
International Journal of Computer Vision (2020) 128:420–437

https://doi.org/10.1007/s11263-019-01225-w

Deep Insights into Convolutional Networks for Video Recognition

Christoph Feichtenhofer1 · Axel Pinz1 · Richard P. Wildes2 · Andrew Zisserman3

Received: 26 September 2018 / Accepted: 29 August 2019 / Published online: 29 October 2019

© The Author(s) 2019

Abstract

As the success of deep models has led to their deployment in all areas of computer vision, it is increasingly important to

understand how these representations work and what they are capturing. In this paper, we shed light on deep spatiotemporal

representations by visualizing the internal representation of models that have been trained to recognize actions in video.

We visualize multiple two-stream architectures to show that local detectors for appearance and motion objects arise to form

distributed representations for recognizing human actions. Key observations include the following. First, cross-stream fusion

enables the learning of true spatiotemporal features rather than simply separate appearance and motion features. Second,

the networks can learn local representations that are highly class specific, but also generic representations that can serve

a range of classes. Third, throughout the hierarchy of the network, features become more abstract and show increasing

invariance to aspects of the data that are unimportant to desired distinctions (e.g. motion patterns across various speeds).

Fourth, visualizations can be used not only to shed light on learned representations, but also to reveal idiosyncrasies of

training data and to explain failure cases of the system.

Keywords Computer vision · Machine learning · Deep learning · Video recognition · Neural network visualization · Action

recognition

1 Motivation

Principled understanding of how deep networks operate and

achieve their strong performance significantly lags behind

their realizations. Since these models are being deployed to

all fields from medicine to transportation, this issue becomes

of ever greater importance. Previous work has yielded great

advances in effective architectures for recognizing actions

Communicated by Greg Mori (retired editor).

This document is best viewed offline1 where figures play as animation.

B Christoph Feichtenhofer

cfeichtenhofer@gmail.com

Axel Pinz

axel.pinz@tugraz.at

Richard P. Wildes

wildes@cse.yorku.ca

Andrew Zisserman

az@robots.ox.ac.uk

1 Graz University of Technology, Graz, Austria

2 York University, Toronto, Canada

3 University of Oxford, Oxford, UK

in video, with especially significant strides towards higher

accuracies made by deep spatiotemporal networks (Tran et al.

2015; Feichtenhofer et al. 2016b; Simonyan and Zisserman

2014; Wang et al. 2016; Carreira and Zisserman 2017). How-

ever, what these models actually learn remains unclear, since

their compositional structure makes it difficult to reason

explicitly about their learned representations. In this paper

we use spatiotemporally regularized activation maximization

(Simonyan et al. 2014; Mordvintsev et al. 2015; Yosinski

et al. 2015; Mahendran and Vedaldi 2016b) to visualize

deep two-stream representations (Simonyan and Zisserman

2014) and better understand what the underlying models have

learned.

As an example, in Fig. 1 we highlight a single interesting

unit at the last convolutional layer of the VGG-16 Two-

Stream Fusion model (Feichtenhofer et al. 2016b), which

fuses appearance and motion features. This unit shows the

strongest activation at this layer across all videos correspond-

ing to the Billiards action in the test set of UCF101 (Soomro

et al. 2012). We visualize the appearance and motion inputs
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Fig. 1 Strongest Billiards unit at layer conv5_fusion: a, b show what

maximizes the unit at the input: multiple coloured blobs in the appear-

ance input (a) and moving circular objects at the motion input (b). d A

sample clip from the test set, and e the corresponding optical flow (where

the RGB channels correspond to the horizontal, vertical and magni-

tude flow components respectively). Note that a, b are optimized from

white noise under regularized spatiotemporal variation. Best viewed

in the Animated Manuscript with Adobe Reader where b, d, e should

play as videos

that highly activate this filter in Fig. 1a, b, respectively.1 We

display the optical-flow visualizations of this paper as video

clips with the RGB channels corresponding to the horizontal,

vertical and magnitude flow components, respectively. This is

similar to separate grayscale images showing the components

of the flow, displayed in a single image. In the visualizations

shown, red colour indicates positive horizontal direction (to

the right), green color positive vertical direction (to the bot-

tom) and blue color the magnitude of both flow components.

When looking at the inputs, we observe that this filter

is activated by differently coloured blobs in the appearance

input and by linear motion of circular regions in the motion

input. Thus, this unit could support recognition of the Bil-

liards class in UCF101, as well as other ball sports as can be

seen in the maximum test set activity of this unit in Fig. 1c.

Finally, we show in Fig. 1d a sample Billiards clip from the

test set with the corresponding optical flow shown in Fig. 1e.

Similar to emergence of object detectors for static images

(Zhou et al. 2014; Bau et al. 2017), here we see the emergence

of a spatiotemporal representation for an action. While Zhou

et al. (2014) and Bau et al. (2017) automatically assigned

concept labels to learned internal representations by refer-

ence to a large collection of labelled input samples, our work

instead is concerned with visualizing the network’s internal

representations without appeal to any signal at the input and

thereby avoids biasing the visualization via appeal to a par-

ticular set of samples.

Generally, we can understand deep networks from various

viewpoints. An architectural viewpoint considers a network

as a computational structure (e.g. a directed acyclic graph)

of mathematical operations in feature space (e.g. affine scal-

ing and shifting, local convolution and pooling, nonlinear

activation functions, etc.). In previous work, architectures

[such as Inception (Szegedy et al. 2015), VGG16 (Simonyan

and Zisserman 2015), ResNet (He et al. 2016)] have been

designed by composing such computational structures with

1 An animated version of this document can be downloaded at http://

feichtenhofer.github.io/pubs/Feichtenhofer_IJCV19.pdf where figures

play as videos.

a principle in mind (e.g. a direct path for backpropagation

in ResNet). We can thus reason about their expected predic-

tions for given input and the quantitative performance for a

given task justifies their design, but this does not explain how

a network actually arrives at these results. Another way to

understand deep networks is the representational viewpoint

that is concerned with the learned representation embodied in

the network parameters. Understanding these representations

is inherently hard as recent networks consist of a large num-

ber of parameters with a vast space of possible functions they

can model. The hierarchical nature in which these parameters

are arranged makes the task of understanding complicated,

especially for ever deeper representations. Due to their com-

positional structure it is difficult to explicitly reason about

what these powerful models actually have learned.

In this paper we shed light on deep spatiotemporal

networks by visualizing what excites the learned models

using activation maximization by backpropagating on the

input. We concentrate our studies on Two-Stream net-

works (Simonyan and Zisserman 2014; Feichtenhofer et al.

2016a, b; Wang et al. 2016; Carreira and Zisserman 2017),

aiming to reveal what information is conveyed by the learned

representation of the motion stream, in order to find what

makes it complementary to networks operating only on RGB

information.

Our visual explanations are highly intuitive and pro-

vide qualitative support for the benefits of separating into

two pathways of appearance (RGB image) and motion

(optical-flow) information when processing spatiotemporal

information—a principle that has also been found in nature

where numerous studies suggest a corresponding separation

into ventral and dorsal pathways of the brain (Mishkin et al.

1983; Goodale and Milner 1992; Felleman and van Essen

1991) as well as the existence of cross-pathway connections

(Saleem et al. 2000; Kourtzi and Kanwisher 2000).

The present paper is an extended version of our related

conference publication (Feichtenhofer et al. 2018), with addi-

tional contributions as follows. First, we augment our earlier

activation maximization analysis of what the networks learn

with response histograms across test data associated with
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training labels to lend additional insight into what has been

learned by units within the networks. Second, we show

experiments on the evolution of filters throughout training.

Third, we investigate several additional architectures, Spa-

tiotemporal Residual Networks (Feichtenhofer et al. 2016a)

using ResNet50 (He et al. 2016) streams, Temporal Seg-

ment Networks (Wang et al. 2016) using BN-Inception

(Ioffe and Szegedy 2015) streams, and Two-Stream net-

works (Simonyan and Zisserman 2014) using Inception_v3

(Szegedy et al. 2015) streams, as well as the originally

studied VGG16 two-stream fusion model (Feichtenhofer

et al. 2016b). Fourth, we investigate the impact of train-

ing on additional datasets, UCF101 (Soomro et al. 2012),

HMDB51(Kuehne et al. 2011) and Kinetics (Carreira and

Zisserman 2017) to discuss our analysis in broader context,

compared to the single architecture and dataset used in the

earlier conference publication (Feichtenhofer et al. 2018).

2 RelatedWork on Visualization

The current approaches to visualization can be grouped into

three types, and we review each of them in turn.

2.1 Visualizations for Given Inputs

Several approaches have used a large body of input images to

increase the understanding of deep networks. A straightfor-

ward approach is to record the network activities and sample

over a large set of input images for finding the ones that

maximize the unit of interest (Zeiler and Fergus 2013; Zhou

et al. 2014, 2016; Bau et al. 2017). Another strategy is to use

backpropagation to highlight salient structure in the hidden

units (Simonyan et al. 2014; Mahendran and Vedaldi 2016a;

Zhang et al. 2016; Selvaraju et al. 2016) for given input. The

drawback of these methods is that they use an image as prior

for reasoning about network computations and thus can not

provide direct samples from the model, but rather samples

from the model under some specific input signal.

2.2 ActivationMaximization

The Activation Maximization (AM) technique allows to

inspect models without using an input. AM performs gradi-

ent ascent on the randomly initialized input to find an image

that increases the activity of some unit of interest by back-

propagation (Erhan et al. 2009). The method was employed

to visualize units of Deep Belief Networks (Hinton et al.

2006; Erhan et al. 2009) and adopted for deep auto-encoder

visualizations in Le et al. (2012). The AM idea was first

applied to visualizing ConvNet representations trained on

ImageNet (Simonyan et al. 2014). That work also showed

that the AM techniques generalize the deconvolutional net-

work reconstruction procedure introduced earlier (Zeiler and

Fergus 2013), which can be viewed as a special case of one

iteration in the gradient based activation maximization.

In an unconstrained setting, these methods can exploit

the full dimensionality of the input space; therefore, plain

gradient based optimization on the input can generate images

that do not reflect natural signals. Regularization techniques

can be used to compensate for this deficit. In the literature,

different regularizers have been applied to the inputs to make

them perceptually more interpretable: L2 norms (Simonyan

et al. 2014), total-variation norms (Mahendran and Vedaldi

2016b), Gaussian blurring, and suppressing of low values and

gradients (Yosinski et al. 2015), spatial shifting (jittering) of

the input during optimization (Mordvintsev et al. 2015), or

weight decay (Galloway et al. 2018).

Backpropagation on the input has also been used to find

salient regions for a given input (Springenberg et al. 2015;

Zhang et al. 2016; Mahendran and Vedaldi 2016a), or to

“fool” networks by applying a perturbation to the input that

is hardly perceptible to humans (Szegedy et al. 2014; Nguyen

et al. 2015).

2.3 Generative Adversarial Networks

Generative Adversarial Networks (GANs) (Goodfellow et al.

2014) provide even stronger natural image priors, for visual-

izing class level representations (Nguyen et al. 2016, 2017)

in the activation maximization framework. These methods

optimize a high-dimensional code vector (typically fc_6 in

AlexNet) that serves as an input to the generator which is

trained with a perceptual loss (Dosovitskiy and Brox 2016)

that compares the generater features to those from a pre-

trained comparator network (typically AlexNet trained on

ImageNet). The approach induces strong regularization on

the possible signals produced. In other words, GAN-based

activation maximization does not start the optimization pro-

cess from scratch, but from a generator model that has been

trained for the same or a similar task (Dosovitskiy and Brox

2016). More specifically, the work in (Nguyen et al. 2016)

trains the generator network on ImageNet and activation

maximization in some target (ImageNet) network is achieved

by optimizing a high-level feature (i.e. fc_6) of this generator

network.

Activation maximization results produced by GANs offer

visually impressive results, because the GAN enforces natu-

ral looking images and these methods do not have to use extra

regularization terms to suppress extremely high input signals,

high frequency patterns or translated copies of similar pat-

terns that highly activate some unit. However, the produced

result of this maximization technique is in direct correspon-

dence to the generator, the data used to train this model,

and not a random sample from the network under inspection

(which serves as a condition for the learned generative prior).
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Fig. 2 Schematic of our two-stream activation maximization approach (see Sect. 3 for details)

Since we are interested in the raw input that excites our

representations, we do not employ any generative priors in

this paper. In contrast, our approach directly optimizes the

spatiotemporal input of the models starting from randomly

initialized image (appearance) and video (motion) inputs.

3 Approach

There are several techniques that perform activation maxi-

mization for image classification ConvNets (Szegedy et al.

2014; Simonyan et al. 2014; Mordvintsev et al. 2015; Yosin-

ski et al. 2015; Mahendran and Vedaldi 2016b) which have

shown that features become more abstract when approaching

deeper layers of image-based networks. We build on these

methods for visualizing the hierarchical features learned

by a deep motion network. In particular, we optimize in

the spacetime domain to find the preferred spatiotemporal

input of individual units in a Two-Stream Fusion model

(Feichtenhofer et al. 2016b). We formulate the problem

as a (regularized) gradient-based optimization problem that

searches in the input space.

An overview of our approach is shown in Fig. 2. A ran-

domly initialized input is presented to the optical flow and the

appearance pathways of our model. We compute the feature

maps up to a particular layer that we would like to visualize.

A single target feature channel, c, is selected and activation

maximization is performed to generate the preferred input

in two steps. First, the derivatives on the input that affect c

are calculated by backpropagating the target loss, summed

over all locations, to the input layer. Second, the propagated

gradient is scaled by the learning rate and added to the cur-

rent input. These operations are illustrated by the dotted red

lines in Fig. 2. Gradient-based optimization performs these

steps iteratively with an adaptively decreasing learning rate

until the input converges. Importantly, during this optimiza-

tion process the network weights are not altered, only the

input receives changes. The detailed procedure is outlined in

the remainder of this section.

3.1 ActivationMaximization

To make the above more concrete, activation maximization

of unit c at layer l seeks an input x∗ ∈ R
H×W×T ×C , with

H being the height, W the width, T the duration, and C the

color and optical flow channels of the input. We find x∗ by

optimizing the following objective

x∗ = argmax
x

1

ρ2
l âl,c

〈al(x), ec〉 − λrRr (x) (1)

where al are the activations at layer l, ec is the natural basis

vector corresponding to the cth feature channel, and Rr are

regularization term(s) with weight(s) λr . To produce plausi-

ble inputs, the unit-specific normalization constant depends

on ρl , which is the size of the receptive field at layer l (i.e.

the input space), and âl,c, which is the maximum activation

of c recorded on a validation set.

Since the space of possible inputs that satisfy (1) is vast,

and natural signals only occupy a small manifold of this high-

dimensional space, we use regularization to constrain the

input in terms of range and smoothness to better fit statistics

of natural video signals. Specifically, we apply the following

two regularizers, RB and RT V , explicitly to the appearance

and motion input of our networks.

3.2 Regularizing Local Energy

As first regularizer, RB , we enforce a local norm that penal-

izes large input values

RB(x) =

⎧

⎨

⎩

NB(x) ∀i, j, k :
√

∑

d x(i, j, k, d)2 ≤ B

+∞, otherwise.
(2)
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with NB(x) =
∑

i, j

(
∑

d x(i, j, k, d)2
)

α
2 and i, j, k are spa-

tiotemporal indices of the input volume and d indexes either

color channels for appearance input, or optical flow chan-

nels for motion input, B is the allowed range of the input,

and α the exponent of the norm. Similar norms are also used

in Simonyan et al. (2014), Yosinski et al. (2015), Mahen-

dran and Vedaldi (2016b), with the motivation of preventing

extreme input scales from dominating the visualization.

3.3 Regularizing Local Frequency

The second regularizer, RT V , penalizes high frequency con-

tent in the input, since natural signals tend to be dominated

by low frequencies. We use a total variation regularizer based

on spatiotemporal image gradients

RT V (x; κ, γ ) =
∑

i jkd

[

κ

(

(∇x x)2 + (∇yx)2
)

+ γ (∇t x)2
]

,

(3)

where i, j, k are used to index the spatiotemporal dimensions

of input x, d indexes the color and optical flow channels of

the input, and ∇x ,∇y , ∇t are the derivative operators in the

horizontal, vertical and temporal direction, respectively. κ

is used for weighting the degree of spatial variation and γ

is an explicit slowness parameter that determines the reg-

ularization strength on the temporal frequency. By varying

0 ≤ γ < ∞ we can selectively penalize with respect to the

slowness of the features at the input.

We now derive interesting special cases of (3) that we will

investigate in our experiments:

– A spatially global regularizer, κ > 0; γ = 0 does not

penalize variation over the temporal dimension, t . This

choice produces reconstructions with unconstrained tem-

poral frequency while only enforcing two-dimensional

spatial smoothness in (3). This choice can be seen as an

implicit low-pass filtering in the 2D spatial domain.

– An isotropic spatiotemporal regularizer, κ = γ ; κ, γ > 0

equally penalizes variation in space and time. This can

be seen as an implicit low-pass filtering in the 3D spa-

tiotemporal domain.

– An anisotropic spatiotemporal regularizer,κ 
= γ ; κ, γ >

0 allows balancing between space and time to e.g. visual-

ize fast varying features in time that are smooth in space.

The isotropic case above would bias the visualization to

be smooth both in space and time, but not allow us to

trade-off between the two.

3.4 Discussion

Purely spatial variation regularization is important to recon-

struct natural images. Examples of application include

image/video restoration (Zhang et al. 2010), feature inver-

sion (Mahendran and Vedaldi 2016b), style transfer (Johnson

et al. 2016), or activation maximization (Yosinski et al. 2015)

where a 2D Gaussian filter was applied after each maxi-

mization iteration to achieve a similar effect. Isotropic spa-

tiotemporal regularization relates to multiple hand-designed

features that operate by derivative filtering of video signals,

examples include HOG3D (Kläser et al. 2008), Cuboids

(Dollar et al. 2005), or SOEs (Feichtenhofer et al. 2015).

Finally, anisotropic spatiotemporal regularization relates to

explicitly modelling the variation in the temporal dimen-

sion. Larger weights γ in (3) stronger penalize the temporal

derivative of the signal and consequently enforce low-pass

characteristic such that it varies slowly in time. This is a

well studied principle in the literature. For learning general

representations from video in an unsupervised manner, min-

imizing the variation across time is seen both in biological,

e.g. Földiák (1991), Wiskott and Sejnowski (2002), and arti-

ficial, e.g. Goroshin et al. (2015) systems. The motivation

for such an approach comes from how the brain solves object

recognition by building a stable, slowly varying feature space

with respect to time (Wiskott and Sejnowski 2002) in order

to model temporally contiguous objects for recognition.

In summary, the regularization of the objective, (1), com-

bines (2) and (3): Rr (x) = RB(x) + RT V (x; κ, γ ). Thus,

Rr (x) serves to bias the visualizations to the space of natural

images in terms of their magnitudes and spatiotemporal rates

of change. Note that the three different special cases of the

variational regularizer for the motion input allow us to recon-

struct signals that are varying slowly in space, uniformly in

spacetime and non-uniformly in spacetime.

3.5 Implementation Details

For optimizing the overall objective, (1), we use ADAM

(Kingma and Ba 2015) that adaptively scales the gradi-

ent updates on the input by its inverse square root, while

aggregating the gradients in a sliding window over previous

iterations. We use the same initializations as in Mahen-

dran and Vedaldi (2016b). During optimization, we spatially

shift (jitter) (Mordvintsev et al. 2015) the input randomly

between 0 and the stride of the optimized layer. All preced-

ing downsampling layers (pooling and strided convolutions)

are accumulated into the layer stride that is used. The

intention for jittering with a random stride that is less

than the optimized layer is to interpolate between pixels in

back-propagation. This generally results in increased recon-

struction quality; an example can be found in Fig. 4 of

Mahendran and Vedaldi (2016b). For all results shown in

this paper, we chose the regularization/loss trade-off fac-

tors λr to provide similar weights for the different terms

(2)–(3). We apply the regularizers separately to the opti-

cal flow and appearance input. The regularization terms for
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the appearance input are chosen to λB,rgb = 1
H W Bα and

λT V ,rgb = 1
H W V 2 , with V = B/6.5, B = 160 and α = 3, i.e.

the default parameters in Mahendran and Vedaldi (2016b).

Our work builds upon what has been used in Mahendran and

Vedaldi (2016b) to invert image ConvNets; therefore, we use

the same settings for reconstructing RGB images (appear-

ance streams) and extend it for the 3D case to invert ConvNets

trained on optical-flow (motion streams) as outlined below.

The motion input’s regularization differs from that of

appearance, as follows. In general, the optical flow is assumed

to be smoother than appearance input; therefore, the total-

variation regularization term of motion inputs has 10 times

higher weight than the one for the appearance input. In order

to visualize different speeds of motion signals, we use differ-

ent weight terms for the variational regularizers of the motion

input. In particular, to reconstruct different uniformly regu-

larized spatiotemporal inputs we vary κ and set set γ = κ for

penalizing the degree of spatiotemporal variation for recon-

structing the motion input (as we set γ = κ , we only list the

values forκ in the experiments). For anisotropic spatiotempo-

ral reconstruction, we vary the temporal slowness parameter,

γ and fix κ = 1. The values in all visualizations are scaled to

min-max over the whole sequence for effectively visualizing

the full range of motion.

4 Experiments

In our detailed discussion in Sects. 4.1, 4.2 and 4.3, we

focus our experimental studies on a VGG-16 two-stream

fusion model (Feichtenhofer et al. 2016b) that is illustrated in

Fig. 2 and trained on UCF-101. Our visualization technique,

however, is generally applicable to any spatiotemporal archi-

tecture. In Sect. 4.4, we visualize various other architectures

trained on multiple datasets.

We plot the appearance stream input directly by showing

an RGB image and the motion input by showing the optical

flow as a video that plays in the Animated Manuscript; the

RGB channels of this video consist of the horizontal, verti-

cal and magnitude of the optical flow vectors, respectively.

It is our impression that the presented flow visualization is

perceptually easier to understand than standard alternatives

(e.g. HSV encoding).

4.1 Emergence of Spatiotemporal Features

We first study the conv5_fusion layer (i.e. the last local layer;

see Fig. 2 for the overall architecture and Table 1 for the fil-

ter specification of the layers), which takes in features from

the appearance and motion streams and learns a local fusion

representation for subsequent fully-connected layers with

global receptive fields. Therefore, this layer is of particular

interest as it is the first point in the network’s forward pass

Table 1 Structure of the VGG-16 architecture showing the layer names,

the receptive field sizes (RF size), and the feature stride and the output

size of the feature maps, for an input of size 224 × 224×3. All con-

volutional layers use 3 × 3 filters with padding to preserve the input

size

Layer RF size Stride Output size

Data 224 × 224 × 3

conv1_1 3 1 224 × 224 × 64

conv1_2 5 1 224 × 224 × 64

pool1 6 2 112 × 112 × 64

conv2_1 10 2 112 × 112 × 128

conv2_2 14 2 112 × 112 × 128

pool2 16 4 56 × 56 × 128

conv3_1 24 4 56 × 56 × 256

conv3_2 32 4 56 × 56 × 256

conv3_3 40 4 56 × 56 × 256

pool3 44 8 28 × 28 × 256

conv4_1 60 8 28 × 28 × 512

conv4_2 76 8 28 × 28 × 512

conv4_3 92 8 28 × 28 × 512

pool4 100 16 14 × 14 × 512

conv5_1 132 16 14 × 14 × 512

conv5_2 164 16 14 × 14 × 512

conv5_3 196 16 14 × 14 × 512

pool5 212 32 7 × 7 × 512

fc6 404 32 1 × 1 × 4096

fc7 404 32 1 × 1 × 4096

fc8 404 32 1 × 1 × Ncls

Ncls denotes the number of output classes

where appearance and motion information come together.

At conv5_fusion we see the emergence of both class spe-

cific and class agnostic units (i.e. general units that form a

distributed representation for multiple classes). We illustrate

both of these by example in the following.

4.1.1 Local Representation of Class Specific Units

In Fig. 1 we saw that some local filters might correspond to

specific concepts that facilitate recognition of a single class

(e.g. Billiards). We now reconsider that unit from Fig. 1 and

visualize it under two further spatiotemporal regularization

degrees, slow and fast temporal variation, in Fig. 3 (the visu-

alization in Fig. 1 corresponds to medium speed, γ = 1).

Similar to Fig. 1, multiple coloured blobs as well as a bil-

liards table with beige coloured structure on the top show up

in the appearance (3a) input. Moving circular objects arise in

the motion input (3b), but compared to Fig. 1, the motion is

now varying differently in time, due to γ = 5. In Fig. 3c, d,

we only regularize for spatial variation with unconstrained

temporal variation, i.e. γ = 0 in (3). We observe that this

unit is fundamentally different in the slow and the fast motion
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(a) appearance slow (b) motion slow (c) appearance fast (d) motion fast

Fig. 3 Studying the Billiards unit at layer conv5_fusion from Fig. 1.

We now show what highly activates the filter in the appearance and in

the motion input space using high temporal variation regularization a,

b: c, d show what excites the filter when there is no regularization on

the temporal variation of the input: The appearance, c now shows dif-

ferent structure and the motion filter d now detects accelerating motion

patterns e.g. when balls are accelerated

case: It looks for linearly moving circular objects in the slow

spatiotemporal variation case, while it looks for an acceler-

ating motion pattern into various directions in the temporally

unconstrained (fast) motion case. It appears that this unit is

able to detect a particular spatial pattern of motion, while

allowing for a range of speeds and accelerations. Such an

abstraction presumably has value in recognizing an action

class with a degree of invariance to exact manner in which it

unfolds across time.

Another interesting fact is that switching the regularizer

for the motion input, also has an impact on the appearance

input (Fig. 3a vs. c) even though the regularization for appear-

ance is held constant. This fact empirically verifies that the

fusion unit also expects specific appearance when confronted

with particular motion signals.

We now consider unit f004 at conv5_fusion in Fig. 4. It

seems to capture some drum-like structure in the center of

the receptive field, with beige-colored structures in the upper

region. This unit could relate to the PlayingTabla class. In

Fig. 4 we show the unit under different spacetime regularizers

and also show sample frames from three PlayingTabla videos

from the test set. Interestingly, when stronger regularization

is placed on both spatial and temporal change (e.g. κ = 10,

top row) we see that a beige colour blob is highlighted in the

appearance and a horizontal motion blob is highlighted in the

motion in the same area, which combined could capture the

characteristic head motions of a drummer. In contrast, with

less constraint on motion variation (e.g. γ = 0, bottom row)

we see that the appearance more strongly highlights the drum

region, including hand and arm-like structures near and over

the drum, while the motion is capturing high frequency oscil-

lation where the hands would strike the drums. Significantly,

we see that this single unit fundamentally links appearance

and motion: We have the emergence of true spatiotemporal

features.

4.1.2 Distributed Representation of General Units

In contrast to units that seem very class specific, we also find

units that seem well suited for cross-class representation. To
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Fig. 4 Specific unit at conv5_fusion. Comparison between isotropic

and anisotropic spatiotemporal regularization for a single filter at the

last convolutional layer. The columns show the appearance and the

motion input generated by maximizing the unit, under different degrees

of isotropic spatiotemporal (κ) and anisotropic spatiotemporal TV reg-

ularization (γ ). The last row shows frames from sample videos of

appearance and optical flow from the PlayingTabla class
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Fig. 5 Two general units at the convolutional fusion layer. The columns

show the appearance and the motion input generated by maximizing the

unit, under different degrees of anisotropic spatiotemporal regulariza-

tion (γ ). Note that κ = 1 for the anisotropic case. The last row shows

frames from videos from the YoYo and Nunchucks classes

begin, we consider filters f006 and f009 at the conv5_fusion

layer that fuses from the motion into the appearance stream,

as shown in Fig. 5. These units seem to capture general spa-

tiotemporal patterns for recognizing classes such as YoYo

and Nunchucks, as seen when comparing the unit visualiza-

tions to the sample videos from the test set.

Next, in Fig. 6, we similarly show general feature exam-

ples for the conv5 fusion layer that seem to capture general

spatiotemporal patterns for recognizing classes correspond-

ing to multiple ball sport actions such as Soccer or TableTen-

nis. These visualizations reveal that at the last convolutional

layer the network builds a local representation that can be

both distributed over multiple classes and quite specifically

tuned to a particular class (e.g. Fig. 4 above).
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Fig. 7 Two-stream conv filters under anisotropic regularization. We

show appearance and optical flow inputs for slowest γ = 10, slow

γ = 5, fast γ = 1, and unconstrained (fastest) γ = 0, temporal

variation regularization. Spatial regularization is kept constant. See the

Animated Manuscript for animation

4.2 Progressive Feature Abstraction with Depth

4.2.1 Visualization of Early Layers

We now explore the layers of a VGG-16 Two-Stream archi-

tecture (Feichtenhofer et al. 2016b). Unlike in conv5_fusion

layer where the inputs (appearance and flow) are produced

by the same unit, inputs from early layers (i.e. conv1_1 to

conv4_3) do not have correspondence as they are produced

by two separate units in two different streams.

In Fig. 7 we show what excites the convolutional filters of

a two-stream architecture at the early layers of the network

hierarchy. We use the anisotropic regularization in space and

time that penalizes variation at a constant rate across space

and varies according to the temporal regularization strength,

γ , over time. We observe that at earlier layers filters appear

that perform differential spatial derivative filtering of multi-

ple orders. For example the filter in row 2, column 2 from

top right of the optical flow filters at conv3_3 in Fig. 7

exhibits centre-surround structure that operates across dif-

ferent motion directions to be matched to horizontal motion

in the surround (indicated by the red outer region) and an

accelerating vertical motion in the centre (indicated by the

blue-cyan transition over time). Such a filter can be inter-

preted as akin to a spatiotemporal Laplacian that performs

directional motion gradient filtering in spacetime. The emer-

gence of such filters is interesting on its own as similar

filters that show spatially differential structure across differ-

ent channels appear in biological systems for the dimensions

of colour (Gouras 1974; Livingstone and Hubel 1984), spa-

tial orientation (Gorea and Papathomas 1993) and direction

of motion (Stromeyer et al. 1984; Reichardt et al. 1983).

Moreover, we see that the spatial patterns are preserved

throughout various temporal regularization factors γ , at

all layers. From the temporal perspective, we see that, as

expected, for decreasing γ the temporal variation increases;

interestingly, however, the directions of the motion patterns

are preserved while the optimal motion magnitude varies

with γ . For example, consider the last shown unit f36 of

layer conv4_3 (bottom right filter in the penultimate row of

Fig. 7). This filter is matched to motion blobs moving in an

upward direction. In the temporally regularized case, γ > 0,

the motion is smaller compared to that seen in the tempo-

rally unconstrained case, γ = 0. Notably, all these motion

patterns strongly excite the same unit. These observations

suggest that the network has learned speed invariance, i.e.

the unit can respond to the same direction of motion with

robustness to speed. Such an ability is significant for recog-

nition of actions irrespective of the speed at which they are

executed, e.g. being able to recognize “running” without a

concern for how fast the runner moves.

In Fig. 8 we first show what excites the convolutional fil-

ters of a two-stream architecture when varying the isotropic

spatiotemporal regularization. The motion signals are recon-

structed under spatiotemporal regularization with different

regularization strengths, κ , and γ = κ . Varying the regu-

larization in spacetime reveals interesting properties of the

underlying representation. We discuss Fig. 8 from two per-

spectives: First, from the temporal perspective, we see that

the early layer filters are more robust to regularization in

spacetime, whereas higher layers show larger dependence

on the regularization strength, κ . This dependence originates

from the temporally consistent nature of the early filters that

exhibit temporal low-pass characteristics. Second, from the

spatial perspective, we see that with decreasing spacetime
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Fig. 8 Two-stream conv filters under isotropic (γ = κ) spatiotemporal

variation regularization. We show appearance and the optical flow inputs

for slowest κ = 10, slow κ = 5, fast κ = 2.5, and faster κ = 1 spa-

tiotemporal variation. See the optical flow in the Animated Manuscript

for video playback

regularization strength, κ , high-frequency inputs become

dominant. Especially for low regularization factors κ ≤ 2.5,

we see high-frequency patterns dominating and reconstruc-

tion artifacts appearing in the background.

In Fig. 9 we show the evolution of internal filters of

the VGG16 motion stream during training. After 10 epochs

we see very minor temporal variation of the filters which

increases when going towards the end of learning at epoch

60. Interestingly, the spatial shape of the early layer filters

at conv2_2 does not change while the temporal dimension

builds up over epochs. The higher layers, in contrast, undergo

large changes of spatiotemporal structure from epoch 10 to

epoch 60.

4.2.2 Visualization of Fusion Layers

We now briefly re-examine the convolutional fusion layer

(as in the previous Sect. 4.1). In Fig. 10, we show filters at

the conv5_fusion layer, which fuses from the motion into

the appearance stream, while varying the temporal regular-

ization and keeping the spatial regularization constant. This

result is again achieved by varying the parameter γ in (3). The

visualizations reveal that these fusion filters at this last convo-

lutional layer show reasonable combinations of appearance

and motion information, qualitative evidence that the fusion

model in Feichtenhofer et al. (2016b) performs as desired.

For example, the receptive field centre of conv5_fusion f002

seems matched to lip like appearance with a juxtaposed elon-

gated horizontal structure, while the motion is matched to

slight up and down motions of the elongation (e.g. flute play-

ing). Once again, we also observe that the units are broadly

tuned across temporal input variation (i.e. all the different

inputs highly activate the same given unit).

In the last column of Fig. 10 we plot the maximum test set

activity of corresponding filters at the fusion layer, for the 10
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Fig. 9 Evolution of filters throughout training. We show the optical flow

inputs for the motion stream filter maximization under spatiotemporal

variation. Filters at early layers adapt quickly whereas filters at the

higher layers emerge later on in training, especially over the temporal

dimension

highest activating videos across the test set. Most of the filters

fire for classes with similar appearance and motion, but also

strong activity over a broad set of classes can be observed.

4.2.3 Visualization of Global Layers

We now visualize the layers that have non-local filters, i.e.

fully-connected layers that operate on top of the convolu-

tional fusion layer illustrated above. Figure 11 shows filters

of the fully-connected layers 6 (fc_6) and 7 (fc_7) of the

VGG-16 fusion architecture. We again show the maximum

test set activity of corresponding units at the fully connected

layers. In contrast to the local features above, we observe a

holistic representation that consists of a mixture of the local

units seen in the previous layer. For example, in the fc_6

units shown in the top three rows we observe features that

could support prediction of Basketball and PlayingFlute. In

the fc_7 units shown in the last three rows we see units that

resemble Bowling and the Clean and Jerk actions, revealed

by the maximum test set activity shown in the last column.

Here, it is notable that these representations form something

akin to a nonlinear (fc_6) and linear (fc_7) basis for the pre-

diction layer; therefore, it is plausible that the filters resemble

holistic classification patterns.
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Fig. 10 Visualization of the conv5_fusion layer under different tem-

poral TV regularization. We show the appearance input and the optical

flow inputs for slowest γ = 10, slow γ = 5, fast γ = 1, and uncon-

strained γ = 0, temporal variation regularization. The last column

shows the maximum activity observed for classes in the test set. Best
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Fig. 11 Visualization of filters of the fc_6 and fc_7 layers under dif-

ferent temporal regularization. We show the appearance input and the

optical flow inputs for slowest γ = 10, slow γ = 5, fast γ = 1, and

unconstrained (fastest) γ = 0, temporal variation regularization. The

last column shows the maximum activity observed for classes in the test

set

Finally, we visualize the ultimate class prediction lay-

ers of the architecture, where the unit outputs correspond

to different classes; thus, we know to what they should be

matched. In Fig. 12, we show the fast motion activation of

the classes Archery, BabyCrawling, PlayingFlute and Clean-

AndJerk and BenchPress. The learned features for archery

(e.g., the elongated bow shape and positioning of the bow

as well as the shooting motion of the arrow) are markedly
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Fig. 12 Classification units at the last layer of the network. The first

column shows the appearance and the second to fifth columns the

motion input generated by maximizing the prediction layer output for

the respective classes, with different degrees of temporal variation reg-

ularization (γ ). The last column shows a sample frame from the first

video of that class in the test set

distinct from those of the baby crawling (e.g., capturing the

facial parts of the baby appearance while focusing on the

arm and head movement in the motion representation), and

those of PlayingFlute (e.g. filtering eyes and arms (appear-

ance) and moving arms below the flute (motion)), as well as

those of CleanAndJerk and BenchPress (e.g. capturing bar-

bells and human heads in the appearance with body motion

for pressing (γ = 0) and balancing (γ = 10) the weight).

Further, Clean and Jerk actions (where a barbell weight is

pushed over the head in a standing position) contrasts to the

Benchpress action (which is performed in lying position on

a bench). Notice how the difference in relative body position

is captured in the visualizations, e.g. the relatively vertical

vs. horizontal orientations of the regions captured beneath

the weights, especially in the motion visualizations. Thus,

we find that the class prediction units have learned represen-

tations that are well matched to their classes.

4.3 Utilizing Visualizations for Understanding
Failure Modes and Dataset Bias

Another use of our visualizations is to debug the model and

reason about failure cases. In UCF101 15% of the Playing-

Cello videos get confused as PlayingViolin. In Fig. 13, we

observe that the subtle differences between the classes are

related to the alignment of the instruments. In fact, this is in

concordance with the confused videos in which the Violins

are not aligned in a horizontal position.

In UCF101 the major confusions are between the classes

BrushingTeeth and ShavingBeard. In Fig. 14 we visualize the

appearance γ = 10 γ = 5 γ = 1 γ = 0 PlayingCello

PlayingViolin

Fig. 13 Explaining confusion for PlayingCello and PlayingViolin. We

see that the learned representation focuses on the vertical (Cello) and

horizontal (Violin) alignment of the instrument, which could explain

confusions for videos where this is less distinct

appearance γ = 10 γ = 5 γ = 1 γ = 0 BrushingTeeth

ShavingBeard

Fig. 14 Explaining confusion between BrushingTeeth and Shaving-

Beard. The representation focuses on the common local appearance of

face and lips as well as the local motion of the tool

appearance γ = 10 γ = 5 γ = 1 γ = 0 ApplyEyemakeup

ApplyLipstick

Fig. 15 Classification units for ApplyEyemakeup and ApplyLipstick.

Surprisingly, the prediction unit for ApplyLipstick gets excited by mov-

ing eyes at the motion input. Presumably this activation reflects a

peculiarity of the dataset which contains samples of the ApplyEye-

makeup class with eyes appearing static

inputs that maximally activate these classes and find that they

are quite similar, e.g. capturing a linear structure moving near

the face, but not the minute details that distinguish them. This

insight not only explains the confusion, but also can motivate

remediation, e.g. focused training on the uncaptured critical

differences (i.e. tooth brush vs shaver).

Dataset bias and generalization to unseen data is important

for practical applications. Two classes, ApplyEyemakeup

and ApplyLipstick are, even though being visually very

similar, easily classified in the test set of UCF101 with classi-

fication rates above 90% (except for some obvious confusions

with BrushingTeeth). This result makes us curious, so we

inspect the visualizations in Fig. 15. The inputs are capturing

facial features, such as eyes, and the motion of applicators.

Interestingly, it seems that ApplyEyemakeup and ApplyLip-

stick are being distinguished, at least in part, by the fact that

eyes tend to move in the latter case, while they are held static

in the former case. Here, we see a benefit of our visualiza-
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Fig. 16 Visualizations of convolutional layers of the BN-Inception (Ioffe and Szegedy 2015) two-stream network (Wang et al. 2016) trained on

HMDB51 (Kuehne et al. 2011). The number of filters shown at each layer is inversely proportional to its receptive field

tions beyond revealing what the network has learned—they

also can reveal idiosyncrasies of the data on which the model

has been trained.

4.4 Visualizing Multiple Architectures and Datasets

We focus all our experimental studies above on a VGG-16

two-stream fusion model (Feichtenhofer et al. 2016b) that is

trained on UCF-101. Our visualization technique, however,

is generally applicable to any spatiotemporal architecture. In

this section, we visualize various other architectures: Spa-

tiotemporal Residual Networks (Feichtenhofer et al. 2016a)

using ResNet50 (He et al. 2016) streams, Temporal Seg-

ment Networks (Wang et al. 2016) using BN-Inception (Ioffe

and Szegedy 2015) or Inception_v3 (Szegedy et al. 2015)

streams, trained on multiple datasets: UCF101 (Soomro et al.

2012), HMDB51 (Kuehne et al. 2011) and Kinetics (Carreira

and Zisserman 2017). Our visualization method is general

and can also be applied to any other 3D ConvNet architecture

such as C3D (Tran et al. 2015) or I3D (Carreira and Zisser-

man 2017) networks. All results in this Sect. 4.4 are shown

for constant spatiotemporal regularization during reconstruc-

tion.

It is noteworthy that deeper models (e.g. ResNet & Incep-

tion_v3) are inherently harder to optimize, since we do

not use batch normalization (BN) for activation maximiza-

tion; essentially, we absorb the BN layers by projecting

them into the preceding conv-layer weights. Moreover, for

extremely deep nets, the jitter-based regularization becomes

more important for filters that have large strides on the

input. Deeper layers typically have large cumulative filter

strides when backprojected to the input, which causes a sub-

sampling effect when optimizing that can be ameliorated by

the spatial jittering during optimization.

4.4.1 Visualization of Inception Networks

We show results for models based on a batch-normalized

GoogLeNet Inception architecture (Ioffe and Szegedy 2015).

An interactive web-based illustration of the GoogLeNet

(ImageNet) architecture, showing the layer names with

respective number of parameters (ch) and output resolution

(width × height) for a 227 × 227 sized input, can be found

here. The models are taken from the Temporal Segment Net-

works (TSN) approach (Wang et al. 2016), which pretrains

the motion stream on TVL1 optical flow (Zach et al. 2007),

IDT-flow (Wang and Schmid 2013) (termed warped flow in

Wang et al. (2016)) and difference images of UCF101. This

extra data yields highest accuracy of the motion stream in

UCF101 and HMDB51. In Fig. 16, we show what the con-

volutional filters of the motion and appearance stream are

capturing, for a TSN model trained on HMDB51 (and pre-

trained on ImageNet & UCF101). When going from low

to higher layers, we observe two things: First, the filters

become more task specific towards HMDB51 classes, which

is as expected; for example, the motion filter f006 at a high-
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Fig. 17 Visualizations of classification units at the last layer of the BN-

Inception (Ioffe and Szegedy 2015) two-stream network (Wang et al.

2016) trained on HMDB51 (Kuehne et al. 2011). We show pairs of

appearance and motion input generated by maximizing the prediction

layer output for the respective classes listed above

est conv-layer shown in the last visualization of Fig. 16 is

activated by an optical flow pattern that could relate to the

“pull-up” action in HMDB51. Second, we see that the inputs

for the appearance and motion streams are spatially similar

at early layers and become dissimilar later. This suggests that

the prior of the (ImageNet) pretraining on the spatial shape of

the filters is dominant in the lower layers of the networks and

is similar to our observations made for the VGG-16 architec-

ture reported in Sect. 4.2.

Interestingly, as with visualization of filters in the early

layers of VGG16 (Sect. 4.2), we once again find the emer-

gence of cross-channel differential filters in the Inception

architecture. This point is exemplified through consideration

of the first nine filters in the lowest layer in Fig. 16, incep-

tion_4b_d_3 × 3_2. For example, the units shown at row and

column (2,2) and (3,3) resemble mixed first partial derivative

filters, while the unit at (2,3) can be seen as a Gaussian second

derivative filter across the horizontal direction and the filter

at (2,1) is close to a Gaussian second derivative filter across

the vertical direction; thus, in tandem these filters appear to

provide a steerable basis set for a Gaussian second-derivative

operator (cf. Freeman and Adelson 1991, Fig. 16), but here

as taken across the horizontal and vertical motion directions.

When maximizing the class level units we see clearly

recognizable pattern structure. Some of the most distinc-

tive examples from the 20 class samples shown in Fig. 17

are pullup, flic-flac, golf, ride horse, shake hands, shoot bow,

shoot gun. Here, an interesting observation is that the appear-

ance and motion stream focus on different objects and scales;

exemplarily the ride bike class is highly activated by spokes

or bike frames, while the motion stream tends to fire for a

frontal facing motion of a cyclist.

In general, we find that earlier filters (Fig. 16) seem to pro-

vide reasonable primitives for higher level abstractions (e.g.

derivative filters), while classification level units (Fig. 17)

show clear structure matched to their classes. In between, the

intermediate units can capture incremental abstractions from

the primitives to the class level representations. In contrast,

other units, especially at the intermediate layers (Fig. 16),

often seem less readily interpretable. One possible expla-

nation for this pattern of results is that the capacity of the

network exceeds that of the recognition task at hand and

uninterpretable units may result simply from overfitting to

the training data. Indeed, we observe similar overall patterns

of abstraction across all visualized networks that we study in

this paper.

4.4.2 Visualization of Spatiotemporal Residual Networks

We now show results of our approach applied for visual-

ization of the filters in a Spatiotemporal Residual Network

(Feichtenhofer et al. 2016a) trained on UCF101. This archi-

tecture uses two ResNet-50 (He et al. 2016) streams. An

interactive web-based schematic of the ResNet-50 (Ima-

geNet) architecture, showing the layer names with respective

number of parameters (ch) and output resolution (width ×

height) for a 224 × 224 sized input, can be found here. It is

noteworthy that the visualized Spatiotemporal Residual Net-

work (Feichtenhofer et al. 2016a) architecture consists of a

fusion stream that operates on appearance and motion infor-
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mation, as well as a pure motion stream that projects into the

fusion stream after five layers (i.e. res2a, res3a, res4a, res5a)

throughout the network hierarchy (for the detailed architec-

ture and connections between the two ResNet50 streams see

Feichtenhofer et al. 2016a). Therefore, it is interesting to

study the filters in the fusion stream and compare them to the

parallel motion filters in the other stream. We show results for

multiple layers throughout the network hierarchy in Fig. 18.

The Animated Manuscript shows the filters animated as a

video; the motion stream filters should automatically play on

repeat.

When looking at the filters, we see interesting abstract

patterns appearing that show strong spatiotemporal corre-

lation for the fusion filters, while the motion stream (right

column), which projects as a residual connection into the

parallel fusion stream, is maximized mostly by slightly differ-

ent motion patterns, revealing a degree of complementarity

between the fusion and motion stream features. The figure

also qualitatively shows that the fusion stream learns spatially

correlated patterns of flow and appearance. For example by

clicking (in the Animated Manuscript) on the fusion stream

visualizations of the 9 filters at the layer res4b-branch2b-

spatial, shown in the third row and left column of Fig. 18, we

observe motion units that have high energy at regions of uni-

form appearance structure (e.g. pink appearance correlating

with vertical motion in the top left unit).

Also interesting is the fact that the lower fusion stream lay-

ers, shown in Fig. 18, exhibit only weaker motion information

(noisy reconstructions); this result can be seen as evidence

for the need of the parallel motion stream to build up these

abstract, strong motion features later on in the hierarchy of

the network. The reasons for this state of affairs is discussed

below.

We observe that the visualized motion information right

before the next fusion connection is very noisy (see fusion

stream visualizations of res3a, res4a and res5a in Fig. 18),

i.e. the fusion (which is performed after res2a, res3a, res4a

and res5a) leads to very rudimentary motion features for lay-

ers that come several layers after the previous fusion layer.

Contrarily, we observe stronger spacetime features when

inspecting features from the fusion stream that come directly

after a fusion connection, e.g. at res4b. This observation

suggests that layers which are positioned several layers dis-

tant to the previous fusion connection are mostly activated

by appearance information. An explanation could be that

motion information is only fused into the residual units of

the fusion stream and hence only locally affects the layers

after the fusion. The local fusion, however, is important for

good performance, as the work in Feichtenhofer et al. (2017)

shows that a direct fusion connection of the streams produces

clearly inferior results because it induces too large a change

in the propagated signals, thereby disturbing the network’s

representation abilities; i.e. it would impair the appearance

filters. Nevertheless, the low-energy motion filters in our

visualizations illustrate the sub-optimality of this local fusion

strategy, as the fusion network ‘forgets’ the motion informa-

tion and provides insight into why a separate motion stream

is required to build up abstract motion features. The observa-

tions can be used as a substrate for future work on designing

a better fusion architecture that learns filters sensitive to both

appearance and motion information.

4.4.3 Visualization of Inception_v3 Networks

We finally explore an Inception_v3 Two-Stream model that

was trained on Kinetics (Carreira and Zisserman 2017). An

interactive web-based schematic of the Inception_v3 (Ima-

geNet) (Szegedy et al. 2015) architecture, showing the layer

names with respective number of parameters (ch) and output

resolution (width × height) for a 299 × 299 sized input, can

be found at http://dgschwend.github.io/netscope/#/preset/

inceptionv3.

Figure 19 shows the convolutional filters at the interme-

diate layers of this network. Interestingly, similar patterns

appear in the appearance and the optical flow path, even

though these streams were not connected during training (i.e.

no fusion between the streams). We think that the similar-

ities in the spatial structures of the filters for appearance

and motion, despite being trained separately from differ-

ent input modalities, are due to similar initialization (i.e.

via ImageNet). We also observe that temporal variation

increases when going deeper in the network hierarchy which

is in accordance with other architectures and datasets shown

above.

The most interesting finding here is unrelated to video.

Consider the second row in Fig. 19, which shows three con-

secutive filterbanks at the mixed4 convolutional block that are

located in the centre of the network hierarchy. The first illus-

tration shows 9 filters at layer mixed_4_tower_1_conv_1,

which is a filterbank with 128 filters of dimension 7 × 1 in

width and height that receives its input from a 1×1 filterbank.

The learned kernels of that layer show elongated horizontal

structure in the visualizations. Another filterbank that also

takes the output of a 1 × 1 kernel, and filters it with filters

of dimension 1 × 7 in width and height, is shown in the

second column of the second row in Fig. 19. The visualiza-

tions clearly show that the energy of these units is distributed

across vertically elongated structures in the input. Finally, the

filterbank shown in the last column of the second row takes

the output of a 7 × 1 kernel and filters it with a 1 × 7 ker-

nel. The visualizations show that filters emerge that distribute

their energy at a large window of the input receptive field.

Notably, the energy of these filters is distributed more evenly

across the receptive field than it would be for a single spatial

filter. This point is qualitatively shown in the filterbank of the

mixed_4_tower_2_conv filter in the third row, first column,
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Fig. 18 Visualizations of convolutional layers of Spatiotemporal Resid-

ual Networks (Feichtenhofer et al. 2016a) using ResNet50 (He et al.

2016) streams trained on UCF101. The left column shows spatiotem-

poral filters of the fusion stream with motion and appearance playing

sequentially (see Animated Manuscript for animation), whereas the

right column shows the motion stream that projects into the fusion

stream
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Fig. 19 Visualizations of convolutional layers of the Inception_v3 Two-Stream network trained on Kinetics (Carreira and Zisserman 2017). The

number of filters shown at each layer is inversely proportional to its receptive field

which is a 1×1 kernel that succeeds a 3×3 average pooling

layer and learns filters that center their energy in the receptive

field.

In summary, two important observations can be made.

First, separated filters kernels seem to learn explicit horizon-

tal or vertical structure—a finding that is interesting on its

own, because any equal sized (in height and width) filterbank

could learn such structure, but does not as is illustrated in the

circular filter visualizations of the other layers. Second, by

combining a horizontal and a vertical kernel, the filters tend

to broadly distribute their energy on the input receptive field.

Overall, these findings qualitatively explain the quantitative

performance gains for network architectures that explicitly

use a separation into horizontal and vertical filters (Liu et al.

2017), as we observe structures that would not have been

learned by uniform filters. This can trigger ideas for future

work such as diagonal filters, or even a dictionary of learned

kernel shapes. In general this observation illustrates the bene-

fit of enforcing structure of filters, in order to force the system

to learn filters of specific shape.

Lastly, we show class prediction units of the Inception-v3

architecture trained on Kinetics, for both the appearance and

motion streams of a two-stream ConvNet. In Fig. 20 we show

the class prediction units of these two streams for 20 sam-

ple classes. Notably, Kinetics includes many actions that are

hard to predict just from optical flow information.2 The first

row shows classes that are easily classified by the appear-

ance stream with recognition accuracies above 90% and the

last row shows classes that have appearance stream recogni-

tion accuracies below 15%. The easily recognizable classes

have clear visualizations of objects that unambiguously iden-

tify these, e.g., playing chess or squash are clearly visible in

the appearance visualizations. On the other hand, the cases

shown in the last row are not easily recognized from only

appearance information.

5 Conclusion

The compositional structure of deep networks makes it diffi-

cult to reason explicitly about what these powerful systems

actually have learned. In this paper, we have shed light

on the learned representations of deep spatiotemporal net-

2 https://deepmind.com/research/open-source/open-source-datasets/

kinetics/.
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assembling computer playing squash or racquetball paragliding playing chess sled dog racing

sword fighting sticking tongue out waiting in line playing ukulele making pizza

slapping sniffing headbutting faceplanting sneezing

Fig. 20 Visualizations of classification units at the last layer of the

Inception_v3 two-stream network (Szegedy et al. 2015) trained on

Kinetics (Carreira and Zisserman 2017). We show pairs of appearance

and motion input generated by maximizing the prediction layer output

for the respective classes listed above. Please see the optical flow in the

Animated Manuscript for video playback

works by visualizing what excites the models internally.

We formulate our approach as a regularized gradient-based

optimization problem that searches in the input space of a

two-stream architecture by performing activation maximiza-

tion. We have visualized the hierarchical features learned

by deep spatiotemporal networks. Our visual explanations

are intuitive and indicate the efficacy of processing appear-

ance and motion in parallel pathways, as well as cross-stream

fusion, for analysis of spatiotemporal information.
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