
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 24, NO. 2, FEBRUARY 2020 437

Deep Interpretable Early Warning System for the
Detection of Clinical Deterioration

Farah E. Shamout , Tingting Zhu , Pulkit Sharma , Peter J. Watkinson, and David A. Clifton

Abstract—Assessment of physiological instability pre-
ceding adverse events on hospital wards has been pre-
viously investigated through clinical early warning score
systems. Early warning scores are simple to use yet they
consider data as independent and identically distributed
random variables. Deep learning applications are able to
learn from sequential data, however they lack interpretabil-
ity and are thus difficult to deploy in clinical settings. We
propose the ‘Deep Early Warning System’ (DEWS), an in-
terpretable end-to-end deep learning model that interpo-
lates temporal data and predicts the probability of an ad-
verse event, defined as the composite outcome of cardiac
arrest, mortality or unplanned ICU admission. The model
was developed and validated using routinely collected vi-
tal signs of patients admitted to the the Oxford University
Hospitals between 21st March 2014 and 31st March 2018.
We extracted 45 314 vital-sign measurements as a balanced
training set and 359 481 vital-sign measurements as an im-
balanced testing set to mimic a real-life setting of emer-
gency admissions. DEWS achieved superior accuracy than
the state-of-the-art that is currently implemented in clini-
cal settings, the National Early Warning Score, in terms of
the overall area under the receiver operating characteristic
curve (AUROC) (0.880 vs. 0.866) and when evaluated inde-
pendently for each of the three outcomes. Our attention-
based architecture was able to recognize ‘historical’ trends
in the data that are most correlated with the predicted prob-
ability. With high sensitivity, improved clinical utility and
increased interpretability, our model can be easily deployed
in clinical settings to supplement existing EWS systems.

Index Terms—Early warning system, time-series data,
data interpolation, supervised learning, deep learning.
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I. INTRODUCTION

I
N RECENT years, increased access to Electronic Health

Records (EHR) has motivated the development of data-

driven systems that detect physiological derangement to secure

timely response. Early Warning Score (EWS) systems assess

a patient’s degree of illness by assigning scores to routinely

collected vital-sign measurements based on pre-determined nor-

mality ranges. The National Early Warning Score (NEWS),

which is currently used in hospitals and recommended by the

Royal College of Physicians in the United Kingdom [1], has

shown superior performance in comparison to other EWS sys-

tems in detecting the composite outcome of unplanned ICU

admission, cardiac arrest, and mortality [2]. EWS systems assign

an independent score to each vital-sign variable and assume

that vital-sign measurements are independent and identically

distributed (I.I.D.) random variables. Given their simplistic na-

ture, traditional EWS systems do not learn any spatio-temporal

information from the vital signs. We hypothesized that the

use of deep learning may improve the accuracy of predict-

ing clinical outcomes by recognizing complex patterns in the

data.

Significant improvements over clinical scores and static ma-

chine learning models were achieved using deep learning, such

as to predict ICU mortality for pediatrics [3] or to detect sepsis

[4]. Long Short Term Memory (LSTM) networks in particular

have illustrated superior performance when considering various

benchmarks [5]–[7]. Most of the relevant work, however, was

primarily based in intensive care settings. We designed an EWS

framework that could generalize across a heterogeneous pa-

tient population in non-critical care wards, from pre-processing

sparse vital signs variables to predicting the probability of an

outcome.

Additionally, the decision-making process of the previously-

proposed deep learning models lacked interpretability, and as

such they are viewed as ‘black box’ models by clinical staff

since they do not provide any insight on the patterns learned

from the data. We defined interpretability as the ability of the

clinician to inspect ‘trends’ of vital signs that most contribute to

the model’s predicted probability. Inspired by natural language

processing, our approach incorporated an ‘attention’ mechanism

with recurrent architectures that highlights those parts of the

input time-series that are most relevant to the output. This is

useful since interpretability is considered to be a core component

of clinical utility [8].

The physiological data recorded in an EHR is often sparse,

noisy, and incomplete, especially when collected in non-critical
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care wards, which is challenging for recurrent deep learning

architectures that require regularly-spaced data points. Regu-

larly sampled data can be interpolated using naive methods,

such as carrying the most recent value forward (CF) and lin-

ear interpolation (LI). Although such approaches are computa-

tionally inexpensive, they may impose bias and error [9] and

do not account for the uncertainty of the imputed data. In

a probabilistic approach, Gaussian Process Regression (GPR)

was used to model irregularly-sampled physiological time-series

data [10]–[12], to interpolate the posterior mean and variance at

unseen time points. In our work, we evaluated the benefit of GPR

modeling in comparison to CF and LI.

Unlike currently implemented EWS systems that were orig-

inally designed in a heuristic fashion, we developed and vali-

dated an interpretable end-to-end Deep Early Warning System

(DEWS) that alerts for clinical deterioration, defined as the

composite outcome of unplanned ICU admission, mortality, and

cardiac arrest.

A. Related Works and Contributions

Attention-based deep learning models improve interpretabil-

ity; they can model extended long-term-dependencies; and they

have been used numerously in computer vision and natural

language processing [13], [14]. Within clinical settings, attention

models have gained limited recognition and have been used for

classifying atrial fibrillation in ECG data [15], [16], predicting a

future diagnosis [17], [18], or predicting high risk vascular dis-

ease, using both diagnosis codes and medication data [19]. The

limitation of using diagnosis codes is that they may not be readily

available in a real-time setting, as in retrospective databases. We

aimed to use information in routinely collected vital-sign data,

as in currently implemented EWS systems, constituting multiple

sequential inputs.

In traditional sequence-to-sequence modelling problems, at-

tention enables the model to learn deferentially from more and

less important parts of the input sequence; i.e., words in the case

of sentence translation, or sentences for document classification

[20]. Our goal was to learn different content from different

time-series signals, and then fuse the information to predict the

probability of an outcome. To the best of our knowledge, no

existing attention-based deep learning model focuses on learning

from a combination of vital-sign time-series data to indicate a

patient’s health status in real-time.

The primary contribution of this work is a novel deep learning

architecture with high clinical utility to predict clinical out-

comes. The model learned from regularly-sampled mean and

variance features interpolated by modelling sparse vital-sign

data via GPR. We evaluated the framework’s ability in detecting

deterioration prior to the composite outcome, as in previous stud-

ies [21], [22], achieving state-of-the-art results in comparison to

the clinical benchmark.

The rest of the paper is organized as follows: Section II

describes the methodology pipeline in terms of feature extraction

and outcome prediction, Section III describes the datasets used

for training and testing, Section IV describes the experimental

observations using the proposed models, and Section V dis-

cusses findings and presents concluding remarks.

Algorithm 1: Proposed Framework of DEWS that Classifies

Whether a Window DW of Vital-Sign Measurements is

Within N Hours of an Outcome.

Input: Unlabelled windowDW = [xi,yi]
n
i=1

and regularly

sampled time instances P = [x∗
t ]
T
t=1

per window.

Outputs: Label l ∈ (0, 1).
Data Interpolation

1: For j = 1 to m:

2: GPR ← Fit a GPR using [xi, yi]
n
i=1

3: yµ,j , yσ,j ← GPR([x∗
t ]
T
t=1

)
4: Yµ = [yµ,1, . . . ,yµ,m]
5: Yσ = [yσ,1, . . . ,yσ,m]
Classification

6: cµ ← Encoder(Yµ)
7: cσ ← Encoder(Yσ)
8: l ← Decoder(cµ + cσ)

II. PROPOSED METHODS

We framed the problem of detecting clinical deterioration as

a binary classification task, such that the model assigns a binary

label, based on a computed probability and a pre-defined alerting

threshold, to each vital-sign measurement. For each measure-

ment, we would like to predict the probability of the composite

outcome within the nextN hours. An event window was defined

as a vital-sign measurement that was within N hours of a

composite outcome and its preceding w hours of observations.

A non-event window was defined as a vital-sign measurement

that was not within N hours of a composite outcome and its

preceding w hours window. We set N = 24 hours in our study,

which is a common evaluation window in the development of

EWS systems [21], [22], and we evaluated w at 24, 12, and

6 hours.

Assume DW = [xi,yi]
n
i=1

is an unlabelled sample window,

where xi is the ith time instance and yi ∈ R
m denotes the

feature space consisting of m vital signs sequences. The re-

current classification model required the vital signs data to be

measured at a fixed set of regularly sampled time instances to

compute the output escalation label l ∈ (0, 1). However, each

vital-sign sequence j was temporally irregular due to the nature

of EHR data. Hence, we deployed a patient-specific GPR for

each vital-sign sequence to interpolate the mean and variance at

fixed regularly-spaced time instances P = [x∗
t ]
T
t=1

.

These posterior mean and variance estimates were concate-

nated for all the vital signs to obtain: Yµ = [yµ,j ]
m
j=1

and

Yσ = [yσ,j ]
m
j=1

, where Yµ,Yσ ∈ R
m×T and yµ,j and yσ,j

are the GPR mean and variance for the jth vital sign, such

that j = 1, . . . ,m. Attention-based encoders learned from each

interpolated sequence inYµ andYσ to obtain the sequence-level

context vectors [cµ,j ]
m
j=1

and [cσ,j ]
m
j=1

, respectively. Finally, the

summary context vectors cµ and cσ summed up the sequence-

level context vectors and were fed to decoding layers to compute

the probability of an outcome. If the probability exceeded the

pre-defined alerting threshold, then DW = 1. The proposed

framework is described in Algorithm 1. We now describe each

step in more detail.
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Fig. 1. Visualization of the feature extraction interpolation techniques
from the raw data within a w hour window: Carrying Last Value Forward,
Linear Interpolation, and Gaussian Process Regression. The y-axis
represents the range of any vital sign and the x-axis represents time
since admission, with the rightmost data point representing the time of
prediction.

A. Patient-Specific Feature Transformation

Each window of length w hours was modelled using GPR. It

was also modelled using CF and LI for benchmarking purposes,

and an overview of the modelling techniques is shown in Fig. 1.

GPR generalizes multivariate Gaussian distributions to infinite

dimensionality and offers a probabilistic and non-parametric

approach to model a sparse vital-sign time-series as a function of

time from admission. We adopted a radial basis function (RBF)

with added white noise as our covariance function to map the

similarity between pairs of data points x and x′, such that

k(x, x′) = σ2

f exp

(

−
(x− x′)2

2l2

)

+ σ2

nδ(x, x
′) (1)

δ(x, x′) is the Kronecker delta function and Θ = {l, σf , σn}
is the set of hyperparameters, where l is the lengthscale, σf is

the variance of the RBF, and σn is the variance of the added

white noise. Since the work involved patient-specific modelling

for each sequence per window across a large-scale population,

we adopted a Bayesian approach to increase the modelling

efficiency. First, we defined the expected value, or the mean

function, of each vital-sign GPR as a constant function equiva-

lent to the population mean of patients with the same age and sex.

Second, we used lognormal distributions as priors to constrain

each hyperparameter to be clinically meaningful. The models

were optimized by minimizing the negative log likelihood with

respect to the hyperparameters.

After fitting the GPR to the training data [xi, yi]
n
i=1

of vital

sign j, the GPR kernel is applied to interpolate missing values

at equally-spaced time steps [x∗
t ]
T
t=1

across the input window,

such that the posterior mean is

yµ = K∗K
−1y, (2)

with variance,

yσ = K∗∗ −K∗K
−1KT

∗ , (3)

where y is the training data [yi]
n
i=1

, K represents the similarity

measure between all training values, K∗ represents the similar-

ity measure between all training and missing values, and K∗∗

represents the similarity measure between all missing values.

Finally, we obtained a set of equally-spaced measurements as

an input to the neural network.

For any point of prediction with historical data spanning less

than w hours, we pre-padded the sequence with the popula-

tion mean and maximum variance of the respective vital sign.

Discrete variables were modeled by CF and LI, which only

interpolated mean values. The extracted features, through GPR,

CF, and LI, were then scaled for the training and testing of the

classifiers.

B. Model Architecture

We here describe the architecture of the proposed DEWS

method. The interpolated mean and variance features of each

vital-sign input were first processed through a Bi-directional

LSTM (BiLSTM) network [23], in order to maximize infor-

mation retrieval in the forward and backward directions. An

attention-based BiLSTM model previously performed well for

classifying sequential healthcare data [15], and we extended

upon it by customizing the mechanism in the attention block

and accounting for the uncertainty of the input.

The BiLSTM consisted of two layers which processed each

mean and variance input in forward and reverse directions and

yielded two hidden layer states ht,f and ht,r. The average of

ht,f and ht,r, denoted as ht served as the input of our attention

mechanism. While the definition of attention varies across the

literature, we adopted the definition in [15], [20], to learn the

most important parts of each sequence. For each vital sign j,

et,j measured the importance of the information at each time

step t:

et,j = Uj a(Wj ht,j + bj), (4)

by computing its similarity with Uj , a trainable sequence-level

context vector, where a is the rectified linear unit. Next, et,j was

used to derive αt,j , or the normalized weights assigned to the

hidden states, as:

αt,j =
exp(et,j)

∑T
t=1

exp(et,j)
, (5)

and αt,j was further employed to derive the final context vector

cj :

cj =
T
∑

t=1

αt,jht,j (6)

Equations (4)-(6) were applied to the BiLSTM outputs of each

mean and variance input of each vital sign j. The sequence-

level context vectors obtained from all vital signs were then

aggregated by the trainable weights Vµ for the mean features:

cµ = Vµ

∑

j

cµ,j , (7)

and Vσ for the variance features:

cσ = Vσ

∑

j

cσ,j (8)

The aggregated context vectors were then summed and pro-

cessed by two dense layers consisting of a rectified linear unit
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Fig. 2. Schematic diagram of the classification architecture DEWS which learns the attention weights from the mean and variance of each
vital-sign variable and produces a binary output to indicate whether an observation set of a patient is within 24 hours of a composite outcome
(cardiac arrest, mortality or unplanned ICU admission). Each regularly sampled input y (T × 1) is processed by an encoder unit consisting of a
BiLSTM with e output units at each time step to produce the hidden states (T × e). The attention blocks then compute the context vectors (e× 1)
that summarize their respective inputs. The context vectors of the mean and variance of the vital signs are finally aggregated using dense layers.

and a sigmoid function, respectively. Finally, the computed prob-

ability of an outcome within the next 24 hours was compared to

a pre-defined alerting threshold and a binary label was assigned

to the window. The model schematic is shown in Fig. 2.

During training, the weightsUk,Wk, bk,Vµ andVσ were opti-

mized, whereVµ andVσ accounted for the correlations across the

vital signs since they combined their respective context vectors.

We chose the other hyperparameters, such as number of output

nodes e per encoder timestep shown in Fig. 2, and the alerting

threshold through experimentation.

C. Model Evaluation

We evaluated our model using training and testing sets. First,

we assessed the modelling quality of GPR, CF, and LI. For each

sequence in the training windows, we randomly held out 20% of

the data as test points and modelled the rest using each interpo-

lation technique. We then calculated the root mean squared error

(RMSE) comparing the true values and the interpolated values

at the held out test points.

We evaluated the performance of our classifiers using the

area under receiver-operating characteristics (AUROC), sen-

sitivity, and specificity on the testing set. All metrics were

performed using a bootstrapping technique without replacement

[24] with a fixed number of bootstraps (nb). We compared

the performance of the models across 16-45 years old patients

and >45 years old patients, and across the three outcomes

independently.

To assess the clinical utility of DEWS in comparison to

the clinical benchmark, we plotted the percentage of generated

‘triggers’, or windows at or above a given EWS score, on the

y-axis against sensitivity on the x-axis [22]. We also assessed

the proposed model’s decision-making process by visualizing

the attention weights computed for a case study. Finally, we

compared the average normalized NEWS score and the average

DEWS probability for the first 120 hours from admission and

the last 24 hours prior to an outcome.

III. DATASET

This section describes the data retrieved from a retrospec-

tive large database of routinely collected observations from

concluded hospital admissions between 21st March 2014 and

31st March 2018 within the Hospital Alerting Via Electronic

Noticeboard (HAVEN) project (REC reference: 16/SC/0264

and Confidential Advisory Group reference 08/02/1394). The

database included the vital-sign measurements of adult patients

admitted to four Oxford University Hospitals: the John Radcliffe

Hospital, Horton General Hospital, Churchill Hospital, and the

Nuffield Orthopaedic Hospital, collected by the System for

Electronic Notification and Documentation (SEND, Sensyne

Health) [25]. We extracted the vital-sign measurements and the

occurrences of outcomes to develop and validate a model that is

analogous to EWS systems.

Each vital-sign measurement was recorded manually by hos-

pital staff and consisted of 5 continuous variables: heart rate

(HR), systolic blood pressure (SBP), respiratory rate (RR), tem-

perature (TEMP), and oxygen saturation (SPO2), and 2 discrete

variables: Alert, Voice, Pain and Unconscious (AVPU) score and

a binary indicating whether supplemental oxygen was provided.

We defined the time of a composite outcome as the time of

the first occurring event of unplanned ICU admission, mortality

and cardiac arrest. In the case of multiple occurrences of adverse

events, we removed observations recorded after the first event.

We split the dataset by time as recommended by TRIPOD

guidelines [26]: D1 (21 March 2014–31 October 2017) for

training and validation, and D2 (1 November 2017–31 March

2018) for testing, roughly corresponding to 85% and 15% of

the overall dataset, respectively. We labelled each vital-sign

measurement as an event or non-event window. To overcome

class imbalance, we performed random under-sampling of the

non-event windows in D1 to match the maximum number of

event windows. D2 remained imbalanced to mimic a real-life

testing set, yet it excluded patients who were well enough to be

discharged on the day of admission, elective admissions with
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TABLE I
CHARACTERISTICS AND DEMOGRAPHICS OF D1, USED FOR TRAINING AND

VALIDATION, AND D2 USED AS A TESTING SET

TABLE II
DISTRIBUTIONS OF THE VITAL SIGNS IN TERMS OF MEDIAN AND

INTERQUARTILE RANGE ACROSS D1 AND D2

scheduled visits, and admissions with no vital-sign measure-

ments collected in the last 24 hours prior to an outcome because

such patients are likely to be on terminal care pathways. This

is the same exclusion criteria adopted in related previous works

[21], [22], as EWS systems aim to assess acutely-ill patients.

IV. EXPERIMENTAL OBSERVATIONS

In this section, we summarize the main findings of our study

pertaining to experimental and design choices and performance

evaluation.

A. Experimental Setup

1) Data Modelling: The patient admissions had varying

lengths of stay, ranging between 0.01 and 1,165 days, and the

number of timestamped observations per admission ranged be-

tween 1 and 1,901 observations. Across the extracted vital-sign

measurements, the missing values for HR, SBP, TEMP, RR,

SPO2, AVPU and supplemental oxygen were 1.94%, 1.79%,

10.29%, 3.23%, 1.99%, 4.74%, and 3.63%, respectively. The

characteristics and demographics of D1 and D2 are shown in

Table I and the distributions of their vital signs are shown in

Table II. Both datasets have a similar mean age and proportion of

females. SinceD1 was balanced whileD2 was imbalanced, we

observe differences between the distributions of some variables.

TABLE III
MEAN AND STANDARD DEVIATION OF THE ROOT MEAN SQUARED ERROR

(RMSE) FOR MISSING DATA INTERPOLATION USING THE DIFFERENT

MODELLING TECHNIQUES FOR ALL VITAL SIGNS: CF, LI, AND GPR. THIS

WAS DONE BY MODELLING 80% OF EACH TRAINING WINDOW AND

HOLDING OUT 20% OF THE TRAINING WINDOW AS TEST POINTS TO

CALCULATE THE RMSE

Lognormal priors over the hyperparameters were selected

to ensure that the modelled vital signs fell within the ex-

pected ranges in a clinical setting. The lognormal distributions

chosen as priors for l were (µ = 1.0, σ = 0.1) for HR, RR,

TEMP, and SPO2, and (µ = 1.5, σ = 0.1) for SBP. The log-

normal distributions chosen as priors for σf were (µ = 0.0, σ =
0.1) for HR, SBP, and SPO2, (µ = 1.5, σ = 0.1) for RR, and

(µ = 3.5, σ = 0.1) for TEMP. The lognormal distributions cho-

sen as priors for σn were (µ = 0.0, σ = 4.0) for HR, SBP, and

SPO2, (µ = 0.0, σ = 0.1) for RR, and (µ = 1.5, σ = 0.1) for

TEMP. Applying population-based lognormal distributions to

the priors of the three hyperparameters enabled us to efficiently

fit patient-specific vital signs GPR models in a large-scale

dataset. All GPR models were built using GPy (v 1.9.6) [27].

Using the optimized GPR models, we interpolated the pos-

terior mean and variance at every 2 hours across the w hours

long window, in keeping with national guidelines of alerting

at least at every other hour. We modelled a truncated window

of up to w hours to reduce the number of timesteps per input

for the recurrent neural network. This reduces the complexity

of the architecture, which is essential given our dataset size.

Additionally, modelling a large number of timesteps would

require the storage of a subsequently large GPR kernel matrix for

each window, which would impose computational complexity.

The model performed best with windows of length 24 hours i.e.

w = 24 hours, after evaluating its performance for lengths of 6,

12, and 24 hours.

After sampling equally-spaced measurements, we experi-

mented with standard scaling, min-max scaling and scaling by

the maximum absolute value. The best classification perfor-

mance was achieved through min-max scaling of mean features

into the range [−1,1] and maximum absolute scaling of variance

features into the range [0,1]. During training, we used 20% of

D1 as a validation set, and so the scaling and shifting operations

were obtained through the other 80% and then applied to the

validation and test setD2.

The mean and standard deviation of the RMSE of the training

windows are summarized in Table III to compare the data

interpolation quality of GPR, CF, and LI. In DEWS, AVPU and

supplemental oxygen were interpolated using CF with no time-

limit. If no previous value was available, then we assumed ‘Alert’

for AVPU and that supplemental oxygen was not provided. We
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used CF because it is less computationally expensive than LI,

considering that they both resulted with similar mean RMSE.

2) Model Variants: We designed several deep learning archi-

tectures to compare to DEWS. The first set of models consisted

of simple architectures, namely Logistic Regression (LR), a

single-layer LSTM network, and a single-layer BiLSTM net-

work. Yµ was the input to the models’ first single layer. Despite

its simplicity, the BiLSTM architecture lacked interpretability.

Therefore, the second set of models included attention mech-

anisms applied to Yµ. BiLSTM-ATT-1 consisted of a simple

BiLSTM followed by one attention (ATT) module. This ap-

proach was similar to language modelling, since it consisted of

a single input feature space, however we were unable to identify

the individual contributions of each vital sign. BiLSTM-ATT-2

thus processed each vital sign independently using a dedicated

BiLSTM and attention mechanism. The context vectors of the

vital signs were then summed and decoded.

The third set of models consisted of ‘Uncertainty-Aware’

(UA) models since attention was not only applied to the mean

features, but also to the variance features Yσ. UA-BiLSTM-

ATT-1 consisted of two BiLSTM layers, where one BiLSTM

processed Yµ and the other processed Yσ . Each BiLSTM was

then followed by one ATT module. Finally, UA-BiLSTM-ATT-

2, our proposed model DEWS, had one BiLSTM-ATT per mean

and variance features of the vital signs as shown in Fig. 2. We

compared all models to NEWS and a simple logistic regression

(LR) which used I.I.D. features as inputs; i.e., the last recorded

set of vital-sign measurements.

3) Deep Learning Experiments: We tried training the model

using data from emergency admissions only, as in D2, yet

the model performed best when the exclusion criteria was not

applied. Despite differences in characteristics of vital signs in

D1 andD2, the model was able to learn complex patterns since

we utilized patient-specific modelling.

The hyperparameters of the models, including the number of

hidden layers, units per layers, and activation functions were

optimized empirically using the training and validation setD1.

Within the encoder units, the optimal number of output nodes

(e) at each timestep of the BiLSTM that resulted with the best

performance was 12. The dense layers that aggregated all context

vectors consisted of 5 units, while the final dense layer consisted

of 1 unit. For the similarity function of the attention block, we

compared the hyperbolic tangent function and ReLU, and the

latter performed better for our application.

All deep learning architectures were trained with early stop-

ping by monitoring the loss on the validation set to avoid

overfitting, and a batch size of 128, after experimenting with a

batch size of 32, 64, and 128. Each batch consisted of sequences

of the same length, whereby length of sequence refers to the

number of sampled equidistant data points prior to padding.

The models were optimized using the Adam optimizer. All deep

learning models were implemented using Keras (v 2.2.2) [28]

with a TensorFlow backend (v 1.5.0) [29].

B. Performance Evaluation

Table IV shows the performance results of all models onD2.

DEWS performed best compared to all models with an 0.880

Fig. 3. Efficiency curves plotting sensitivity (x-axis) against the trigger
rate, or the percentage of observations (y-axis) with a DEWS probability
or normalized NEWS score greater than or equal to a decision threshold,
with the decision threshold ranging between 0 and 1, for (a) 16–45 years
old patients and (b) >45 years old patients. The vertical black dashed
line represents a fixed sensitivity of 80%.

AUROC [95% CI 0.880-0.880] and 0.729 sensitivity [95% CI

0.728-0.729], exceeding NEWS, LR, and all model variants. The

decision threshold of DEWS that achieved a similar specificity

to NEWS was 0.66. All LR-based models performed worse

than DEWS and NEWS, while all other model variants, with

the exception of LI-LSTM, performed similar to NEWS. When

only the mean features of the GPR were considered in the

BiLSTM-variant models (i.e. BiLSTM, BiLSTM-ATT-1, and

BiLSTM-ATT-2), no improvement was observed when com-

pared to other interpolation methods (CF and LI). However,

when the variance of the GPR was considered, it further im-

proved the results of GPR-based methods in comparison to

other interpolation methods, such as in UA-BiLSTM-ATT-1 and

DEWS.

DEWS performed better than NEWS for both age groups, as

shown in Table V, especially for 16-45 years old patients, with

0.820 AUROC [95% CI 0.818-0.822] compared to 0.760 AU-

ROC [95% CI 0.757-0.762], respectively. DEWS also performed

better than NEWS across all outcomes, both in terms of AUROC

and sensitivity.

C. Clinical Utility

Fig. 3 shows the percentage of triggers, or positive alerts,

produced by our best performing model, DEWS, and NEWS at

different sensitivity values (x-axis). Across the 16-45 years old

patients, Fig. 3(a), NEWS approximately had a 59% trigger rate

while DEWS had a 37% trigger rate, at a fixed sensitivity of 80%.

This shows that DEWS reduced the trigger rate by approximately

22%, which could directly ease staff burden. Across the >45

years old, DEWS reduced the trigger rate by approximately 3%.

D. Case Studies

The attention weights of two windows are visualized in Fig. 4,

where the box with blue borders shows the vitals signs after

feature transformation through GPR modelling and scaling. The

two windows belonged to the same patient, where the first row

was a non-event window, since the time of prediction was not

within 24 hours of an outcome, while the second row was an
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TABLE IV
PERFORMANCE EVALUATION OF DEWS IN COMPARISON TO NEWS AND ALL MODEL VARIANTS, USING I.I.D., CF, LI, OR GPR INTERPOLATED FEATURES.

THE DECISION THRESHOLD OF ALL CLASSIFIERS WAS ADJUSTED TO ACHIEVE A SPECIFICITY SIMILAR TO THAT OF NEWS (≈0.89). MEAN AND CONFIDENCE

INTERVALS WERE EVALUATED USING A BOOTSTRAPPING TECHNIQUE (nb = 1, 000) ON D2

TABLE V
PERFORMANCE EVALUATION OF DEWS IN COMPARISON TO NEWS ACROSS SUB-POPULATIONS OF INTEREST I.E. 16-45 YEARS OLD, >45 YEARS OLD,

AND EACH OF THE THREE EVENTS IN THE COMPOSITE OUTCOME. THE RECOMMENDED DECISION THRESHOLD FOR NEWS IS 5 AND THE ADJUSTED

DECISION THRESHOLD FOR DEWS WAS 0.66, TO ACHIEVE A SIMILAR OVERALL SPECIFICITY (≈0.89) ON D2. MEAN AND CONFIDENCE INTERVALS WERE

EVALUATED USING A BOOTSTRAPPING TECHNIQUE (nb = 1, 000) FOR THE RESPECTIVE SUB-POPULATION
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Fig. 4. Visualization of the attention weights learned from the mean and variance of all vital signs sequences using DEWS, where (a) is a non-event
window and (b) is an event window, sampled from the same patient. The leftmost figure shows the raw data, where the green vertical line marks the
time at which a prediction is made and the red vertical line marks the time of an outcome. The middle blue bordered figure shows the interpolated
features within the window after GPR modelling and scaling.

event window since the time of prediction was within 24 hours

of an outcome. In the attention weights of the non-event window,

we observe that time steps 6–10 gained more importance than

other time steps for SBP. When compared to the raw data, we

notice that this trend corresponds to an increase followed by

a decrease in SBP across the respective time steps. All other

uniform distributions indicate that the model equally values each

time step. The probability of an event produced by DEWS for

this window was 28%, compared to a score of 6 by NEWS. This

window was thus classified as a true negative by DEWS and a

false positive by NEWS.

As for the second row, the event window, RR, SBP, and TEMP

varied similarly, with a decreasing attention from left to right. In

the original data, RR and TEMP sharply increased in the earlier

time steps. SBP, on the other hand, decreased from a high value.

In this scenario, DEWS produced a probability of 98%, while

NEWS produces a score of 15, and as such both models produced

a true positive.

In Fig. 5, the mean probability produced by DEWS model

and the normalized NEWS score appear to be aligned in terms

Fig. 5. Investigations of the mean probability of DEWS and the mean
normalized NEWS score for (a) the first 120 hours from admission where
the dashed line indicates 24 hours from admission, and (b) the last
24 hours prior to an outcome where the dashed line indicates the time
of the composite outcome.

of overall trends. We notice in (a) that in the first 24 hours

window from admission, where the thick dashed black line

represents 24 hours from admission, the probability produced
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Fig. 6. Performance in terms of AUROC (y-axis) at every two hours to
an outcome (x-axis) for DEWS and NEWS, in the last 24 hours window
prior to the composite outcome.

by DEWS decreases, which suggests that DEWS gains confi-

dence as the patient’s length of stay increases. (b) In the last

24 hours window prior to an outcome, DEWS maintained a

mean probability greater than its alerting threshold of 0.66, while

NEWS maintained a mean normalized score at around 0.3. When

comparing the models’ AUROC against time to outcome, we

observe that DEWS performed better than NEWS across the

24 hours window prior to outcome, as shown in Fig. 6.

V. CONCLUSION AND DISCUSSION

We propose an attention-based neural network that learns

from historical trends of vital signs through interpolated mean

and variance features to alert for clinical deterioration. Our

proposed architecture DEWS achieved state-of-the-art perfor-

mance, even while considering a limited set of features. DEWS

decreased the number of triggers in comparison to NEWS,

especially amongst younger patients. This would ease the burden

on clinical staff in such a demanding environment.

Furthermore, our model performed best across the composite

outcome and the three individual outcomes (unplanned ICU

admission, cardiac arrest, and mortality). Improving the

performance to alert for each outcome independently will be

further investigated in future work by training outcome-specific

models. However, in this paper, we chose a composite outcome

to avoid further class imbalance and as what is being done in

the literature [21].

Existing EWS systems only assess the most recently collected

vital signs, as I.I.D. data. We demonstrate how historical trends

of vital signs can provide potentially beneficial supplementary

information. By examining the attention weights assigned for

each vital sign, in Fig. 4, we were able to demystify the decision-

making process of our deep learning model. For example, the

clinician could examine why DEWS was alerting by inspecting

the time frames where the attention weights were highest in

Fig. 4, such as increasing RR or decreasing SBP. Such trend

analysis can support designing interventions on hospital wards.

The alignment of scores between NEWS and DEWS, which

is further illustrated in Fig. 5, emphasizes their supplementary

purposes. We envisage the system to provide the NEWS score,

DEWS probability, and an overview of the importance of his-

torical trends to the clinicians.

We also accounted for the correlations across vital signs using

the trainable weights Vµ and Vσ , which learned the relationships

across the aggregated context vectors of the vital signs. This

incurred further computational complexity during training of the

deep learning model, but only represented a forward pass during

testing. Future work includes experimenting with multi-task

GPR (MGP) to account for correlations during feature transfor-

mation. However, the computational cost of MGP is O(m3n3),
which is prohibitive for low-resource settings in comparison to

m×O(n3) for the univariate GPR [30].

From a deployment perspective, the score can be easily incor-

porated into existing hospital devices, such as bedside monitors

or hand held devices since it uses the same data streams as

EWS systems, i.e. NEWS, but it calculates the score differently.

Displaying the attention weights on the screen would require

ergonomics specific analysis, which is beyond the scope of this

paper.

We focused on utilizing physiological time-series data to

establish analogous grounds with EWS systems currently de-

ployed in clinical settings. We considered incorporating diagno-

sis codes as in previous studies [17], [31], however we decided

that the inclusion of diagnosis codes may be impractical in

real-life clinical settings because they are usually assigned at

discharge for billing purposes. One study introduced a rele-

vant attention-based model to predict in-hospital mortality in

ICU [32]. However, their proposed attention-based multivariate

LSTM model did not achieve a better AUROC than its variant

without attention for predicting mortality.

Other scores have incorporated laboratory tests [33], [34],

yet the main objectives of our work were to inspect vital signs

trends in real-time as in EWS and to use routinely-collected

variables. We hypothesize that incorporating laboratory tests

may marginally improve performance, and this is an area of

future study.

Our proposed model was developed and validated on a private

dataset as there are currently no publicly available datasets for

non-ICU settings. Further assessment of the proposed method-

ology’s generalisability is required with larger datasets and other

toy classification problems using a multivariate input. We would

also like to test our methods on other clinical prediction tasks

through transfer learning.
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