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Abstract—Spatially varying exposure (SVE) is a promising
choice for high-dynamic-range (HDR) imaging (HDRI). The SVE-
based HDRI, which is called single-shot HDRI, is an efficient
solution to avoid ghosting artifacts. However, it is very challeng-
ing to restore a full-resolution HDR image from a real-world
image with SVE because: a) only one-third of pixels with varying
exposures are captured by camera in a Bayer pattern, b) some of
the captured pixels are over- and under-exposed. For the former
challenge, a spatially varying convolution (SVC) is designed to
process the Bayer images carried with varying exposures. For the
latter one, an exposure-guidance method is proposed against the
interference from over- and under-exposed pixels. Finally, a joint
demosaicing and HDRI deep learning framework is formalized
to include the two novel components and to realize an end-to-
end single-shot HDRI. Experiments indicate that the proposed
end-to-end framework avoids the problem of cumulative errors
and surpasses the related state-of-the-art methods.

Index Terms—high-dynamic-range imaging, spatially varying
exposure, demosaicing, spatially varying convolution, exposure
guidance.

I. INTRODUCTION

The dynamic range of a natural scene is usually much higher
than that of a low-dynamic-range (LDR) image captured
using a smartphone or a digital camera via a single shot.
Considerable information from the real scene is lost in the
LDR image. HDRI technology was introduced to address such
a problem [1]–[4]. HDRI has become one of the hottest topics
in the fields of image processing and computer vision.

A popular method for HDRI is to sequentially capture multi-
ple LDR images with varying exposures sequentially and then
merge them into an HDR image [5]–[8]. This method is called
exposure stacking, which is widely adopted in smartphones
and digital cameras. Exposure stacking performs well in static
scenes. However, moving objects could exist in the shooting
scenes. which lead to unavoidable ghosting artifacts in the
HDR image [9]–[12].

Many methods were proposed to eliminate ghosting artifacts
in the HDR image, but a large amount of computation is
often required and these methods may fail in scenes with very
complex motion and extreme dynamic range.
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Fig. 1: Raw Bayer image with row-wise varying exposure
times [13].

Due to the challenge of ghosting removal [10], [11], ghost-
ing artifacts are believed to be the Achilles’ heel for the
exposure stacking-based HDRI. As such, exposure stacking
is unsuitable for capturing HDR videos [14]–[16]. The single-
shot HDRI was proposed to capture ghost-free HDR images
with varying exposures in a single image [13], [17]–[19]. In
the single-shot HDRI, the exposure of pixels varies along with
different spatial locations.

In general, the raw data obtained by the camera is in a Bayer
image. One typical example is given in Fig. 1, where the raw
Bayer image is sensed by alternating the exposure time every
other rows. This shooting method [13], [20], [21] is referred
to as dual-time in this paper. In addition, the single-shot HDRI
is also a good candidate to capture HDR videos [22].

Among the single-shot dual-time HDRI algorithms [13],
[20], [21], the stages of demosaicing and HDR reconstruction
are separated. Thus, the error generated in the previous stage
will affect the posterior one, resulting in error accumulation
and drift. Recently, the idea of joint demosaicing with other
low-level image processing tasks [23]–[27] has appeared in
some studies to avoid the cumulative error. However, the
existing joint demosaicing algorithm’s convolution methods
have not been adjusted accordingly to the spatial change of
the data pattern. Moreover, when the captured Bayer image
with varying exposure times is converted into a Bayer radiance
image [13], [21] by using camera response functions (CRFs)
[28], the brightness difference caused by different exposure
time can not be completely eliminated. The ill-exposed pixels
in the Bayer radiance image will also interfere the convolu-
tional neural network (CNN) [13].

In this paper, a one-stage CNN is proposed for the single-
shot dual-time HDRI. As shown in Fig 2.This novel CNN can
restore high-quality HDR image at the full resolution from
a single Bayer radiance image with varying exposures, by
which the problem of cumulative errors in [13], [20], [21] can
be avoided. Two distinctive components are introduced into
the CNN to handle the challenges in single-shot HDRI. For
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Fig. 2: Overall framework of the proposed algorithm. The proposed CNN includes a reconstruction branch (RB), and two
distinctive components: spatially varying convolution (SVC) and exposure-guidance branch (EGB).

the challenges of processing image pixels with varying colors
(caused by the Bayer pattern) and varying exposures (caused
by the dual-time), a novel spatially varying convolution (SVC)
is designed and introduced as the first layer of CNN. The
proposed SVC is adaptive to both varying colors and varying
exposures, and can extract information from the dual-time
Bayer image efficiently. The SVC can be easily inserted into
other networks to process the Bayer image with or without
SVE, and can be redesigned into other flexible variants when
the data pattern or SVE changes. For the challenge of pro-
cessing ill-exposed pixels, a novel exposure-guidance method
is proposed, and the method is inspired by the dual-branch
network [29], [30]. By exposure-guidance method, the prior
knowledge of ill-exposed pixels is exploited, and an exposure-
guidance branch (EGB) is proposed to assist the CNN by
incorporating this prior.

Clearly, both the SVC and the exposure-guidance method
can improve the explain-ability of the proposed one-stage
CNN. Moreover, a new HDR dataset is proposed in this paper.
The proposed dataset consists of 500 pairs of images with short
and long exposures, respectively. The varying exposures are
achieved by changing the exposure time. Images with camera
shaking or object movement are filtered out artificially. Finally,
extensive experimental results demonstrate the effectiveness of
the proposed algorithm.

Overall, the four major contributions of this paper are as
follows:

• A one-stage CNN with an improved explain-ability is
proposed to address the problems of demosaicking and
single-shot dual-time HDRI end-to-end..

• A novel SVC is introduced to process the Bayer image
with or without SVE appropriately.

• An exposure-guidance method is proposed to reduce the
interference of ill-exposed pixels.

• A new HDR dataset is proposed in this paper. Camera
parameters for shooting are provided in detail for other
related HDR researchers to use.

The rest of this paper is organized as follows. Relevant
works are reviewed in Section II. Details of the proposed
algorithm are presented in Section III. Extensive experimental
results are provided in Section IV. Lastly, concluding remarks
are listed in Section V.

II. LITERATURE REVIEW

In this section, the relevant works on HDRI and demosaic-
ing are reviewed.

A. HDRI

1) stack-based HDRI: The most popular method for gener-
ating an HDR image is to capture multiple differently exposed
LDR images and merge all the LDR images into one HDR
image. Such a method is called stack-based HDRI [31]–[34].
All the captured LDR images are firstly mapped into the
corresponding radiance maps through the CRFs [28], and
multiple radiance maps are then fused into an HDR image
via a weighted average manner.

Exposure stacking-based methods often perform well in
static scenes. Nevertheless, in dynamic scenes, the positions of
moving objects in the exposure stack are different, resulting
in ghost artifacts in HDR images. To remove the ghosting
artifacts, one of the input images is selected as the reference
image. All moving objects in other images are synchronized
with those objects in the reference images. Ghost removal
was widely studied, and many interesting algorithms were
introduced [4], [9], [12], [35]–[37]. However, when complex
motion or extreme dynamic range occurs in the scene, all these
algorithms could fail. As indicated in [10], [11], no universal
deghosting algorithm is available. Ghosting artifacts are thus
believed to the Achilles’ heel for the exposure stacking-based
HDRI.

2) Single-Shot HDRI: An alternative solution is to obtain
multiple exposure information of a scene via a single shot, and
this solution is attractive for HDR videos [22] and full light
field reconstruction [38]. Nayar and Suda proposed the concept
of spatially varying exposure (SVE) in [17], [19], such that
diverse pixel values of a single image are differently exposed.
Two types of typical methods can be adopted to achieve SVE.

One type is to change the ISO value at different posi-
tions of the sensor. Given an ISO-based SVE image, a few
methods were proposed to restore the final HDR image,
including the adaptive kernel regression-based method [39],
inpainting-based deinterlacing method [40], joint learning-
based method [41], dictionary-based method [42], adaptive
filter-based method [43], and deep learning-based method [18].
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Nevertheless, the increase in ISO for a high exposure will am-
plify the camera noise, especially in low-lighting conditions.

The other way to achieve SVE is to change exposure times
[13], [20], [21], [44], in which higher-quality images than the
ISO-based approach can be obtained, as indicated in [28]. For
example, an image can be shot with the exposure times varying
every other lines, as shown in Fig. 1. Gu et al. proposed to
adopt the structure of a coded rolling shutter as the readout
structure of a CMOS image sensor [20] and introduced several
coding schemes and corresponding applications. Cho et al.
designed a multistage processing flow to restore dual-time
SVE Bayer images to HDR images gradually [21]. An and
Lee introduced an CNN-based technology to correct Bayer
images, and then adopted demosaicing to obtain HDR images
[13].

The stages of HDR reconstruction and demosaicing are
separated. Thus, the error generated in the previous stage will
affect the posterior one, resulting in error accumulation and
drift. In addition, to deal with the ill-exposed pixels in the
Bayer radiance image, Cho et al. [21] completes the image
by deleting ill-exposed pixels and then interpolating from
neighbors. An et al. [13] takes the complete image as input
and use CNN to correct ill-exposed pixels. Compared with
[21], the CNN is allowed to make full use of the information
in the Bayer radiance image [13], [44], but ill-exposed areas
will also interfere with the imaging results of well-exposed
areas during the calculation process.

B. Image Demosaicing
A color filter array (CFA) is put in front of a CMOS sensor

to use a sensor designed for grayscale images and capture color
images [45]. Each pixel on a Bayer image taken in this way
has only one of red, green, and blue. The image is subjected
to a postprocessing algorithm called demosaicing, which is
to complete the missing information in the Bayer image. In
images without SVE, no brightness difference caused by the
different exposures occurs. Existing demosaicing algorithms
are divided into two categories: model-based [46]–[49] and
learning-based [23], [23]–[27].

To complete the missing two-thirds of pixels in the Bayer
image, conventional model-based demosaicing algorithms
[46]–[50] usually adopt different interpolation schemes for
different data patterns. In learning-based demosaicing [23]–
[27], [51] the missing pixels are interpolated by CNN. How-
ever, existing deep learning-based algorithms share a contrary
interpolation philosophy with conventional demosaicing al-
gorithms. As indicated by [52], the interpolators should be
adaptive to the changing of data pattern. It is unreasonable to
adopt a single same interpolation scheme for all data patterns,
because missing colors that need to be interpolated vary with
different data patterns. Thus, it is the same for deep learning,
where different data patterns should be convolved by different
convolution kernels, and same patterns by same convolution
kernels. But their convolution method [23]–[27] has not been
adjusted accordingly due to the spatial change of the data
pattern.

Moreover, in the Bayer image with SVE, the CRFs cannot
completely eliminate the brightness difference caused by dif-

ferent exposures times. Restoring an HDR image from a dual-
time SVE Bayer image brings more challenges to demosaicing.

III. PROPOSED ALGORITHM

Given a raw Bayer image captured within a single shot,
the CRFs are firstly applied to generate the Bayer radiance
image, and then the exposure-guidance mask is generated from
a raw Bayer image. The Bayer radiance image is restored into
an HDR radiance map via a novel CNN end-to-end, and the
prior information in the exposure-guidance mask can assist the
CNN. Then the CNN includes a reconstruction branch (RB),
and two distinctive components: spatial varying convolution
(SVC) and exposure-guidance method. Both the proposed
SVC and exposure-guidance method make the CNN more
explainable. The overall joint learning framework is shown
in Fig. 2. It should be pointed out that the proposed algorithm
is on top of our previous work [53].

A. Generation of Bayer Radiance Image

The raw input image Z captured within a single shot is a
N-bit (N can be 8, 10, 12, etc.) Bayer image with row-wise
varying exposure times [13], [20], [21], as shown in Fig. 1.
Let ∆tij be the exposure time of the pixel in the ith row, jth
column of Z, then it is given as:

∆tij =

{
τS , i mod 4 = 1 or 2

τL, i mod 4 = 3 or 0
, (1)

where τS and τL are the short and long exposure times,
respectively.

Fig. 3: Brightness differences are partly reduced using CRF.
The slight horizontal stripes represent that the brightness
differences cannot be completely eliminated.

To restore the corresponding HDR image, the Bayer image
Z is firstly converted into a Bayer radiance image E [13]. The
pixel zij of Z is normalized according to its exposure time.

ln(eij) = ln(f−1
cij (zij))− ln(∆tij), (2)

where cij ∈ {R,G,B} is the color channel of zij . The CRF
fcij (·) can be estimated via the method in [28]. f−1

cij (·) is
the inverse function of fcij (·). eij represents the converted
irradiance pixel. Note that CRFs are assumed to be available,
because they can be easily estimated for any digital cameras
and smartphones. As shown in Fig. 3, the brightness differ-
ences caused by the dual-time are partially reduced.

As indicated above, there are three main challenges in
restoring a full-resolution HDR image from a dual-time Bayer
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Fig. 4: Since only a single color (R, G, or B) is recorded
at each pixel position, the visible grids appear in the Bayer
radiance image.

Fig. 5: Horizontal stripes indicating poor information, which
is caused by over- and under-exposure.

radiance image. First, two-thirds of color pixels are missed,
resulting in visible grids, as shown in Fig. 4. Second, the
remaining pixels are carried with varying exposures and the
brightness differences cannot be completely eliminated via
CRFs, like the horizontal stripes shown in Fig. 3. Moreover,
some of the captured pixels are ill-exposed, which makes the
HDR restoration more difficult, as shown in Fig. 5.

B. Spatially Varying Convolution

Fig. 6: Illustration of four different patterns in a 5×5 receptive
field

There are four color patterns in the Bayer image, as shown
in Fig. 6. Conventional demosaicing methods complete pixels
via color pattern-oriented interpolation schemes [46], [54],
[55], which means that there exist different interpolators
corresponding to the four different color patterns. However,
demosaicing has not been adjusted accordingly across various
color patterns in existing deep learning-based methods [24]–
[27]. All color patterns in an image are interpolated by a same
kernel slidingly. It is difficult to realize adaptive interpolation
due to weights sharing in the convolution.

We proposed a novel convolution method to use incomplete
weight sharing for sliding kernels, which is called spatial
varying convolution (SVC) [53]. In the SVC, the kernel
weights are shared across the same patterns but different across
different patterns. Considering the four color patterns in Fig.

Fig. 7: Illustration of four different RGB patterns in a 5 ×
5 receptive field, and the corresponding degraded version of
spatially varying convolution (SVC-D).

6, at least four different kernels need to be included in the
SVC, as shown in Fig. 7.

Fig. 8: Illustration of eight different patterns in a 5×5 receptive
field, where the darker and lighter colors represent the short
and long exposed radiation pixels, respectively.

Fig. 9: Illustration of spatially varying convolution (SVC)
based on 8 patterns.

Our proposed SVC [53] is extended to a more complicated
scenario. In a Bayer image captured by the dual-time shooting,
the exposure time also varies along with image pixels. As
shown in Fig. 3, the brightness differences, caused by the
varying exposure times, cannot be eliminated by converting
a Bayer image into a Bayer radiance image via the CRFs.
Considering both varying colors and varying brightness, there
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are totally eight patterns in a 5×5 receptive field, as shown in
Fig. 8. The darker and lighter colors represent the short and
long exposed radiation values, respectively. Therefore, to adapt
better to more kinds of patterns, the SVC is modified into a
more complicated version, which includes eight interpolation
kernels overall, as shown in Fig. 9. The improved SVC is more
robust to the varying patterns in a dual-time Bayer image. The
details of the improved SVC are given in the following text.

Let xk,v and yk,v be the pixels at position (k, v) in the input
and output of SVC, respectively. w(1), w(2), w(3), w(4), w(5),
w(6), w(7), and w(8) represent different convolution kernels.
The proposed SVC is then defined as follows:

yk,v =
2∑

i=−2

2∑
j=−2

(w
(1)
i,j × xk+i,v+j)

yk,v+1 =
2∑

i=−2

2∑
j=−2

(w
(2)
i,j × xk+i,v+1+j)

yk+1,v =
2∑

i=−2

2∑
j=−2

(w
(3)
i,j × xk+1+i,v+j)

yk+1,v+1 =
2∑

i=−2

2∑
j=−2

(w
(4)
i,j × xk+1+i,v+1+j)

yk+2,v =
2∑

i=−2

2∑
j=−2

(w
(5)
i,j × xk+2+i,v+j)

yk+2,v+1 =
2∑

i=−2

2∑
j=−2

(w
(6)
i,j × xk+2+i,v+1+j)

yk+3,v =
2∑

i=−2

2∑
j=−2

(w
(7)
i,j × xk+3+i,v+j)

yk+3,v+1 =
2∑

i=−2

2∑
j=−2

(w
(8)
i,j × xk+3+i,v+1+j)

, (3)

where k = 0, 4, 8, ..., 4n1 ≤ H , and v = 0, 2, 4, ..., 2n2 ≤
W . H and W are the height and width of input or output,
respectively. Benefiting from the SVC, the data pattern is the
same for each convolution kernel, which can reduce the burden
of network learning. The proposed SVC is one distinctive
component of the proposed CNN.

Fig. 10: Illustration of convolving an RGGB image which uses
1× 1 convolution kernels at stride 1, and convolving a Bayer
image which uses 2 × 2 convolution kernels at stride 2. The
two operations are equivalent.

Note that the difference between the SVC and existing
methods is whether it is the convolution with complete weight
sharing. Specifically, considering the algorithm in [24], the
Bayer image is convolved at stride 1. The convolutional kernel
receives four kinds of patterns during sliding, as shown in

Figure 6. According to the principle of convolution, kernel
weights are shared, by which different data patterns are con-
volved by the same convolutional kernels. Existing CNN-based
demosaicing algorithms adopt two methods. One method is to
set the stride as 2 or 4 [25], by which the kernel receives
only one kind of data pattern. Another method is to rearrange
the single-channel Bayer image into a four-channel RGGB
image, whose length and width are reduced by half. Then the
rearranged image is convolved with a stride of 1 [26], [27].
The above two methods are actually equivalent. For example,
convolving an RGGB image with a 1 × 1 kernel at stride
1 is equivalent to convolving a Bayer image with a 2 × 2
kernel at stride 2, as shown in Fig. 10. Both methods focus on
interpolating only one kind of data pattern, where the other
three kinds of patterns are not considered. While, the SVC
can be adjusted accordingly to the spatial change of the data
pattern.

Moreover the SVC can have flexible variants when the data
pattern and SVE changes. The SVC is only used in the first
layer of CNN, as shown in Fig. 2. Thus, compared to the
weight-sharing convolution method, the SVC improves the
imaging ability of CNN via minimal additional parameters.

C. Reconstruction Branch
The reconstruction branch (RB) shares a similar philosophy

to the networks utilized in image-to-image translation tasks,
such as image demosaicing [56], super-resolution imaging
[57], and image denoising [58]. The RB is composed of
several residual blocks, as shown in Fig. 2. Each block is
realized by an operation of convolution–ReLu–convolution
and an identical mapping. Specifically, the kernel size in each
convolutional layer is set to 3 × 3. The stride and padding
are both set to 1 to maintain the feature resolution during
propagation. The structure of RB is shown in Fig. 2.

D. Exposure-Guidance Method
Over- and under-exposed areas exist in the rows with long-

and short-exposure times, respectively. These ill-exposed areas
are usually dominated by saturation noise. These areas lead
to unreliable and poor information in the radiance map E,
which turns into visible boundaries at the corresponding pixel
positions, as shown in Fig. 5. These ill-exposed areas can
interfere with the CNN and are thus desired to be detected.
To overcome this, an exposure-guidance method is proposed,
which consists of exposure guidance mask and exposure
guidance branch (EGB). The exposure-guidance method is
the other distinctive component of the proposed CNN.

1) Exposure-Guidance Mask: In conventional HDRI al-
gorithms [5], [9], [12], [13] , a threshold value is usually
predefined on a N-bit image to identify the ill-exposed pixels.
To simulate this artificial selection in a CNN-based algorithm,
a exposure-guidance mask M is computed using the following
equation:

mij =


0, ∆tij = τL and zij ≥ (1− α)(2N − 1)

0, ∆tij = τS and zij ≤ α(2N − 1)

1, otherwise

, (4)
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where the mij is the value at position (i, j) in M . N is
the number of bits for the input image and α is a percentage
constant. Note that M has the same size as Z and E. Then,
M can be easily fed into the network along with the radiance
map E, which can be considered as a prior of knowledge to
help the network know which area is ill-exposed. Based on
the rule of thumb in [13] and the sensitivity analysis of α
in Section IV-C, threshold value α is empirically selected as
3.92%.

2) Exposure-Guidance Branch: The mask can be concate-
nated or element-wise multiplied with a Bayer radiance image
as the network input, providing auxiliary prior information.
However, the features of the radiance map are not guided by
the mask in a deep-level manner because of this early fusion.
Inspired by [29], [30], an EGB is proposed to guide the HDR
reconstruction as an auxiliary branch, as shown in Fig. 2. Prior
information can be extracted by this branch, which makes the
CNN explainable.

During propagation, the exposure-guidance mask is first
multiplied with the Bayer radiance image E. Thus, the poor
information from the ill-exposed area will be filtered out,
such that the EGB will tend to utilize the features extracted
from the well-exposed area. Then, the features of the EGB
are embedded into the RB in a multilevel manner to realize
compensation, in which information is fused in a deeper level.
Finally, the network can pay considerable attention to the well-
exposed areas, which provide accurate HDR information.

The proposed EGB consists of n blocks, and each block
includes two convolutional layers and an activation layer. To
reduce the computational cost, the output channels of the first
convolutional layer are compressed in each block.
E can be simply multiplied by M as the input of RB to

make the network focus on the well-exposed areas only. The
experimental results in Section IV-C show that this method
does not work as expected. The possible reason is that the
raw Bayer pattern is destroyed, and the irregular data makes
the network difficult to deal with.

E. Loss Function

The L1 loss function is widely used in deep learning-based
low-level image processing [59], and it is formalized as

Ll1 =
1

3×H ×W

H∑
i=1

W∑
j=1

|rij − r̃ij |, (5)

where rij and r̃ij represent two 3D (R,G,B) vectors at
position (i, j) in the image. The resolution of the ground truth
R and generated HDR image R̃ is H ×W .

To reduce the color deviation between R and R̃, the color
loss Lc is introduced as follows [60]:

Lc =
1

H ×W

H∑
i=1

W∑
j=1

(1− cos(rij , r̃ij)), (6)

where cos(rij , r̃ij) represents the cosine similarity of rij
and r̃ij . Lc is sensitive to color difference. The overall loss
function is given as

Ltotal = Ll1 + λLc, (7)

where λ is a constant, and its value is selected as 0.1.

IV. EXPERIMENTAL RESULTS

A. Implementation Details

1) Datasets Description: Experiments are conducted on
two datasets, VETHDR-Nikon dataset and VETHDR-Canon
dataset, where the different exposures are achieved by varying
the exposure times (VET) instead of changing the ISO. 500
pairs of images are included in each dataset. Each pair consists
of two full-resolution images IL and IS , with long and short
exposure times, respectively. The exposure time ratio and ISO
are fixed as 16 and 800, during shooting respectively. All the
images are resized to 480× 480. Among each of the dataset,
300 pairs are used for training, 100 pairs for validation and 100
pairs for test. To simulate the input dual-time Bayer image Z,
the pixels on every two rows are alternatively sampled from
IS and IL. The ground-truth HDR image Y is obtained by
merging the full-resolution images IS and IL via the method
of [28].

The VETHDR-Nikon dataset is from [61], [62], collected
by a Nikon 7200 camera. It consists of original images in 8-
bit color JPEG files format. The corresponding CRF [28] is
recorded in the dataset. The Bayer Radiance Image can be
calculated from the raw input image Z through the nonlinear
CRF.

The VETHDR-Canon dataset is collected by a Canon 5D4
camera in this paper. It contains 16-bit color images with the
original digital counts for each of the RGB channels, which
are generated from the 16-bit RAW image files by the method
in [63]. Since the RAW files typically have a nearly linear
CRF, the Bayer Radiance Image can be calculated from the
raw input image Z through a simple linear transformation.

2) Comparison Description: In terms of qualitative com-
parison, the results are visualized by sequentially executing the
tone mapping algorithm [64] and the white balance algorithm
[65] on the radiance map. In terms of quantitative comparison,
we choose HDR-MAE, HDR-MSE, HDR-VDP, HDR-PSNR-
RGB, HDR-SSIM-RGB, HDR-PSNR-Y, and HDR-SSIM-Y as
the evaluation metrics. These metrics are measured on the
radiance maps. For the HDR-MAE and HDR-MSE, lower
is better. For the HDR-VDP, HDR-PSNR-RGB, HDR-SSIM-
RGB, HDR-PSNR-Y, and HDR-SSIM-Y, higher is better.
Among them, a perceptually uniform (PU) encoding [66] is
utilzed to enable PSNR and SSIM to be used to evaluate the
quality of HDR images. In addition, the model parameters
(P) and the floating-point operations (FLOPs) are provided as
reference. All evaluation metrics are calculated on the HDR
radiance image, and which are explained as follows:

• HDR-MAE: The average absolute value based on the PU
encoding, which calculates the difference between the test
image and the reference image.

• HDR-MSE: The average square value based on the PU
encoding, which calculates the difference between the test
image and the reference image.
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• HDR-VDP: A high dynamic range visible difference
predictor in version 2.2.2. Its quality correlate score can
be used to evaluate image differences [67].

• HDR-PSNR-RGB: Peak signal-to-noise ratio based on
the PU encoding, which calculates the difference of the
image in the R, G, and B channels.

• HDR-SSIM-RGB: Structural similarity [68] based on the
PU encoding, which calculates the difference of the image
in the R, G, and B channels.

• HDR-PSNR-Y: Peak signal-to-noise ratio based on the
PU encoding, which calculates the difference of the image
in the Y channel.

• HDR-SSIM-Y: Structural similarity [68] based on the PU
encoding, which calculates the difference of the image in
the Y channel.

• P: Number of parameters in CNN.
• FLOPs: The number of floating-point operations required

for network to generate an image.

3) Training Details: The RB and EGB are realized using
16 blocks. We randomly sample 128 × 128 patch from each
input during training. We set the batch size and the number
of iterations to 16 and 2 × 105, respectively. We set λ in
Equation (7) to 0.1. The Adam optimizer with β1 = 0.9
and β2 = 0.99 is used for optimization. The learning rate
is initially set as 2× 10−4 and finally decreased to 1× 10−7

through a cosine annealing schedule. Each model is trained on
an NVIDIA GTX 1080Ti GPU for approximately two days.
All the experiments are implemented using PyTorch.

B. Analysis of SVC

To demonstrate the effectiveness of the SVC, we compare
the SVC with many other alternative methods qualitatively and
quantitatively. We also perform a quantitative comparison of
SVCs with different convolution kernel sizes.

1) Alternative Methods: The SVC is a flexible solution
for processing a dual-time Bayer image, which ensures that
pixels of different color patterns are convolved using different
kernels. When the varying exposures caused by the dual-time
are not considered, the SVC can be degraded to SVC-D [53].
We further increase the kernel size of SVC-D to 5×5, as shown
in Fig. 7. The SVC-D is equivalent to adding the following
conditions to Equation (3).w

(1)
i,j = w

(5)
i,j w

(2)
i,j = w

(6)
i,j

w
(3)
i,j = w

(7)
i,j w

(4)
i,j = w

(8)
i,j

, (8)

In addition to the proposed SVC and SVC-D in this paper, a
few special convolutional layers in deep learning have been
utilized to process a special Bayer image in advance [24]–
[27]. All these layers/methods are summarized in Table I. The
first column indicates the method characteristics, which are
explained as follows:

• Input Shape: The shape of the input Bayer image,
including the height, width, and number of channels.

• Kernel Size: The size of kernel in the first convolutional
layer.

• Stride: The stride during kernel sliding in the first
convolutional layer, including the vertical and horizontal
strides.

• Upsampling Layer: The upsampling layer is realized
by the sub-pixel convolution [69]. 2 and 4 indicate the
scaling factor.

• Output Shape: The shape of the output produced by the
first convolutional layer, including the height, width and
number of channels.

Table I presents that two types of convolutional layers can
be used for processing a Bayer image. One type is that a
convolution kernel of even size extracts the color information
with a stride of even. Then, the downsampled output is resized
to the original resolution by using the upsampling layer, such
as Opt-2-2 [24], Opt-4-2 [25], Opt-4-4 [25], and Opt-RGGB
[26], [27]. Overall, all these convolutional layers are designed
toward the same goal, i.e., to make the color pattern convolved
using the kernel be the same. Opt-base represents the general
convolutional layer with a kernel size of 3× 3.

The convolutional layers in Table I are combined with the
RB to compare their performance. The results of 7 evaluation
metrics on the radiance map are reported in Table II. The
number of parameters is also provided as reference. The
SVC and SVC-D surpass other convolutional layers, which
demonstrates that the network learning can be affected by
the varying color patterns and the SVC is a more robust
solution. Moreover, the leading performance of SVC over
SVC-D can prove the necessity of further consideration of
brightness difference in a dual-time Bayer image.

The qualitative results are shown in Fig. 11. In the first row,
(b), (c), (d), (e), and (f) fail in estimating correct colors. In
the second row, clearer edges are recovered using (h), whereas
other results have different degrees of blurring on edges. The
SVC can make the network restore correct colors and textures.

2) Kernel Size: The SVCs with different kernel sizes are
also experimented. In Table III, SVC-3, SVC-5, and SVC-7
indicate a kernel size of 3× 3, 5× 5, and 7× 7, respectively.
All the SVCs outperform the original convolution (Opt-base).
It can be seen that simply increasing the kernel size of SVC
brings little gains on performance. Thus, the power of SVC
lies in the design philosophy, not the increasing parameters.

C. Analysis of Exposure Guidance

To demonstrate the effectiveness of the exposure-guidance
method, we compare the exposure-guidance method with
many other alternative methods qualitatively and quantita-
tively. We also perform a quantitative comparison of EGBs
with different threshold values α. Moreover, we analyze the
working mechanism of EGB through feature map and βi.

1) Alternative Methods: The exposure-guidance mask is
necessary to incorporate into the main network RB by adopting
the EGB. Besides the EGB, there are three other ways in
incorporating the exposure-guidance mask. The first method
is to multiply the exposure-guidance mask and the Bayer
radiance image to obtain an input matrix with a size of
h × w × 1, in which the value of ill-exposed pixels becomes
0. This matrix is directly fed into the main network RB. The
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TABLE I: Summary of various convolutional layers for Bayer images in existing algorithms.

Method Opt-base Opt-2-2 [24] Opt-4-2 [25] Opt-4-4 [25] Opt-RGGB [26], [27]

Input Shape h× w × 1 h× w × 1 h× w × 1 h× w × 1 h
2
× w

2
× 4

Kernel Size 3× 3 2× 2 4× 4 4× 4 3× 3

Stride (1,1) (2,2) (2,2) (4,4) (1,1)

Upsampling Layer Unused 2 2 4 2

Output Shape h× w × 64 h× w × 64 h× w × 64 h× w × 64 h× w × 64

TABLE II: Quantitative comparison among the baseline, existing operations, and our SVC. The best results are shown in bold,
and the second-best results are shown in blue. The results come from the VETHDR-Nikon test set.

Method HDR-MAE HDR-MSE HDR-VDP HDR-PSNR-RGB HDR-SSIM-RGB HDR-PSNR-Y HDR-SSIM-Y P [106] FLOPs [1011]

Opt-base 2.982 53.874 65.59 41.38 0.9786 43.99 0.9860 1.221 2.813

Opt-2-2 2.911 41.480 65.72 41.72 0.9787 44.12 0.9859 1.222 2.813
Opt-4-2 2.962 42.596 65.55 41.61 0.9782 44.02 0.9856 1.225 2.814
Opt-4-4 2.983 41.916 65.57 41.62 0.9783 44.00 0.9856 1.238 2.814

Opt-RGGB 2.903 41.159 65.68 41.79 0.9788 44.20 0.9859 1.230 2.817

SVC-D 2.889 40.744 65.74 41.84 0.9790 44.21 0.9860 1.227 2.816
SVC 2.881 40.052 65.69 41.91 0.9791 44.33 0.9861 1.234 2.816

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 11: Qualitative comparison among the baseline, existing convolutional layers, and our SVC. (a) Ground truth, (b) Opt-base,
(c) Opt-2-2, (d) Opt-4-2, (e) Opt-4-4, (f) Opt-RGGB, (g) SVC-D, (h) SVC. The results come from the VETHDR-Nikon test
set.

second method is to concatenate the exposure-guidance mask
with the Bayer radiance image to generate a h×w×2 matrix,
which is then fed into the RB. The third method is to use the
exposedness-aware compensation branch (EACB) to achieve
deep-level fusion of masks and features [53]. To make a fair
comparison, for the first two method, we set the number of
residual blocks in the RB as 25. For the third method and the
EGB, we set both the number of blocks in RB and EGB as
16.

The 7 evaluation metrics on the test set are reported in Table
IV. Among them, the result of the multiplication-based method

is worst. This implies that the information is not utilized after
resetting the ill-exposed pixels to 0. The raw RGB pattern
in the Bayer image is destroyed, and the irregular data make
the network difficult to learn. The concatenation-based method
is improved compared with the baseline on the 7 evaluation
metrics, indicating that the awareness of ill-exposed pixels can
improve the performance. However, the prior of the exposure-
guidance mask is not incorporated into the network in a deep-
level way, in which the performance improvements are limited.
The EACB [53] is able to incorporate the prior knowledge
of ill-exposed pixels in the feature level. The proposed EGB
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TABLE III: Quantitative comparison among SVC-3, SVC-5, and SVC-7. The best results are shown in bold, and the second-best
results are shown in blue. The results come from the VETHDR-Nikon test set.

Method HDR-MAE HDR-MSE HDR-VDP HDR-PSNR-RGB HDR-SSIM-RGB HDR-PSNR-Y HDR-SSIM-Y P [106] FLOPs [1011]

Baseline 2.982 53.874 65.59 41.38 0.9786 43.99 0.9860 1.221 2.813

SVC-3 2.941 40.809 65.70 41.80 0.9788 44.19 0.9859 1.225 2.813
SVC-5 2.881 40.052 65.69 41.91 0.9791 44.33 0.9861 1.234 2.816
SVC-7 2.902 40.548 65.68 41.87 0.9790 44.28 0.9860 1.246 2.819

TABLE IV: Quantitative comparison between the baseline and four different methods of using exposure-guidance masks. The
best results are shown in bold, and the second-best results are shown in blue. The results come from the VETHDR-Nikon test
set.

Method HDR-MAE HDR-MSE HDR-VDP HDR-PSNR-RGB HDR-SSIM-RGB HDR-PSNR-Y HDR-SSIM-Y P [106] FLOPs [1011]

Baseline 2.982 53.874 65.59 41.38 0.9786 43.99 0.9860 1.221 2.813

Multiplication 3.314 87.445 64.74 40.42 0.9757 43.24 0.9843 1.886 4.345
Concatenation 2.904 50.018 65.75 41.50 0.9790 44.11 0.9862 1.886 4.346

RB+EACB [53] 2.900 48.224 65.68 41.54 0.9790 44.12 0.9862 2.072 4.773
RB+EGB 2.861 47.835 65.83 41.72 0.9794 44.32 0.9865 1.850 4.263

is a modification of EACB and compensates the RB in a
both multi-level and feature-level way. Since the EACB-based
method [53] only compensates RB once at the deepest level,
the lack of compensation times make the performance im-
provement less obvious than the concatenation-based method.
The method of using the EGB achieves the best results on
all four indicators, which strongly proves the effectiveness of
fusing the prior in a deep- and multi-level way. The EGB can
focus only on the well-exposed area, and can exploit accurate
information for HDR reconstruction. This network structure
design is also more explainable. Moreover, the original infor-
mation of the dual-time Bayer image is preserved. The EGB
also has the highest computational efficiency.

The qualitative results are shown in Fig. 12. The EGB-based
method performs evidently better on the four sets of images,
whereas the other methods cause different degrees of unnatural
color distortions.

TABLE V: β in the trained RB+EGB.
β1 β2 β3 β4 β5 β6 β7 β8

0.6463 0.3757 0.6446 0.8103 0.7389 0.6234 0.4541 0.6906

β9 β10 β11 β12 β13 β14 β15 β16

0.5762 0.6027 0.6895 0.7473 0.8965 0.9381 0.9597 0.9734

2) Threshold Selection: In order to observe the effect of
different α on the EGB, we chose 5 values for testing. The
selected values are all around the empirical value 3.92% given
in [13]. The HDR-VDP scores of RB+EGB and RB under
different α are shown in Figure 13. It can be observed from
the figure that the performance of EGB is less affected by the
changing of α, and all the scores of RB+EGB significantly
surpass the baseline RB. This proves the robustness of the
exposure-guidance method. Since the HDR-VDP score of
RB+EGB is the highest when α = 3.92%, 3.92% is selected
as the threshold.

3) Choice of Weight Function: Equation (4) is compared
with two commonly used weight functions, Debevec’s function
[28] and Robertson’s function [70]. The results of the baseline
and RB+EGB with three different weight functions are shown
in Table VI. The RB+EGB improves significantly from the

baseline no matter what weight functions are adopted. This
demonstrates that the gains are mainly coming from the
design of EGB. Compared with the weight functions in [28],
[70], the Equation (4) achieves comparable performances. The
simple and concise Equation (4) is selected as the final weight
function.

4) Working Mechanism: The learned parameter β in Fig.
2 is reported in Table V. All values are between 0.3757 and
0.9734, which means that the EGB provides useful information
for the restoration of full-resolution HDR images. The β
tends to increase as the network deepens, indicating that the
compensated information from the EGB is important in a deep
level.

The EGB’s output is also visualized. Sixty-four output fea-
ture maps are clustered into one feature map through principal
component analysis (PCA). Then, the clustered feature map is
normalized into 0 to 1 and visulized using a jet color map. as
shown in the second row of Fig. 14.

The first row shows the input dual-time Bayer radiance
image, where the horizontal stripes are caused by ill exposing.
The third row demonstrates the overlay of the EGB’s output
and tone-mapped ground truth. The EGB’s features are con-
centrated on the well-exposed areas. For the ill-exposed areas,
e.g., the sky in column (a) and the building in the distance
in colomn (b), few activations occur. Therefore, the EGB can
focus on extracting features from the well-exposed areas to
compensate for the main branch, which avoids the effect of
saturation noise caused by ill exposing.

More visualization examples are shown in the last column
of Fig. 12. All the other methods lead to unnatural color dis-
tortions. On the contrary, the compensation information from
the EGB enables accurate HDR restoration. This result proves
that the compensation information can effectively improve the
imaging quality of the RB.

D. Ablation Study

Experiments on different models are conducted to validate
the necessity of each part in our proposed framework. We use
an RB with 16 blocks as the baseline and compare 3 models
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(a) (b) (c) (d) (f) (g)(e)

Fig. 12: Qualitative comparison between the baseline and three different methods of using exposure-guidance masks. (a)
Ground truth, (b) baseline, (c) the method of using multiplication, (d) the method of using concatenation, (e) RB+EACB [53],
(f) RB+EGB, (g) overlay of EGB’s feature output and tone-mapped ground truth. The results come from the VETHDR-Nikon
dataset.

with it. When the SVC is not used, it is replaced with Opt-
base. The first one has SVC in the network without EGB. The
second one has EGB in the network without SVC. The third
one is our proposed complete model, which has two SVCs and
one EGB, the SVC is in front of the RB and EGB respectively.

The test results are shown in Table VII and Table VIII.
They present that RB+SVC and RB+EGB have significant im-
provements concerning the RB from the 7 evaluation metrics
points of view, which demonstrates the effectiveness of the
proposed SVC and EGB. In terms of the complete model,
RB+2xSVC+EGB surpasses others in image quality.

In order to verify the effectiveness of SVC and EGB
more comprehensively, the training plots of RB, RB+SVC,
RB+EGB, and RB+2xSVC+EGB are shown in Fig. 15 and

Fig. 16. We can see that though RB has better convergence on
training sets, it is not as robust as RB+SVC and RB+EGB on
validation and test sets. Thus, both SVC and EGB improve the
generalization ability of CNN. In addition, RB+2xSVC+EGB
performs the best across both validation and test sets.

E. Speed Evaluation

In order to evaluate the running speed of our complete
model RB+2xSVC+EGB when dealing with different resolu-
tions, Table IX lists the test results of the RB+2xSVC+EGB
on GTX 1080Ti. Note that the running time of this model are
proportional to the FLOPs and image resolution.
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TABLE VI: Quantitative comparison baseline and RB+EGB with three different weights. The best results are shown in bold,
and the second-best results are shown in blue. The results come from the VETHDR-Nikon test set.

Method HDR-MAE HDR-MSE HDR-VDP HDR-PSNR-RGB HDR-SSIM-RGB HDR-PSNR-Y HDR-SSIM-Y P [106] FLOPs [1011]

Baseline 2.982 53.874 65.59 41.38 0.9786 43.99 0.9860 1.221 2.813

Robertson’s function [70] 2.926 42.686 65.86 41.66 0.9791 44.26 0.9863 1.850 4.263
Debevec’s function [28] 2.879 45.644 65.85 41.67 0.9790 44.35 0.9863 1.850 4.263

Our function 2.861 47.835 65.83 41.72 0.9794 44.32 0.9865 1.850 4.263

TABLE VII: Quantitative comparison of models with different components. The best results are shown in bold, and the
second-best results are shown in blue. The results come from the VETHDR-Nikon test set.

Method HDR-MAE HDR-MSE HDR-VDP HDR-PSNR-RGB HDR-SSIM-RGB HDR-PSNR-Y HDR-SSIM-Y P [106] FLOPs [1011]

RB 2.982 53.874 65.59 41.38 0.9786 43.99 0.9860 1.221 2.813
RB+SVC 2.881 40.052 65.69 41.91 0.9791 44.33 0.9861 1.234 2.816
RB+EGB 2.861 47.835 65.83 41.72 0.9794 44.32 0.9865 1.850 4.263

RB+2xSVC+EGB 2.777 38.713 66.02 42.15 0.9797 44.56 0.9865 1.912 4.352

TABLE VIII: Quantitative comparison of models with different components. The best results are shown in bold, and the
second-best results are shown in blue. The results come from the VETHDR-Canon test set.

Method HDR-MAE HDR-MSE HDR-VDP HDR-PSNR-RGB HDR-SSIM-RGB HDR-PSNR-Y HDR-SSIM-Y P [106] FLOPs [1011]

RB 2.290 26.957 70.41 42.01 0.9889 43.70 0.9922 1.221 2.813
RB+SVC 2.280 25.408 70.43 42.20 0.9890 43.75 0.9921 1.234 2.816
RB+EGB 2.151 24.382 70.67 42.47 0.9895 44.06 0.9925 1.850 4.263

RB+2xSVC+EGB 2.146 23.572 70.64 42.57 0.9897 44.12 0.9926 1.912 4.352

Fig. 13: The HDR-VDP score of the models under different
α. The results come from the VETHDR-Nikon test set.

TABLE IX: The FLOPs and running time required to process
images at different resolutions with RB+2xSVC+EGB.

Input Resolution FLOPs [1011] Time(ms)

120 × 120 0.272 17.943
240 × 240 1.088 71.772
360 × 360 2.448 161.486
480 × 480 4.352 287.086
600 × 600 6.800 448.573
720 × 720 9.793 645.945
840 × 840 13.329 879.202
960 × 960 17.409 1148.346

F. Comparison with Existing Algorithms

The proposed algorithm is compared with seven single-shot
HDRI algorithm [13], [18], [19], [42]–[44], [53] and two one-
stage joint demosaicing algorithms [24], [26] qualitatively and
quantitatively on the two datasets. The denoising and super-
resolution in [24], [26] are disabled because they are not

required by the single-shot dual-time HDRI.
The results about 7 evaluation metrics are reported in Table

X and Table XI. With the fouth least number of parameters
(P), our method achieves the best performance in HDR-MAE,
HDR-MSE, HDR-VDP, HDR-PSNR-RGB, HDR-SSIM-RGB,
HDR-PSNR-Y, and HDR-SSIM-Y on the test set. This supe-
riority is mainly benefited from the proposed SVC and EGB
for the single-shot HDRI.

For a qualitative comparison, the tone-mapping algorithm
[64] is applied to compress the generated radiance maps for
display. The synthesized results and their detailed parts are
shown in Fig. 17. In the first row, the color of flowers is
synthesized incorrectly in (b) and (d). The texture of the flower
is blurred in (e). The images in (c) and (f) are generally slightly
darker than the ground truth. In the second row, the luminance
of images in (c) and (e) is different from the ground-truth,
and the color of images in (b) and (d) is abnormal. Evident
horizontal stripes can also be observed from the results in (e)
and (f).

In a nutshell, the results in (e) and (f) are likely to
have horizontal stripes, which are caused by the brightness
differences in the dual-time Bayer image. The results in (c)
tend to have an inappropriate luminance, whereas the results
in (b) and (d) have unnatural color. Different from these
methods, the proposed algorithm is robust to most scenes,
providing accurate HDR restoration. The overall comparison
demonstrates the effectiveness of the proposed EGB and SVC.

V. CONCLUSION REMARKS AND DISCUSSION

In this paper, a novel CNN-based method is proposed
to restore high-quality HDR images at full resolution for
single-shot HDRI. The proposed CNN includes two distinctive
components, the SVC and the exposure-guidance method by
which the CNN is more explainable. Experimental results
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Fig. 14: Jet color map. The first row shows the input dual-time Bayer radiance image. The second row shows the the output
feature from the last layer of EGB. The third row shows the overlay of the EGB’s feature output and tone-mapped ground
truth. The results come from the VETHDR-Nikon test set.

2k 4k 6k 8k 10k 12k 14k 16k 18k
Iterations

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Lo
ss

 (1
0

2 )

Training set

RB
RB+EGB
RB+SVC
RB+2xSVC+EGB

2k 4k 6k 8k 10k 12k 14k 16k 18k
Iterations

39

40

41

42

43

H
D

R
-P

SN
R

-R
G

B
 (d

B
)

Training set

RB
RB+EGB
RB+SVC
RB+2xSVC+EGB

2k 4k 6k 8k 10k 12k 14k 16k 18k
Iterations

40

41

42

43

44

H
D

R
-P

SN
R

-R
G

B
 (d

B
)

Validation set

RB
RB+EGB
RB+SVC
RB+2xSVC+EGB

2k 4k 6k 8k 10k 12k 14k 16k 18k
Iterations

39

40

41

42

H
D

R
-P

SN
R

-R
G

B
 (d

B
)

Test set

RB
RB+EGB
RB+SVC
RB+2xSVC+EGB

Fig. 15: The training plot on the training set, validation set, and test set. The results come from the VETHDR-Nikon test set.
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Fig. 16: The training plot on the training set, validation set, and test set. The results come from the VETHDR-Canon dataset.

demonstrate that the proposed algorithm outperforms a few
existing algorithms. The proposed algorithm focuses on HDR
images. The idea of joint demosaicing and HDRI within a
single shot can avoid cumulative errors. Since single-shot
HDRI has the advantage of not having to take multiple shots,
the proposed algorithm can also be extended for HDR videos
[22].

Note that the two distinctive components can be extended to
other low-level image processing tasks. The SVC can be easily
inserted into other networks to process Bayer image with or
without SVE, and can be redesigned into flexible variants

when the data pattern or SVE changes. The exposure-guidance
method can be used to study other HDRI problems, such as
[61], [62], allowing CNN to reduce the interference of ill-
exposed pixels. It is worth noting that the proposed algorithm
can be further improved through the related technologies of
augmentation and transfer learning. All these problems will
be studied in our future research.
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TABLE X: Quantitative comparison between existing methods and our complete model. The best results are shown in bold,
and the second-best results are shown in blue. The results come from the VETHDR-Nikon test set.

Method HDR-MAE HDR-MSE HDR-VDP HDR-PSNR-RGB HDR-SSIM-RGB HDR-PSNR-Y HDR-SSIM-Y P [106] FLOPs [1011]

Gharbi et al. [24] 3.699 56.522 64.47 39.79 0.9703 42.06 0.9794 0.561 0.330
Xu et al. [26] 3.191 48.28 65.31 40.89 0.9759 43.31 0.9841 1.021 0.467
An et al. [13] 4.167 71.635 61.64 38.95 0.9659 41.43 0.9776 9.480 4.616
An et al. [44] 6.050 92.197 63.84 37.20 0.9676 38.95 0.9781 53.631 13.196

Akyuz et al. [18] 3.414 61.856 61.90 39.79 0.9692 42.46 0.9803 1.553 3.579
Suda et al. [19] 6.707 334.793 56.60 34.83 0.9428 37.84 0.9596 —- —-

Hajisharif et al. [43] 23.745 1446.367 56.58 25.93 0.8305 27.24 0.8584 —- —-
Serrano et al. [42] 49.531 4041.573 56.70 22.99 0.9239 23.59 0.9326 —- —-

Xu et al. [53] 2.855 40.88 65.81 41.89 0.9790 44.32 0.9861 2.073 4.773

Ours 2.777 38.713 66.02 42.15 0.9797 44.56 0.9865 1.912 4.352

TABLE XI: Quantitative comparison between existing methods and our complete model. The best results are shown in bold,
and the second-best results are shown in blue. The results come from the VETHDR-Canon test set.

Method HDR-MAE HDR-MSE HDR-VDP HDR-PSNR-RGB HDR-SSIM-RGB HDR-PSNR-Y HDR-SSIM-Y P [106] FLOPs [1011]

Gharbi et al. [24] 2.529 36.102 69.77 40.81 0.9864 42.04 0.9899 0.561 0.330
Xu et al. [26] 2.310 28.142 70.37 41.83 0.9886 43.31 0.9918 1.021 0.467
An et al. [13] 3.774 60.669 57.79 38.10 0.9744 39.80 0.9813 9.480 4.616
An et al. [44] 5.547 59.729 69.31 37.76 0.9856 38.30 0.9893 53.631 13.196

Akyuz et al. [18] 3.353 58.502 57.78 38.35 0.9754 40.27 0.9823 1.553 3.579
Suda et al. [19] 9.732 269.536 57.27 31.85 0.9392 34.23 0.9481 —- —-

Hajisharif et al. [43] 10.982 416.847 61.07 29.72 0.8542 31.32 0.8980 —- —-
Serrano et al. [42] 69.954 7468.299 52.54 19.06 0.8725 19.44 0.8841 —- —-

Xu et al. [53] 2.366 25.157 70.59 42.23 0.9895 43.78 0.9925 2.073 4.773

Ours 2.146 23.572 70.64 42.57 0.9897 44.12 0.9926 1.912 4.352
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Fig. 17: Qualitative comparison between existing methods and our complete model. (a) Ground truth, (b) An et al. [44], (c)
Akyuz et al. [18], (d) Suda et al. [19], (e) Hajisharif et al. [43], (f) Serrano et al. [42], (g) Ours. The results come from the
VETHDR-Nikon test set and VETHDR-Canon test set.


	I Introduction
	II Literature Review
	II-A HDRI
	II-A1 stack-based HDRI
	II-A2 Single-Shot HDRI

	II-B Image Demosaicing

	III Proposed Algorithm
	III-A Generation of Bayer Radiance Image
	III-B Spatially Varying Convolution
	III-C Reconstruction Branch
	III-D Exposure-Guidance Method
	III-D1 Exposure-Guidance Mask
	III-D2 Exposure-Guidance Branch

	III-E Loss Function

	IV Experimental Results
	IV-A Implementation Details
	IV-A1 Datasets Description
	IV-A2 Comparison Description
	IV-A3 Training Details

	IV-B Analysis of SVC
	IV-B1 Alternative Methods
	IV-B2 Kernel Size

	IV-C Analysis of Exposure Guidance
	IV-C1 Alternative Methods
	IV-C2 Threshold Selection
	IV-C3 Choice of Weight Function
	IV-C4 Working Mechanism

	IV-D Ablation Study
	IV-E Speed Evaluation
	IV-F Comparison with Existing Algorithms

	V Conclusion Remarks and Discussion
	References

