum distribution which we assume reflects the entrance channel angular momen-
tum distribution through the rigid rotation condition:

do Imx Iz
where we have assumed 'y~ I'y. More precisely:
%
° 1
W, @)= [l —exp (~ A)]
where

A=Inx? (wzf:zo —5)

21 1
P32 (77

The quantity #p, is the moment of inertia of the nucleus after neutron emission, and
# , is the perpendicular moment of inertia of the critical shape for the decay (e.g. saddie
point). It is important to notice that the angular momentum dependence of the particle/
neutron competition or fission/neutron competition is explicitly taken into account
through S.

The final ingredient necessary for an explicit calculation of the angular distributions
is the quantity Ko2. This quantity can be expressed in terms of the principal moments of
inertia of the critical configuration for the decay:

K02=_!. (_l -_11)—1 T=S o T/H2.

For fission Jeg can be taken from the liquid drop calculations. For light particle emission,
the calculation of ey can be worked out rather easily. Now we are in the position to
calculate both in-plane and out-of-plane anisotropies.
The in-plane anisotropy gives
W (p=90°)
W(p=0°)
Since in most cases Ko? is fairly large, or at least comparable with 0,2 or o2, it is difficult
to obtain a sizeable in-plane anisotropy. Even by letting o, =0 one needs gy2=3 K2 just
to obtain the anisotropy of 2! The out-of-plane anisotropy is somewhat more com-
plicated:

W(8=90°)
W(6=0%

( Ko2+ (,zz) 1/2
o-oo°_ Ko?+o0y2)

_1 (K02+ ozz) 2 ( _ 1 ) 1 —exp (BImax?)
om0+ B \Ko?+as2/ 2(Ko?+ 072)/ 1 —exp (Imx® {B—[2(Ko?* + 02| 1})

s

!
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At ¢=90° the anisotropy is obtained from the above equation by interchanging o

with Oy.
The results obtained above can be illustrated by applying them to a reaction which

has been experimentally investigated. We chose the reaction 600 MeV %Kr+Au

(Wozniak et al 1978). For this reaction we estimate Jspn/Ferr=1.864, Ko2=100#%2,

B=0.00194 /-2, I;my =40 #, 02~ 110 #2. The result of the calculation are shown in figure

31. The predicted FwHM =54" is in good agreement with the measured value of ~ 50°.

In the same spirit as for sequential fission one can investigate the angular distributions
of protons and a-particles emitted sequentially. The formalism to be used is essentially
identical with the one illustrated above and the results are also in good agreement with
the data. '

w6

P I S TN TS TN S M N N

0 (deg)

Figure 31. Sequential fission angular distributions calculated for the system 600 MeV Kr+Au. The
curve labelled 8=0.0 corresponds to disregarding neutron emission/fission competition. The
more realistic curve labelled 8=0.001 94 gives a FwHM of 54°.

7.7. y-ray angular distributions and anisotropy experiments

Fragments with large amounts of angular momentum are expected to disposé of it
mainly by stretched E2 decay. The relative amounts of dipole and quadrupole radiation

‘depends mainly upon the ability of the nucleus to remain a good rotor over the whole

angular momentum range. If the angular momentum of the fragment is aligned, the
typical angular pattern of the quadrupole radiation should be observed. Any misalign-
ment should decrease the sharpness of the angular distribution.

For a perfectly aligned system we have (see De Groot and Tolhoek 1955):

W(x)=% (1 +cos? a) W(x)=% (1 —cost ).
for El for E2

If the angular momentum is not aligned with the z axis, one must express « in terms of
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6, ¢ which define the direction of the angular momentum vector. In particular we have |

cos ug_I-_n I; sin 0 cos p+ 1y sin 0 sin ¢+ I; cos 0
I (I2+ L2+ T2V /3

For any given I, the angular distribution is obtained by mtegratlon over the statxstxcal
distribution P(I) of the angular momentum components:

W6, )= W(@PW) dL

It is not possible to obtain general analytical expressions. However, if we are willing to
assume oz2=gy2=0;%2= o then an exact resuit can be obtained.
For the E1 distribution one obtains

W(0)r1=2%{1+cos? 8+ 82(1 — D(B)) (1 -3 cos? 6)].
For the E2 distribution one obtains
W(Dg2=%{1 —cost 04232[3 sin2 @ cos? 9—2 cost 6—3D(B) (sin20 —4 cos? 0) sin2d]
a —3B%[4 cost 0+ % sm4 0 12 sin2 8 cos? @ (1 — D)]}.

In these equatlons B=dll; and D(B)=v/2BF(1/+/2B) where
F(x)=exp (=x?) [ exp (1) dr

is Dawson’s integral. One can easily verify that the anisotropy W(8)/W(90°) tends to 1
when 8 tends to infinity both for E1 and E2 transitions, while it tends to O for E2 and to
2 for E1 when B=0. If one has a fairly good experimental idea of the amount of El
radiation to be expected from a given fragment and of its degree of stretching, the
measurement of the. anistropy yields directly the value of B=aj/l;, which is a direct
measure of the angular momentum alignment.

The predictions of the model just described can be compared with measured y-ray
anisotropies. Very interesting results have been obtained (Wozmmiak et al 1980) for the
system 165Ho + 1400 MeV 185Ho. In this experiment the most probable exit channel is
symmetric and is in a mass region where a good rotational behaviour is well established.
The y-ray anisotropy has been measured for a set of Q values together with the y-ray
multiplicity. For each Q value bin, the angular momentum can be determined from the
y-ray multiplicity, while the temperature and the neutron emission effect can be estimated
from the Q value. The model described above is used to calculate o2 for all the Q value
bins and the corresponding value of o2/I;2 is used to calculate the anisotropy. In figure
32 the experimental y-ray anisotropies are shown as a function of Q value bins. The
calculated anisotropy is also shown and it appears to reproduce the experimental data
quite well. Qualitatively the dependence of the anisotropy upon Q value can be simply
understood. At lower Q values the rate of angular momentum transfer is high and the
excitation of the angular-momentum-bearing modes is small. Thus the alignment is
quite high, giving rise to a large anisotropy. As the Q value increases, the angular

momentum transfer stops, while the thermal excitation of the angular-momentum- -

bearing modes continues. The angular momentum becomes progressively more mis-
aligned and the anisotropy rapidly decreases.

This field is still too active and much work is still needed to reach definitive con-
clusions on the subject. However, it is clear that angular momentum fluctuations exist
and that they have a characteristic Q value dependence. In particular it is surprising to

@
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T 200
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Figure 32. Experimental (symbols) and calculated (curves) values of the anisotropy W(in/]) (a) for
y-rays with E,>0.3 MeV and (b) for y-rays with 0.6 MeV<E.,< 1.2 MeV. The full curves
include the effect of neutron emission, El transitions and thermal excitation of collective
modes. Curve 2 excludes the effect of neutron emission, curve 3 excludes the statistical
transitions, and curve 4 excludes the excitation of collective modes.

see how well the predictions of the model based upon the statistical equilibrium treatment
of angular-momentum-bearing modes are verified experimentally.

8. Conclusions

The present review had among its various goals that of presenting the rich and varied
phenomenology that has become available with the exploitation of the field of heavy ions.
These new processes are partly understood in terms of empirical microscopic models, so
that a comprehensive qualitative or semi-quantitative grasp of the whole field is now at
hand. In this sense, the exploration of the macroscopic variables first considered with
the discovery of fission has been successfully expanded and understood in terms of a
more or less coherent picture. However, the long-range hope and goal is the under-

‘standing of large-scale collective motion of nuclear systems in terms of microscopic

variables. This has already been attempted at various levels. One-body dissipation and
mass diffusion can be seen to arise as the generalisation of the shell model from static to
dynamic systems. A similar progress has been made by introducing time dependence in
the self-consistent approach of the time-dependent Hartree~Fock formalism. The
inclusion of collision terms may possibly improve TDHF to the point of enabling it to
make quantitative predictions for a good fraction of these phenomena. Similarly, the
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microscopic understanding of the giant resonances may show their specific role in the
processes of both energy dissipation and angular momentum transfer. It is not clear
to us as yet how all these partial attempts will merge into a unified and coherent theory.
It is clear, however, that the field of heavy-ion reactions has enormously extended the
scope and richness of nuclear physics not only by introducing new exciting degrees of
freedom, but by making accessible their time evolution,

The great versatility and richness of nuclear systems proves once more the relevance
of nuclear physics among the great variety of physical disciplines. There is little doubt
that the nucleus is still the most important of the many-body systems and the best challenge
so far to our understanding of the many-body problem.
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