

Abstract

Networks using down-scaling and up-scaling of feature

maps have been studied extensively in low-level vision

research owing to efficient GPU memory usage and their

capacity to yield large receptive fields. In this paper, we

propose a deep iterative down-up convolutional neural

network (DIDN) for image denoising, which repeatedly

decreases and increases the resolution of the feature maps.

The basic structure of the network is inspired by U-Net

which was originally developed for semantic segmentation.

We modify the down-scaling and up-scaling layers for

image denoising task. Conventional denoising networks are

trained to work with a single-level noise, or alternatively

use noise information as inputs to address multi-level noise

with a single model. Conversely, because the efficient

memory usage of our network enables it to handle multiple

parameters, it is capable of processing a wide range of

noise levels with a single model without requiring noise-

information inputs as a work-around. Consequently, our

DIDN exhibits state-of-the-art performance using the

benchmark dataset and also demonstrates its superiority in

the NTIRE 2019 real image denoising challenge.

1. Introduction

Image denoising is a representative low-level vision task

that restores a clean image, 𝑥, from noisy image, 𝑦. There

are many types of noise that can be generated in an image,

but the noise caused by poor illumination or high

temperature problems occurring during the image

acquisition step can be assumed to follow a Gaussian

distribution. When noise 𝑛 conforms to a Gaussian

distribution, additive white Gaussian noise (AWGN) is

modeled as 𝑦 = 𝑥 + 𝑛. During the past decades, many

studies have been conducted with the aim of reducing

Gaussian noise in images [2–6]. The performance of natural

image denoising has reportedly converged, making any

further major performance improvements significantly

more challenging [1].

Burger et al. [7] have achieved denoising performance

similar to that of BM3D [5] using a plain neural network,

and many algorithms have been developed to significantly

improve the performance of image denoising using

convolutional neural network (CNN) [8–14]. However,

existing methods have some limitations in their network

architectures and training methods. First, the requirement

for the output of a network employed in an image denoising

task to be a denoised image means that deep features used

in that network need to have the same resolutions as the

output, which consumes a lot of GPU memory and training

time. These GPU and training-time costs account for the

fact that existing plain CNN-based denoising architectures

are limited in their depth, number of parameters, and

receptive field. Performance improvements can be achieved

using a hierarchical network structure that changes the

resolution of the feature maps, as then the receptive field

can be much larger for the same GPU memory cost [14].

Second, existing networks either require a model per noise

level to be processed, or rely on noise-information input to

facilitate process multi-level noise with a single model.

Deep Iterative Down-Up CNN for Image Denoising

Songhyun Yu, Bunjun Park, and Jechang Jeong

Department of Electronics and Computer Engineering, Hanyang University, Seoul, Korea
fkdlzmftld@gmail.com, kkbbbj@gmail.com, jjeong@hanyang.ac.kr

(a) Noisy image with multi-level Gaussian noise

(b) Restored image using DIDN (PSNR: 34.86 dB)

Figure 1: Our single DIDN handles multi-level noise without

requiring any noise information to be input.

mailto:fkdlzmftld@gmail.com
mailto:kkbbbj@gmail.com

However, this solution to handling multi-level noise is

impractical, as in practical applications noise information is

not readily available to the network, and noise levels vary

widely depending on the situation.

Liu et al. [14] developed a network for image restoration

by combining the wavelet transform and inverse wavelet

transform approaches with a U-Net [24] structure,

achieving a good trade-off between the computational

complexity and the receptive field. However, as the wavelet

transform consists of a convolution with specific weights

and a sub-sampling process, it is considered a special case

of the convolution layer; using this approach may limit

performance compared to the performance that can be

achieved using a trainable convolution layer.

To address these limitations, we embed down-scaling

into the contracting process of the network with a trainable

convolution layer with a stride of 2, and embed up-scaling

in the expanding process using a subpixel layer [15], which

was proposed in image super-resolution work for the up-

scaling of features. As the subpixel layer performs up-

scaling only by rearranging features and not by performing

any convolution operation, loss during the up-scaling

process can be reduced if a sufficient number of features are

provided before up-scaling. We also test the proposed

network’s ability to cope with unknown noise levels and

develop efficient training methods to improve the multi-

level noise model to offer greater practical utility. Our

network’s efficient GPU memory usage enables it to
consider enough parameters to handle multiple-level noise

with a single model. Experimental results demonstrate that

our multi-level noise model shows similar performance to

a single-level noise model without requiring the input of

noise information (Figure 1). We also use the weight-

averaging method [16] for image denoising to reduce the

bias caused by weight selection and improve the

performance without increasing the model’s parameters or
computational complexity. Although the effect of this

weight-averaging strategy has been validated in image

classification work, we pioneer its successful application in

image denoising tasks. In summary, the contributions of

this work are as follows:

 A novel CNN architecture iteratively contracting

and expanding features with very large receptive

field.

 Modification of the down- and up-scaling process

used by U-Net for image denoising task.

 Application of the weight-averaging technique to

Gaussian noise image denoising, resulting in a more

generalized and performance-enhanced model with-

out the additional parameters.

 An efficient method to train a single model such that

it can handle multi-level noise (unknown noise)

without noise information inputs.

 State-of-the-art Gaussian image denoising perfor-

mance.

2. Related Work

2.1. Deep learning based image denoising

The development of deep learning has facilitated a large

performance improvement in image denoising. Jain et al.

[18] were the first to use a simple CNN with five layers for

image denoising, but did not achieve significant

performance improvement over conventional methods. An

auto-encoder-based denoising model was proposed in [19]

but the performance fell short of that possible using BM3D

[5]. Burger et al. [7] trained a multi-layer perceptron to

learn a mapping from a noisy image patch to a clean image,

achieving similar performance to BM3D. DnCNN [8]

achieved a significant performance improvement over

conventional methods in image denoising using

convolution, batch normalization [35], and ReLU as a basic

structure, and successfully trained deep networks by

utilizing global residual learning [21]. Zhang et al. [13]

proposed a CNN with seven layers, considering the trade-

off between computational cost and accuracy. This

succeeded in increasing the receptive field using dilated

convolution [20]. Tai et al. [9] proposed the MemNet,

which offers a large receptive field while maintaining a

small number of parameters by using a recursive CNN

structure and dense skip connections [22]. Finally, Zhang et

al. [11] proposed a residual dense network (RDN) that uses

both residual learning and dense connection as its basic

structure, maximizing feature reuse and achieving a

significant improvement in the performance of Gaussian

noise image denoising.

All the studies acknowledged above are subject to some

limitations: they assume known noise, and require the

training of a specific model for each noise level to be

considered. As such, they cannot handle unknown noise or

multi-level noise with a single model. To address this

problem, FFDNet [10] was designed to use a noise map as

an input to the network, resulting in a single model which

can process multi-level noise (Gaussian noise 𝜎 from 0 to

75). The UDN [12] trains on various noise levels using the

noise level as input to the trainable projection unit of the

network (with noise 𝜎 from 0 to 29 and 30 to 55 for each

model). However, these methods still require a noise level

as input when testing, and as the results vary depending on

the input noise information, they are difficult to apply to

unknown noise data.

2.2. Deep networks using down-up scaling

To maintain the depth and computational complexity of

the network while increasing the receptive field, Zhang et

al. [13] used dilated convolution, but this approach suffers

from the gridding artifact because it sub-samples the

features sparsely [23]. In order to achieve a better trade-off

between the receptive field and the computational cost,

some studies have been conducted into the use of down-

and up-scaling of the feature maps. U-Net [24] was

proposed in semantic segmentation. In U-Net, max-pooling

is used to reduce the resolution of feature maps by half and

simultaneously increase the number of feature maps by a

factor of two to reduce data loss. Up-sampling followed by

2×2 convolution are used for up-scaling the features. Liu et

al. [14] used the wavelet transform and the inverse wavelet

transform approaches for the down- and up-scaling of

feature maps, respectively, to increase the receptive field.

As the wavelet transform approach consists of a

convolution and sub-sampling, it can be seen as a special

case of a convolution layer. Shi et al. [15] proposed a sub-

pixel convolution layer for up-scaling of low resolution

features at super-resolution, which greatly reduces the

computational complexity compared to that of the

deconvolution layer. FFDNet implemented reversible

down- and up-scaling using paired sub-sampling and

subpixel convolution, resulting in high GPU memory

efficiency and an increased receptive field. DBPN [25]

learned the up-scaling process by iteratively up- and down-

scaling feature maps using the deconvolution layer and a

convolution layer with a stride of 2 in the image super-

resolution work, and achieved state-of-the-art performance.

3. Proposed Network

In this section, we introduce the overall architecture and

properties of the proposed network. We discuss the down-

and up-scaling (down-up scaling) strategy used in the

contraction and expansion steps in the network, and the

network configurations required for efficient training. In the

following subsections, we compare the results of the single-

noise model with those of the multi-noise model, and

explain the training strategies employed to train the multi-

level noise model efficiently.

3.1. Network architecture

The U-Net [24] was initially proposed for semantic

segmentation. U-Net consists of two paths: a contraction

path that reduces the size of deep features, and an expansion

path that increases the size of these features. The core

principle of U-Net is to reduce the resolution of the features

to increase the receptive field, and then reuse the features

through concatenation of matching resolution levels to

minimize information loss caused by down-up scaling. The

efficiency of U-Net’s U-shaped structure is verified in

image denoising [14] and ascribed to its large receptive

field, high GPU memory efficiency, and low computational

cost. DBPN [25] demonstrates that iterative down-up

scaling of feature maps is effective for learning an image

super-resolution task. However, this method increases the

overall size of the feature maps, decreasing the receptive

field and increasing the computational complexity.

Drawing on [24] and [25], we propose an iterative down-

up scaling network termed the deep iterative down-up

network (DIDN), offering a large receptive field and

efficient GPU memory usage by sequential repetition of the

contraction and expansion processes. Figure 2 shows the

(a) Architecture of DIDN

(b) Structure of DUB

Figure 2: The architecture of the proposed DIDN.

DUB DUB

3×3 Conv, PReLU 1×1 Conv Subpixel layer with scale of 2 3×3 Conv with stride of 2

Adding Concatenation

R
e
c
o
n

overall architecture of the proposed network. Here, the gray

blocks represent feature maps, and the feature maps

construct a hierarchical structure comprised of four distinct

resolution levels. DIDN consists of four parts: feature

extraction, down-up block (DUB), reconstruction, and

enhancement.

Initial feature extraction: When the size of the input

image is H×W, DIDN first extracts 𝑁 features using a 3×3

convolution on the input image, and extracts the features of 𝐻2 × 𝑊2 × 2𝑁 size through the convolution layer using a

stride of 2.

DUB: The extracted features subjected to iterative down-

up scaling through several DUBs. In the DUB, contraction

and expansion are performed by two down-scaling and up-

scaling processes. A 3×3 convolution layer with a stride of

2 and a subpixel layer are used in down- and up-scaling,

respectively. In the down-scaling process, the size of the

feature maps is decreased by half in the horizontal and

vertical directions, and the number of the features is

doubled. In the up-scaling process, because the number of

input features is reduced by a quarter through the subpixel

layer, the number of feature maps is increased through the

1×1 convolution layer before the subpixel layer to maintain

information density. As in U-Net [24], features of the same

resolution level are concatenated to increase the reuse of

these features in the hierarchical structure. The features at

the beginning and the end of the block are linked by skip

connection [21].

Reconstruction: Inspired by MemNet [9], we place a

common reconstruction block after the last DUB to take

advantage of all the local output. The outputs of all the

DUBs form the inputs to the reconstruction block, and all

the outputs of the reconstruction block are concatenated to

go through the enhancement stage. The reconstruction

block consists of nine convolution layers (Conv) followed

by parametric rectified linear units (PReLU) [38]. More

specifically, there are four consecutive residual blocks

consisting of 'Conv + PReLU + Conv + PReLU' with

additional Conv at the end.

Enhancement: Finally, through the 1×1 convolution,

the number of output feature maps in the reconstruction

block is decreased, and up-scaling is performed at the

subpixel layer to generate the final denoised image.

3.2. Down-up process

Other approaches to select the upscaling layer do exist,

such as using a deconvolution layer and up-sampling

followed by a convolution layer. However, these upscaling

layers contain interpolation or padding processes which can

include degradation in the feature maps. As image

denoising is a low-level vision task in which it is important

to enhance the pixel-level accuracy, in DIDN we adopt a

subpixel convolution layer as an up-scaling operator. The

subpixel convolution layer requires neither interpolation

nor a padding process, but instead allows the network to

propagate detail information directly from low resolution to

higher resolution, an advantageous method for upscaling

features in image denoising. There are also other options in

the down-scaling layer such as max-pooling and sub-

sampling, but we chose to adopt a trainable convolution

layer to improve the performance.

3.3. Multiple noise levels

In EDSR [17], fast convergence and improved results are

obtained by using the weights of the pre-trained model, at a

lower scale, as the initial values of the weights for learning

the model at a higher scale. The authors conclude that the

different scales are interrelated in the super-resolution task.

In Gaussian noise image denoising, the degree of

degradation varies depending on the noise levels, but as the

noise properties are the same, we can extend this weight

initialization strategy to image denoising. Figure 3 shows

the result of training at a noise level of 30 on grayscale

image denoising. The blue line represents the use of random

initialization (RI), whereas the red line represents the use of

pre-trained initialization (PI) weights at a noise level of 10.

Using the pre-trained model, converges occurs much faster

and ultimately performance is improved even further,

indicating that Gaussian noise is also interrelated between

Methods
Noise level

10 30 50

Single_RI 35.16 29.90 27.85

Single_PI 35.18 30.02 27.91

Multi_RI 35.14 30.01 27.94

Multi_PI_𝜎50 35.14 30.02 27.94

Multi_PI_ 𝜎10 35.15 30.03 27.95

Table 1: PSNR (dB) comparison of training and weight

initialization methods using the grayscale Kodak24 dataset. Best

performance at each noise level is bolded.

Figure 3: Effect of pre-trained weight initialization on grayscale

BSD68 dataset with noise level 30.

adjacent noise-levels.

From this property, the possibility arises of addressing a

wide range of noise levels in a single model. The multi-

level noise model, capable of handling noise levels ranging

from 5 to 50, is trained in three ways: 1) using RI, 2) using

PI from a noise level of 10, and 3) using PI from a noise

level of 50. Table 1 shows the results of the experiment on

the Kodak24 [37] dataset. In Table 1, the first model is

indicated as ‘Multi_RI’; the second model as
‘Multi_PI_ 𝜎50’; and, the third model as ‘Multi_PI_ 𝜎10’. For

single-level noise model, the model using PI is indicated as

‘Single_PI’ and the model using RI is indicated as ‘Single_RI’
in Table 1. For the single-level noise model using PI, the

model for noise level 10 is initialized from the weights pre-

trained at noise level 5; the model for noise level 30 is

initialized from the weights pre-trained at noise level 10;

and, the model for noise level 50 is initialized from the

weights pre-trained at noise level 30.

In the single-level noise model, using PI increases the

average peak signal-to-noise ratio (PSNR) by 0.02, 0.12,

and 0.06 dB at noise levels of 10, 30, and 50, respectively,

compared to the results with RI. Comparing the RI results

produced by the single-level noise model with those

produced by the multi-level noise model, it is found that the

multi-level noise model outperforms the single-level noise

model at high noise levels, but it exhibits inferior

performance at low noise levels. This tendency is consistent

with the results of VDSR [34], where a multi-scale model

shows a lower PSNR than a single-scale model at a low

scale in image super-resolution. Using the PI from noise

level 10 improves the DIDN’s performance at low noise
levels and also increases the PSNR at higher noise levels.

Consequently, our multi-level noise model outperforms

single-level models at almost all noise levels. Furthermore,

because noise information in the real-world is often

unknown, the multi-level noise model is much more

practically applicable than any single-level model.
 Owing to DIDN’s efficient GPU memory usage, it can
accommodate deeper layers, more features, and a

sufficiently large number of parameters (190M for DIDN

using 6 DUBs) to enable a single model to be trained to

process a wide range of noise levels without requiring any

noise information inputs. We can conclude that the

proposed multi-level noise model successfully performs the

functions of both noise estimation and noise reduction

within a single model.

4. Experimental Results

This section details the dataset, training steps, and

ensemble strategy used in the experiment. Thereafter,

objective and subjective comparisons with the results of

state-of-the-art studies are drawn. Moreover, we present the

results of our DIDN’s performance in the NTIRE 2019 real
image denoising challenge [40].

4.1. Dataset

To train our model, we use the DIV2K dataset [29],

composed of 800 training images and 100 validation images,

each with a resolution of 2K. For the comparison, BSD68

[30] and Kodak24 [37] are used as grayscale and color

versions of the test dataset, respectively. Noisy images are

generated by adding Gaussian noise at a specific noise level

to the clean images from the datasets.

4.2. Training / Implementation details

For training, all images are split into 64×64 patches. One

batch consists of 16 randomly selected patch pairs of

training data, and 36K iterations constitute one epoch. All

patches are augmented using random rotation and flip. The

Adam optimizer [39] with an initial learning rate of 10−4 is

used for training, and the learning rate is halved every 3

epochs. In total, a single model is trained over 12 epochs

(approximately 400K iterations), during which process the

learning rate is decreased 3 times. Approximately 3 days

Figure 4: Weight averaging points. Upper and lower tindicate

validation PSNR (dB) and learning rate, respectively, during

training.

Dataset Methods
Noise level

10 30 50

BSD68

Model 1 33.970 28.578 26.461

Model 2 33.976 28.577 26.459

Model1

+ Model2
33.978 28.583 26.467

Kodak24

Model 1 35.152 30.026 27.947

Model 2 35.153 30.028 27.950

Model1

+ Model2
35.163 30.037 27.959

Table 2: Effect of weight averaging on grayscale image denoising.

Best performance at each noise level is bolded.

are required to train a single model using the GeForce GTX

1080Ti. Drawing on [32], we use 𝑙1-loss to train the model

as follows: 𝑙1(𝜃) = 1𝑁 ∑ |𝐹(𝑥𝑖; 𝜃) − 𝑦𝑖|𝑁𝑖=1 , (1)

where 𝑁 is a batch size, 𝐹(∙) is the network function with

learnable parameter 𝜃, and 𝑥𝑖 and 𝑦𝑖 denote patch pairs of

the noisy image and ground truth in the training data.

Our DIDN has 6 DUBs and extracts 128 initial feature maps.

All convolution layers have a kernel size of 3×3 or 1×1. For

the Gaussian noise image denoising, two DIDNs are trained,

one for grayscale image denoising and the other for color

image denoising.

4.3. Ensemble strategy

In machine learning, the ensemble technique is a method

to improve generalization and performance by reducing the

bias and variance of a single model. Three ensemble

methods, namely snapshot ensemble [16], self-ensemble

[26], and model ensemble, are tested on the DIDN.

Snapshot ensemble is a method to train a model by

periodically changing the learning rate and then averaging

the weight values at the end of each cycle. The cosine

learning rate is used in [16], but we use the Adam optimizer,

as explained in Section 4.2, halving the learning rate every

3 epochs. We train a model for two cycles and average their

weights of the end of each cycle as shown in Figure 4. Table

2 lists the effects of using snapshot-ensemble on the

Kodak24 dataset at noise levels of 10, 30, and 50. The

highest performances during the two learning rate cycles

are similar, and the performance is slightly improved when

two weights are averaged, which is effective because it does

not require additional parameters or additional computation

for testing. As in [17], the self-ensemble generates eight

inputs by the rotation and flip of one input, producing a total

of eight outputs through the same model. The outputs are

then inverse-transformed and averaged to create the final

output. Tables 3, 4, 5, and 6 list the results for the self-

ensemble. Self-ensemble results are marked as 'DIDN+' in

Methods

BSD68 Kodak24

Noise level Noise level

10 20 30 40 50 10 20 30 40 50

Noisy 28.26 / 0.7092 22.35 / 0.4687 18.97 / 0.3349 16.64 / 0.2526 14.91 / 0.1982 28.23 / 0.6574 22.28 / 0.4013 18.87 / 0.2731 16.52 / 0.2001 14.79 / 0.1542

BM3D [5] 33.32 / 0.9158 29.61 / 0.8337 27.75 / 0.7731 26.46 / 0.7242 25.60 / 0.6858 34.39 / 0.9127 30.93 / 0.8405 29.12 / 0.7877 27.84 / 0.7452 26.98 / 0.7140

DnCNN [8] 33.88 / 0.9270 30.27 / 0.8563 28.36 / 0.7999 27.11 / 0.7541 26.23 / 0.7189 34.90 / 0.9223 31.47 / 0.8576 29.62 / 0.8071 28.37 / 0.7666 27.49 / 0.7368

IRCNN [13] 33.74 / 0.9262 30.16 / 0.8562 28.26 / 0.7989 27.08 / 0.7548 26.19 / 0.7171 34.76 / 0.9215 31.38 / 0.8576 29.52 / 0.8056 28.37 / 0.7676 27.45 / 0.7342

FFDNet [10] 33.76 / 0.9266 30.23 / 0.8576 28.39 / 0.8032 27.18 / 0.7597 26.29 / 0.7245 34.81 / 0.9226 31.47 / 0.8603 29.69 / 0.8123 28.51 / 0.7741 27.62 / 0.7437

DIDN 33.98 / 0.9284 30.44 / 0.8614 28.58 / 0.8075 27.37 / 0.7655 26.47 / 0.7310 35.16 / 0.9263 31.83 / 0.8677 30.04 / 0.8222 28.84 / 0.7856 27.96 / 0.7562

DIDN+ 34.01 / 0.9286 30.47 / 0.8618 28.61 / 0.8081 27.40 / 0.7663 26.50 / 0.7320 35.20 / 0.9267 31.87 / 0.8683 30.08 / 0.8230 28.88 / 0.7867 28.01 / 0.7576

Table 3: PSNR (dB) / SSIM comparison of methods on gray-scale image denoising. Dataset BSD68 and Kodak24 are used for noise levels

10, 20, 30, 40, and 50. Best and second best performances are highlighted in red and blue, respectively.

Methods

CBSD68 Kodak24

Noise level Noise level

10 20 30 40 50 10 20 30 40 50

Noisy 28.30 / 0.7114 22.40 / 0.4707 19.03 / 0.3363 16.72 / 0.2539 15.00 / 0.1993 28.24 / 0.6598 22.31 / 0.4030 18.93 / 0.2744 16.60 / 0.2011 14.87 / 0.1549

CBM3D [36] 35.89 / 0.9507 31.89 / 0.8935 29.72 / 0.8432 28.08 / 0.7888 27.36 / 0.7622 36.57 / 0.9425 32.92 / 0.8901 30.89 / 0.8452 29.17 / 0.7937 28.62 / 0.7765

DnCNN [8] 36.12 / 0.9536 32.37 / 0.9050 30.32 / 0.8611 28.95 / 0.8223 27.92 / 0.7882 36.58 / 0.9446 33.20 / 0.8984 31.28 / 0.8579 29.95 / 0.8225 28.94 / 0.7915

IRCNN [13] 36.06 / 0.9533 32.27 / 0.9045 30.22 / 0.8607 28.85 / 0.8222 27.86 / 0.7889 36.70 / 0.9448 33.19 / 0.8984 31.24 / 0.8581 29.91 / 0.8229 28.92 / 0.7939

FFDNet [10] 36.14 / 0.9540 32.34 / 0.9045 30.31 / 0.8603 28.96 / 0.8217 27.96 / 0.7881 36.80 / 0.9462 33.32 / 0.9000 31.39 / 0.8596 30.08 / 0.8248 29.10 / 0.7949

DIDN 36.48 / 0.9565 32.73 / 0.9108 30.71 / 0.8706 29.36 / 0.8348 28.35 / 0.8041 37.32 / 0.9500 33.88 / 0.9083 31.97 / 0.8724 30.68 / 0.8418 29.72 / 0.8156

DIDN+ 36.52 / 0. 9567 32.77 / 0.9114 30.75 / 0.8714 29.40 / 0.8359 28.40 / 0.8054 37.37 / 0.9503 33.94 / 0.9090 32.03 / 0.8734 30.75 / 0.8431 29.80 / 0.8173

Table 4: PSNR (dB) / SSIM comparison of methods on color image denoising. Dataset CBSD68 and Kodak24 are used for noise levels

10, 20, 30, 40, and 50. Best and second best performances are highlighted in red and blue, respectively.

Methods

BSD68 Kodak24

Noise level Noise level

15 25 50 15 25 50

Noisy 24.79 20.48 14.91 24.74 20.39 14.79

BM3D [5] 31.08 28.57 25.60 32.30 29.92 26.98

MWCNN [14] 31.86 29.41 26.54 33.14 30.81 28.02

DIDN 31.85 29.39 26.47 33.16 30.81 27.96

DIDN+ 31.88 29.42 26.50 33.20 30.85 28.01

Table 5: PSNR (dB) comparison with the latest high-performance

methods on grayscale image denoising.

Methods

CBSD68 Kodak24

Noise level Noise level

10 30 50 10 30 50

Noisy 28.30 19.03 15.00 28.24 18.93 14.87

CBM3D [36] 35.89 29.72 27.36 36.57 30.89 28.62

RDN [11] 36.47 30.67 28.31 37.31 31.94 29.66

DIDN 36.48 30.71 28.35 37.32 31.97 29.72

DIDN+ 36.52 30.75 28.40 37.37 32.03 29.80

Table 6: PSNR (dB) comparison with the latest high-performance

methods on color image denoising.

the tables. Compared to DIDN, self-ensemble shows a

significant improvement in PSNR without an increase in

either the number of model parameters or the training time.

Model ensemble is a method of training several models

for the same task and averaging their output values. If the

model ensemble is additionally applied to the self-ensemble

models, the number of parameters, the training time, and

the testing time are all doubled. However, in our experiment,

there is no significant increase in PSNR and when the

performance difference between the models is large, the

performance of the model ensemble is sometimes worse

than that of the best model among them.

Our DIDN adopts and combines the snapshot ensemble

and self-ensemble strategies.

4.4. Comparisons with the state-of-the-art

The proposed network is compared with DnCNN [8],

IRCNN [13], FFDNet [10], MWCNN [14], and RDN [11].

All these methods except RDN are tested using their

publicly accessible code. The results of RDN are drawn

from the cited paper.

Table 3 gives the peak signal-to-noise ratio (PSNR) and

structural similarity (SSIM) in grayscale image denoising.

The Kodak24 and BSD68 datasets are used in the

experiments, and grayscale images are generated using the

'rgb2gray' function in MATLAB. The best result for each

noise level is given in red, and the second-best in blue. In

most cases our DIDN shows the best objective scores.

Although all methods except FFDNet are trained for a

single-level noise and our DIDN is trained for multiple

noise levels, DIDN outperforms single-level noise models.

Table 4 gives the performances in color image denoising.

Similar to its grayscale results, the proposed DIDN

successfully learns to process a wide range of noise levels

in color image denoising. Tables 5 and 6 compare DIDN

with the latest high-performance models in image denoising.

DIDN shows higher PSNR values than MWCNN except at

a noise level of 50, and improved performance at all noise

levels compared to RDN. Note that MWCNN and RDN are

trained for a single-level noise, and MWCNN uses more

than 5,000 training images while DIDN is a multi-level

noise model and trained using only 900 training images.

Figures 5 and 6 show the denoised images of the DIDN

and conventional methods applied to grayscale and color

images. Compared to conventional methods, the proposed

network reduces noise and preserves the detail information

of the image, resulting in visually pleasant images.

Table 7 compares the number of parameters and

multiply-accumulate operations (MACs) with DnCNN [8]

Image ‘8’ in Kodak24 Ground truth

(PSNR (dB)/SSIM)

BM3D [5]

(23.90 / 0.7292)

DnCNN [8]

(24.26 / 0.7447)

IRCNN [13]

(24.38 / 0.7412)

FFDNet [10]

(24.53 / 0.7476)

MWCNN [14]

(25.15 / 0.7815)

DIDN+

(25.41 / 0.7904)

Figure 5: Grayscale image denoising results at noise level 50.

Image ‘148026’ in CBSD68
Ground truth

(PSNR (dB) / SSIM)
CBM3D [36]

(24.40 / 0.8003)

DnCNN [8]

(25.14 / 0.8298)

IRCNN [13]

(25.04 / 0.8271)

FFDNet [14]

(25.07 / 0.8302)

DIDN+

(25.45 / 0.8435)

Figure 6: Color image denoising results at noise level 50.

Methods DnCNN [8] RDN [11] DIDN

Parameters 558K 22M 165M

MACs 2G 90G 70G

Table 7: Parameter number and MAC comparison on color image

denoising. MACs are calculated for 64×64 image.

and RDN [11]. DIDN has more parameters, but has fewer

MACs than RDN. Owing to the hierarchical structure of

DIDN, it can have more trainable parameters than models

with plain CNN structure while maintaining the

computational complexity and memory usage low.

4.5. NTIRE 2019 Real Image Denoising Challenge

This work was originally developed for participation in

the NTIRE 2019 real image denoising challenge [40]. This

challenge incorporates two tracks: track 1 for projects

focusing on removing noise from the raw-RGB images that

are not demosaiced and that have specific color patterns,

and track 2 for projects focusing on removing noise from

standard RGB images.

The purpose of the challenge is to remove real world

noise from images. In the SIDD data set [33], 320 image

pairs (noisy and clean images) with resolutions of 4 or 5K

are used for training. Because the dataset includes images

with various noise levels, dynamic ranges, and brightnesses,

the model is designed to have enough parameters to

estimate and process a variety of cases.

We trained a DIDN with 10 DUBs in track 1 and 8 DUBs

in track 2, and our results were ranked second and third in

the challenge, respectively. This ranking proves that DIDN

provides superior performance in handling real world noise.

Table 8 compares the challenge results, and Figure 7 shows

the resulting images from the validation set. DIDN

successfully removes noise in images with various

brightnesses and noise compositions using a single model.

Moreover, in raw-RGB denoising, DIDN not only reduces

noise, but also restores the original color patterns well.

5. Conclusion

In this paper, we have proposed a deep learning

algorithm for single-image denoising. We modified the U-

Net to be suitable for image denoising and used this as a

base module. By sequencing the modules, we constructed a

network structure that repeatedly down- and up-samples

deep feature maps. This memory-efficient structure yields

a large receptive field and enables the model to include a

sufficiently large number of parameters to achieve

improved performance.

To address multi-level and real world noise, we

successfully developed a single model with the capacity to

process Gaussian noise on levels ranging from 5 to 50.

Furthermore, we presented a weight initialization method

and applied ensemble techniques to efficiently train a multi-

level noise model to enhance denoising performance.

Experimental results demonstrate that our multi-level noise

model surpasses the performance of existing single-level

noise models and multi-level noise models in objective and

subjective evaluation, and does so without requiring noise

information inputs. Our proposed network has already

demonstrated its superiority in real-world denoising tasks,

achieving second and third place in tracks 1 and 2,

respectively, at the NTIRE 2019 real image denoising

challenge.

Noisy image

(track 1: raw-RGB)

Dark noisy image

(track 2: standard RGB)

Bright noisy image

(track 2: standard RGB)

DIDN+

(50.52 dB / 0.9956)

DIDN+

(34.38 dB / 0.9857)

DIDN+

(42.95 dB / 0.9988)

Figure 7: Our results at NTIRE 2019 real image denoising challenge.

Rank
Track 1: Raw RGB Track 2: Standard RGB

Team Model PSNR SSIM Team Model PSNR SSIM

1 1st 1st 52.114 0.9969 1st 1st 39.932 0.9736

2 Eraser DIDN 52.107 0.9969 Eraser DHDN 39.883 0.9731

3 Eraser DHDN 52.092 0.9968 Eraser DIDN 39.818 0.9730

4 4th 4th 51.947 0.9967 4th 4th 39.675 0.9726

5 5th 5th 51.939 0.9967 5th 5th 39.611 0.9726

Table 8: NTIRE 2019 real image denoising challenge results for

two tracks [40].

References

[1] A. Levin and N. Nadler. Natural image denoising: Optimality

and inherent bounds. In CVPR 2011.

[2] M. Elad and M. Aharo. Image denoising via sparse and

redundant representations over learned dictionaries. IEEE

Transactions on Image processing, 15(12):3736–3745, 2006.

[3] K. Dabov, A. Foi, and K. Egiazarian. Video denoising by

sparse 3D transform-domain collaborative filtering. In ESPC

2007.

[4] M. K. Mihcak, I. Kozintsev, K. Ramchandran, and P. Moulin.

Low-complexity image denoising based on statistical

modeling of wavelet coefficients. IEEE Signal Processing

Letters, 6(12):300–303, 1999.

[5] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image

denoising by sparse 3-D transform-domain collaborative

filtering. IEEE Transactions on Image Processing,

16(8):2080–2095, 2007.

[6] A. Buades, B. Coll, and J. M. Morel. A non-local algorithm

for image denoising. In CVPR 2005.

[7] H. C. Burger, C. J. Schuler, and S. Harmeling. Image

denoising: Can plain neural networks compete with BM3D?.

In CVPR 2012.

[8] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond

a gaussian denoiser: Residual learning of deep cnn for image

denoising. IEEE Transactions on Image Processing, 26(7):

3142–3155, 2017.

[9] Y. Tai, J. Yang, X. Liu, and C. Xu. Memnet: A persistent

memory network for image restoration. In ICCV 2017.

[10] K. Zhang, W. Zuo, and L. Zhang. FFDNet: Toward a fast and

flexible solution for CNN-based image denoising. IEEE

Transactions on Image Processing, 27(9):4608–4622, 2018.

[11] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu. Residual

dense network for image restoration. arXiv preprint

 arXiv:1812.10477, 2018

[12] S. Lefkimmiatis. Universal denoising networks: a novel

CNN architecture for image denoising. In CVPR 2018.

[13] K. Zhang, W. Zuo, S. Gu, and L. Zhang. Learning deep CNN

denoiser prior for image restoration. In CVPR 2017.

[14] P. Liu, H. Zhang, K. Zhang, L. Lin, and W. Zuo. Multi-level

wavelet-CNN for image restoration. In CVPRW 2018.

[15] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R.

Bishop, and D. Rueckert. Real-time single image and video

super-resolution using an efficient sub-pixel convolutional

neural network. In CVPR 2016.

[16] G. Huang, Y. Li, G. Pleiss, Z. Liu, J. E. Hopcroft, and K. Q.

Weinberger. Snapshot ensembles: Train 1, get m for free.

arXiv preprint arXiv:1704.00109, 2017.

[17] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, K. Enhanced

deep residual networks for single image super-resolution. In

CVPRW 2017.

[18] V. Jain and S. Seung. Natural image denoising with

convolutional networks. In NIPS 2009.

[19] J. Xie, L. Xu, and E. Chen. Image denoising and inpainting

with deep neural networks. In NIPS 2012.

[20] F. Yu and V. Koltun. Multi-scale context aggregation by

dilated convolutions. arXiv preprint arXiv:1511.07122, 2015.

[21] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR 2016.

[22] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger.

Densely connected convolutional networks. In CVPR 2017.

[23] P. Wang, P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, and

G. Cottrell. Understanding convolution for semantic

segmentation. In WACV 2018.

[24] O. Ronneberger, P. Fischer, and T. Brox. U-net:

Convolutional networks for biomedical image segmentation.

In MICCAI 2015.

[25] M. Haris, G. Shakhnarovich, and N. Ukita. Deep back-

projection networks for super-resolution. In CVPR 2018.

[26] R. Timofte, R. Rothe, and L. Van Gool. Seven ways to

improve example-based single image super resolution. In

CVPR 2016.

[27] T. Garipov, P. Izmailov, D. Podoprikhin, D. P. Vetrov, and

A. G. Wilson. Loss surfaces, mode connectivity, and fast

ensembling of dnns. In NIPS 2018.

[28] P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A.

G. Wilson. Averaging weights leads to wider optima and

better generalization. arXiv preprint arXiv:1803.05407, 2018.

[29] R. Timofte, E. Agustsson, L. Van Gool, M.-H. Yang, L.

Zhang, et al. NTIRE 2017 challenge on single image super-

resolution: Methods and results. In CVPRW 2017.

[30] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of

human segmented natural images and its application to

evaluating segmentation algorithms and measuring

ecological statistics. In ICCV 2001.

[31] K. Dabov, A. Foi, V. Katkovnik, and K. O. Egiazarian. Color

image denoising via sparse 3D collaborative filtering with

grouping constraint in luminance-chrominance space. In

ICIP 2007.

[32] H. Zhao, O. Gallo, I. Frosio, and J. Kautz. Loss functions for

image restoration with neural networks. IEEE Transactions

on Computational Imaging, 3(1):47–57, 2017.

[33] A. Abdelhamed, S. Lin, and M. S. Brown. A high-quality

denoising dataset for smartphone cameras. In CVPR 2018.

[34] J. Kim, J. K. Lee, and K. M. Lee. Accurate image super-

resolution using very deep convolutional networks. In CVPR

2016.

[35] S. Ioffe, S and C. Szegedy. Batch normalization:

Accelerating deep network training by reducing internal

covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[36] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Color

image denoising via sparse 3d collaborative filtering with

grouping constraint in luminance-chrominance space. In

ICIP 2007.

[37] R. Franzen. Kodak lossless true color image suite. source:

http://r0k.us/graphics/kodak.

[38] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification,” in ICCV 2015.

[39] D. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

[40] A. Abdelhamed, R. Timofte, M. S. Brown, et al. NTIRE 2019

challenge on real image denoising: Methods and results. In

CVPRW 2019.

http://r0k.us/graphics/kodak

