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ABSTRACT Vehicular Ad Hoc Networks (VANETs) are among the main enablers for future Intelligent 

Transportation Systems (ITSs) as they facilitate information sharing, which improves road safety, traffic 

efficiency, and provides passengers’ comfort. Due to the dynamic nature of VANETs, vehicles need to 
exchange the Cooperative Awareness Messages (CAMs) more frequently to maintain network agility and 

preserve applications’ performance. However, in many situations, broadcasting at a high rate leads to congest 

the communication channel, rendering VANET unreliable. Existing broadcasting schemes designed for 

VANET use partial context variables to control the broadcasting rate. Additionally, CAMs uncertainty, which 

is context-dependent has been neglected and a predefined fixed certainty threshold has been used instead, 

which is not suitable for the highly dynamic context. Consequently, vehicles disseminate a high rate of 

unnecessary CAMs which degrades VANET performance. A good broadcasting scheme should accurately 

determine which and when CAMs are broadcasted. To this end, this study proposes a Context-Aware 

Adaptive Cooperative Awareness Messages Broadcasting Scheme (CA-ABS) using combinations of 

Adaptive Kalman Filter, Autoregression, and Sequential Deep Learning and Fuzzy inference system. Four 

context variables have been used to represent the vehicular context, namely, individual driving behaviors, 

CAMs uncertainty, vehicle density, and traffic flow. Kalman Filter and Autoregression are used to estimate 

and predict the CAMs messages respectively. The deep learning model has been constructed to estimate the 

CAMs' uncertainties which is an important context variable that has been neglected in the previous research. 

Fuzzy Inference System takes context variables as input and determines an accurate broadcasting threshold 

and broadcasting interval. Extensive simulations have been conducted to evaluate the proposed scheme. 

Results show that the proposed scheme improves the CAMs delivery ratio and decreases the CAMs prediction 

errors. 

INDEX TERMS Broadcasting, Beaconing, Context-Aware, Cooperative Awareness, Vehicular Ad Hoc 
Network, VANET, Uncertainty Estimation, Kalman Filter, Deep learning, Fuzzy Inference System 

I. INTRODUCTION 

Every year, millions of people lose their lives and properties 
due to traffic accidents[1]. Billions of dollars are lost due to 

injuries treatment, loss of properties, waste time in traffic, 
and additional fuel consumption and pollutions [1, 2]. These 

problems have direct and/or indirect impact on economic 
activities and sustainability [3]. Studies show that about 95% 
of road collisions could be avoided if the driver of the vehicle 
was warned at least 1.5 seconds prior to a collision [4]. 

Vehicular Ad Hoc Network (VANET) has been emerged to 
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improve road safety, increase traffic efficiency, and provide 
passengers’ comfort [5]. VANET is considered the key 

enabler for future Intelligent Transportation Systems (ITSs) 
applications since it increases the range of awareness beyond 
the driver’s and conventional sensors’ view [6]. Many 
VANET applications have been investigated and developed 
including but not limited to cooperative active safety systems 
(CASS) [7], cooperative collision warning (CCWS) [8], and 

driver assistance systems (ADAS) [9]. 
Most VANET applications and protocols depend on the 
availability of recent and accurate information called 
cooperative awareness messages (CAMs) which contains 
vehicles’ mobility information such as position, speed, 
acceleration, and direction [10]. This information is called 

Cooperative Awareness Messages (CAMs) in the European 
ESTI standard [6], Basic Safety Message Part 1 (BSM.1) in 
the U.S. IEEE standard [8], and context information [34]. 
Due to rapid changes in vehicle movement, CAMs outdated 
quickly. Therefore, vehicles need to exchange their CAMs 
information with the neighboring vehicles at a high rate. 

VANET standards (European [6], and U.S. [8]) suggest that 
vehicles broadcast their recent CAM information every 
100ms (10 message per second for each vehicle) within a 1 
km communication range [11]. However, when vehicle 
density and dynamicity increase, high rate broadcasting 
congests the communication channel, rendering it unreliable 

which affects VANET performance [12]. Therefore, an 
effective broadcasting scheme that can adapt to a given 
situation is essential for VANET [13].  
There are many adaptive broadcasting schemes that have 
been studied for VANET [14]. Many macroscopic variables 
such as channel characteristics, vehicle density, and traffic 

flow were used to control the broadcasting rate in order to 
preserve communication reliability at a certain level [15]. 
Vehicles reduce the broadcasting rate in order to mitigate the 
congestions and enhance CAMs delivery ratio. However, 
simply decreasing the broadcasting rate results in a 
homogeneous broadcasting rate which adversely affects the 

accuracy of the applications [16][46]. Such adaptation hides 
important parts of vehicle movement patterns and degrades 
application performance [17].  As opposed to the 
homogeneous broadcasting rate in which vehicles use the 
same broadcasting rate, recent broadcasting schemes use 
heterogeneous broadcasting based on microscopic variables, 

namely, the individual driving behavior such as speed and 
direction to adapt with dynamic nature of the VANETs [18]. 
As the CAMs contain the highly predictable vehicles’ 
mobility information, vehicles use self CAMs prediction 
algorithms to predict their own CAMs and only broadcast the 
CAMs when the prediction error exceeds a certain limit. 

Such an approach not only reduces the number of 
broadcasted messages but also preserves the applications’ 
accuracy.   
Generally, the use of microscopic variables proves to be 
more effective and efficient than the use of macroscopic 
variables [19]. However, such an approach has two main 

drawbacks, the first is that this approach uses a predefined 

fixed accuracy threshold for the broadcasting.  The CAMs 
are broadcasted if the self-prediction error was greater than 

the predefined threshold. However, due to the dynamic 
environmental noises in the vehicle environment, CAMs 
have dynamic uncertainty and the use of a predefined static 
threshold for broadcasting increases CAMs uncertainty and 
thus the prediction error which unnecessarily increases the 
rate of broadcasting. The second limitation of this approach 

is that it is unaware of the vehicle density and traffic flow. 
When vehicle density or/and traffic flow increases the 
number of contentions on the channel increases, which 
increases CAMs drop ratio and, consequently, negatively 
affects applications' accuracy. To sum up, both broadcasting 
approaches (micro- or macro-based) have considered the 

vehicular context only partially, leading to an increase in the 
number of unnecessary broadcasting which congests the 
communication channel and degrades VANET performance. 
CAMs uncertainty which is context-dependent has been 
widely neglected which, consequently, increases the 
broadcasting of inaccurate CAMs and thus degrades the 

performance. Therefore, it is necessary that the broadcasting 
scheme can effectively determine which and when a CAMs 
should be broadcasted. 
To this end, this paper proposes a Context-Aware 
Cooperative Awareness Messages Broadcasting Scheme 
(CA-ABS) that improves the CAMs delivery ratio and 

reduces neighboring CAMs prediction error. Both 
microscopic and macroscopic variables have been 
considered to represent the vehicular context and considered 
for broadcasting. Particularly, individual driving behavior 
(microscopic), and CAMs uncertainty, vehicle density, and 
traffic flow (macroscopic). An Adaptive Kalman Filter 

algorithm is used to estimate and generate CAMs messages 
under different types of environmental dynamic noises. 
Vehicles locally construct their self CAMs prediction models 
using autoregression and share the models’ parameters with 
the neighboring vehicles. A sequential deep neural network 
[20] was used to construct the CAMs uncertainty estimation 

model using a realistic dataset that contains ground truth 
vehicles’ trajectories and CAMs estimated using Adaptive 
Kalman Filter algorithm. A fuzzy inference system has been 
constructed which takes the context variables as input and 
the calculates two dynamic broadcasting thresholds. The first 
threshold is the accuracy-based threshold that determines 

which CAM should be broadcasted while the second is a 
broadcasting interval that determines when CAMs should be 
broadcasted. In doing so, not only the communication 
reliability is improved (by improving the CAMs delivery 
ratio) but also the applications' accuracy (by reducing the 
CAMs prediction error).  

The contribution of this paper is three-fold. 

1) A context-aware CAMs broadcasting scheme that uses 

both microscopic (individual driving behavior) and 

macroscopic variables (CAMs uncertainty, vehicle 

density, and the traffic flow) to represent the vehicular 

context and adapt the broadcasting decision according 

to the given situation. 
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2) CAMs uncertainty estimation model using the 

sequential deep learning utilizing real traffic datasets to 

evaluate the accuracy level of the CAMs estimator to be 

used for broadcasting.  

3) Fuzzy-Based broadcasting inference algorithm which 

takes both microscopic and macroscopic variables as 

input and makes the broadcasted decision.   

4) An extensive experimental evaluation was conducted to 

show the improvement that CA-ABS scheme had 

achieved. 

The rest of this paper is organized as follows: related work 

is discussed in Section II, the description of the proposed CA-

ABS scheme is detailed in Section III, Section IV presents the 

performance evaluation, and results are presented in Section 

V. Results analysis and discussion is elaborated in Section VI, 

and finally, Section VII presents the conclusion and the future 

works. 

II.  RELATED WORK 

In VANET, CAMs broadcasting schemes have received a lot 
of attention from researchers and industries due to their 
prominent impact on VANETs performance [14]. Because 
VANET is highly dynamic, vehicles need to exchange their 

mobility information at high rate so as to be aware of each 
other mobility status. Vehicles broadcast their mobility 
information in a form of cooperative awareness messages 
(CAMs) at high rate in order to preserve VANET agility and 
performance. Due to the highly dynamicity of vehicles, 
CAMs outdated quickly. Accordingly, high broadcasting 

rate of CAM messages is a fundamental requirement in 
VANET to continuously track neighboring vehicles’ 
mobility status and make sure that the applications are 
always updated [21]. However, the high rate of CAMs 
broadcasting congests the communication channel, 
rendering it unreliable, which impacts both the network’s 
and applications’ performance [22].   

Many broadcasting schemes have been proposed that aim at 

reducing the number of broadcasted messages to avoid 

channel congestion and improve the delivery ratio. Figure 1 

depicts the taxonomy of the existing broadcasting scheme. As 

shown in the figure, there are two main approaches static and 

adaptive. In the static approach, either solely the broadcasting 

rate with default channels characteristics is fixed or channel 

optimization is conducted with a fixed broadcasting rate. 

However, it is a common belief in the VANET research 

community that a static broadcasting scheme is not suitable for 

a highly dynamic environment. Accordingly, as oppose to the 

static broadcasting scheme assumes by VANET standards, 

most of the existing broadcasting schemes proposed for 

VANET are adaptive. As shown in Figure 1, there are three 

main adaptive approaches have been proposed, namely, 

Transmission Power Control (TPC-based), the adaptive 

broadcasting rate (ABR), and hybrid (both TPC and ABR) 

such that proposed by Ahmad et. al., 2019 in [18]. The main 

goal of these schemes is to guarantee a continuous stream of 

accurate CAMs distributed for each neighboring vehicle. 

TPC-based broadcasting schemes such as [23] aim at reducing 

the number of channel competitors by controlling the 

transmission power of senders’ vehicles. That is, when the 
transamination power is decreased, the communication range 

also decreases, accordingly; the number of communicating 

vehicles is reduced thus the channel utilization is improved. 

However, according to Shih et al. (2011), TPC-based 

broadcasting has an undesirable impact on communication 

reliability. The main limitation of this approach is that it 

increases the number of hidden nodes and consequently, 

increases the CAMs collusions. Besides, reducing the 

communication range results in reducing the awareness area 

which may affect the critical applications in VANET. 

 

 
FIGURE 1. Taxonomy of the CAMs Broadcasting Schemes in VANET (The highlighted boxes illustrate the areas of the improvement of the proposed 
broadcasting scheme)
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ABR-Based broadcasting reduces the number of 

broadcasted messages by controlling the broadcasting rate 

[24]. The goal to adapt the broadcasting rate according to a 

given situation, either based on driving behavior, traffic 

situation, or channel characteristics. The approach can be 

further categorizing into two methods. The first method is to 

use macroscopic variables such as vehicle density, traffic flow, 

channel characteristics to control the broadcasting interval. 

For example, the schemes proposed by [25] used vehicle 

density and flow to control the broadcasting rate. Authors in 

[26] used the number of received messages as an indication of 

the channel status and thus control the broadcasting rate. 

Although using macroscopic variables can reduce the number 

of broadcasting, such broadcasting schemes lead to hiding 

some portion of the CAMs information uncaptured by the 

neighboring vehicles which impact the accuracy of the CAMs 

streams. Moreover, due to the predictable nature of CAMs 

such schemes broadcast unnecessary CAMs because they are 

highly predictable. Moreover, the uncertainties of the CAMs 

have been ignored.  
Microscopic-Based broadcasting schemes relay on 
individual driving behavior to broadcast the CAMs [22].  

That is, CAMs are broadcasted if driving behavior changes 
in terms of speed and direction. Vehicles used a prediction 
model to predict the un-broadcasted CAMs. During 
maneuvering or emergency, vehicles' speeds and directions 
become unstable thus the generated CAMs are broadcasted 
because they are unpredictable. The main advantage of this 

approach that it reduces the number of compotators on the 
communication channel as not all vehicles maneuver or in 
emergencies at the same time. Not only the number of 
broadcasters is reduced in this approach but also the number 
of broadcasted CAMs. However, this approach suffers in 
many ways. The broadcasting decision depends on a 

predefined static threshold represents the acceptable CAM 
accuracy. For example, authors in [17] and [27] use a one-
meter prediction error as the broadcasting threshold. If the 
prediction error is higher than one meter a CAM is 
broadcasted otherwise its omitted. Such schemes assume a 
stationary noise environment and static uncertainty. 

However, due to the environmental noises, the CAMs' 
uncertainty is dynamic which leads to high prediction error. 
Thus, a vehicle sends a high rate of unnecessary CAMs. 
Therefore, the use of a predefined static threshold in a highly 
dynamic environment is the main drawback of such an 
approach. Another limitation of this approach that is unaware 

of the dynamic change of vehicle density and traffic flows 
which are important vehicular context variables that 
influences the broadcasting performance. Feng et al., in [13] 
proposed an adaptive broadcasting rate scheme to avoid the 
rear-end collision in dense scenarios in which both 
individual vehicle safety and vehicle density are considered. 

However, such a scheme is unaware of the CAMs 
uncertainty. Therefore, the performance of the CAMs 
broadcasting scheme for VANET is still an open research 
problem. An effective broadcasting scheme that guarantees 

a continuous stream of accurate CAMs distributed for each 
neighboring vehicle.  

To sum up, many dynamic factors represent vehicular 

context that should be considered in the design of the 

broadcasting scheme for VANET such as environmental 

noises, vehicle density, traffic flows, and driving behavior. 

However, the existing broadcasting scheme proposed for 

VANET partially considered these context variables. For 

example, either macroscopic variables such as vehicle density, 

traffic flows, channel characteristics, or microscopic variables 

such as driving behavior were used for the adaptation. 

Moreover, the CAMs' uncertainty has been ignored in the 

existing schemes. Resulted in an ineffective broadcasting 

scheme for VANET. This study has bridged this gap by 

proposing a context-aware CAMs broadcasting scheme using 

Adaptive Kalman Filter, Autoregression Modelling, Deep 

learning, and Fuzzy logic. An adaptive Kalman Filter 

algorithm is used to estimate the CAMs messages from harsh 

dynamic noise environments. A sequential deep learning-

based model [20]  was trained using realistic vehicle 

trajectories and Kalman filter parameters to estimate the 

uncertainty of the CAMs. The sequential deep learning model 

can effectively capture the temporal relation among sequential 

data [20]. Both microscopic and macroscopic traffic variables 

are used to represent the vehicular context and are used as 

input to the fuzzy inference system. The output of the fuzzy 

system determines which and when CAMs are broadcasted in 

each vehicle. 

III.  THE PROPOSED SCHEME  

Figure 2 depicts that the proposed scheme consists of five 

modules as follows, (1) Self CAMs estimation module, (2) 

Self CAMs prediction module, (3) Neighboring CAMs 

prediction module, (4) Context estimation module, and (5) 

Broadcasting decision module. In Figure 2, the first module 

takes the vehicle’s mobility information such as position, 
speed, and direction from the sensor’s unit as input and the 
output is the estimated CAMs of the subject vehicle including 

the status of the estimation algorithms. Meanwhile, the second 

module takes the last broadcasted CAMs as input and the 

output is the current predicted CAMs. That is, an optimal 

prediction when the predicted and the estimated CAMs are 

identical. The third module is used to predict the unreceived 

neighboring vehicles CAMs every time epoch. A time epoch 

in this study is 100ms. Flowing VANET communication 

standards, each time epoch consists of two intervals service 

channel interval SCHI 50ms and control channel interval 

(CCHI) 50ms. Vehicles exchange their generated CAMs 

during the CCHIs. The fourth module is used to drive and 

estimate the context variables while the fifth module is to 

evaluate the context and take the broadcasting decision. 

As shown in Figure 2, vehicles obtain their CAMs 

information such as position speed and acceleration from the 

positioning sensor (e.g. GPS), Speedometer, Accelerometer, 

and Gyroscope in the vehicles’ sensors units.  Because the 
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sensors are susceptible to different kinds of environmental 

noises due to the vehicles’ mobility in harsh environments, the 

CAMs' information is contaminated by noises. Therefore, the 

purpose of the CAMs Estimator (first module) in the proposed 

scheme is to remove the noise from CAMs’ elements. The Self 
CAMs Prediction is used to simulate the neighboring vehicles 

in predicting the CAMs messages form previously 

broadcasted messages so that to verify whether the recent 

CAMs can be broadcasted and can be predicted by 

neighboring vehicles. The Self prediction error of a CAM, 

which is the difference between the estimated CAM by the 

first module and the predicted CAM by the second module, 

indicates the emergency level of CAM. Because the context in 

VANET is highly dynamic, the context estimator module in 

the fourth module is constructed to estimate the context. For 

example, when the vehicle density and traffic flow change, the 

reliability of the communication channel is also changing.  

Similarly, the environmental noises are changes dynamically 

due to vehicle movement in a different environment which 

affect the accuracy of the CAMs estimator and CAM predictor 

in first and second module respectively. That is, the 

uncertainty of the CAMs depends on the ability of the 

estimator algorithm to filter the environmental noises which 

vare always context-dependent. Accordingly, the vehicular 

context is represented by four variables, namely, Self CAM 

prediction error which represents individual driving behavior, 

Uncertainty of the estimated CAMs which represent the type 

of the noise and harsh environment of the vehicles, the vehicle 

density, and traffic flows. The first variable is microscopic 

(individual situation) while the other three variables are 

macroscopic (a common situation) and used to calculate the 

broadcasting threshold and broadcasting rate. While self-

prediction error can be accurately calculated by the difference 

between the predicted and estimated CAMs, the uncertainty, 

density, and traffic flow need to be approximated. Because the 

uncertainty of the CAMs is a new context variable that is 

considered in this study, a deep neural network is used to 

estimate it. The vehicle density and traffic flow are estimated 

using conventional methods used by other researchers. As the 

context variables are fuzzy, they were represented by fuzzy 

sets. A fuzzy inference system was designed which takes the 

context variables are input and the output is the suitable 

prediction accuracy threshold and the suitable maximum 

broadcasting interval threshold. Thus, vehicles broadcast the 

newly CAMs, if the CAM prediction error and period from 

last broadcasting exceeds the broadcasting threshold and 

broadcasting rate. 

 
Figure 2, The Proposed Adaptive Broadcasting Rate Scheme 

A. CAMs Estimation Module  

This module is responsible for estimating the CAMs 
elements after being acquired from the vehicle’s sensors. The 
accuracy of the CAMs directly influences the accuracy of the 
application in VANET. Because the position information, 

which is the important element in the CAM messages, is 
measured under a harsh and dynamic noise environment, 
their accuracy should be maintained before being sent for 
vital applications. Accordingly, an effective estimation 
algorithm is essential to generate CAMs with high accuracy. 
However, the dynamic and heterogenous noises in the 

vehicles’ environment, make improving the accuracy of this 
information is a challenging task. Among many estimation 
algorithms proposed for VANET, the Enhanced Innovation 

Adaptive Estimation-based Kalman Filter (EIAE-KF) 
algorithm [14] is used for this study. The EIAE-KF 
algorithm employs the Kalman Filter's invention errors to 
estimate the surrounding noise affecting the positioning 
sensors thus update the measurement noise covariance in 
real-time. Consequently, the Kalman filter becomes more 

reliable, and the estimated CAM is more accurate. 
Let 𝑥𝑘 be the state vector at time epoch 𝑘, 𝐹 is Kalman Filter 

State Transition and 𝑦𝑘 is the measurements vector contains 
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the measurements that are obtained from GPS and (IMU) 
sensor units every time epoch.  
𝑥𝑘 = [  

   
𝑝𝑥𝑝𝑦𝑣𝑥𝑣𝑦𝑎𝑥𝑎𝑦]  

   , 𝐹 = [  
   1 0 𝑇0 1 00 0 1 0   0.5𝑇2 0𝑇    0    0.5𝑇20    𝑇     00 0 00 0 00 0 0 1      0           𝑇   0   1         00   0        1  ]  

   , 𝑦𝑘 = [  
   
𝑝𝑥(𝐺𝑃𝑆)𝑝𝑦(𝐺𝑃𝑆)𝑣𝑥(𝐼𝑀𝑈)𝑣𝑦(𝐼𝑀𝑈)𝑎𝑥(𝐼𝑀𝑈)𝑎𝑦(𝐼𝑀𝑈)]  

       (1)  
 

where 𝑝𝑥(𝐺𝑃𝑆) and 𝑝𝑦(𝐺𝑃𝑆)is the latitude and longitude of the 

vehicle, respectively, 𝑣𝑥(𝐼𝑀𝑈)𝑣𝑦(𝐼𝑀𝑈)𝑎𝑥(𝐼𝑀𝑈) and 𝑎𝑦(𝐼𝑀𝑈) are 

the velocity and acceleration of the vehicle, respectively, in 
both the latitude and longitude direction. Algorithm 1 
describes the procedure used to estimate the CAMs by each 
vehicle. The symbols used in the algorithm are described in 
Table 1. The highlighted lines in the algorithm are the 
prediction model, the measurements noise covariance 

estimation, and CAM estimation, respectively of the used 
EIAE-KF algorithm. We refer the reader to reference [14] for 
more detailed description of the EIAE-KF CAMs Self-
Estimation algorithm.  

 
TABLE I 

EIAE-KF Symbols Description 
Symbol Description  𝑄𝑘, 𝑅𝑘  The process and measurements noise covariance at time 

epoch 𝑘, respectively. 𝑥𝑘|𝑘−1 ,𝑥𝑘|𝑘 The predicted and estimated CAM states, respectively. 𝑦𝑘 The projected measurements from the prior state 𝑥𝑘|𝑘−1 𝑃𝑘+, 𝑃𝑘− The posterior and prior error covariance, respectively. 

H Measurements Mapping Matrix �̌�𝑘 The innovation error sequence 𝐶𝑘, 𝐶𝑘 The actual and estimated covariance of the �̌�𝑘 sequence, 

respectively. 𝜌𝑘  the sample autocorrelation coefficients 

𝑢𝑘 The y-intercept of the Yule − Walker  model 𝐾𝑘  Kalman gain at time epoch 𝑘 

  

B. Self CAMs Prediction Module 

This module aims at predicting the new CAMs of the sender 
vehicles (self-Prediction) by projecting the last broadcasted 
CAMs ahead on the time to the current CCHI. A CAM 
prediction model is used by the sender vehicles to simulate 

the prediction process of the neighboring vehicles so that the 
sender vehicle ensures that the neighboring vehicles can 
maintain accurate prediction. That is vehicles, predict their 
own new CAM and compare it with that was obtained by the 
CAM estimation model. If the difference between the 
predicted CAM and the estimated CAM is high, then the 

CAM is nominated to be broadcasted. Since vehicles flow in 
predefined roads, their CAMs are highly predicted assuming 
linear driving behavior. However, due to the change of 
driving behavior such as acceleration, deceleration, and 
change direction, the CAM prediction is a nonlinear process. 
Therefore, a prediction algorithm that capture vehicles 

maneuvering should be used to provide more accurate 
prediction. Accordingly, the self-predictor algorithm that is 
used in DSA-ABR [17], has been used in this study to predict 
the own CAM messages. The prediction model in DSA-ABR 
scheme can reduce the broadcasting rate while accurately 
predicting the lost or omitted mobility messages [28]. The 

operation concept of DSA-ABR algorithm is if a vehicle's 
movement is stable, a lower broadcasting rate is used. In 
contrast, if the vehicles mobility behavior changes 
frequently; more CAMs are broadcasted. Because not all 
vehicles run into a critical driving situation at the same time, 
the competition of the shared communication channel will be 

low. DSA-ABR consists of two parts: Self-Predictor and 
Neighboring-Predictor. Sender vehicles use the self-
predictor algorithm to check whether their own CAMs can 
be broadcasted utilizing the last broadcasted messages or not. 
The self-predictor algorithm uses the Kalman Filter 
algorithm with autoregression techniques to predict the 

recent CAM. The speed 𝑣𝑡  and direction 𝜃𝑡 at time epoch t 
is represented by the following equations. 𝑣𝑡 = 𝑎0 + 𝑎1𝑣𝑡−1 + 𝑎2𝑣𝑡−2 + ⋯+ 𝑎𝑛𝑣𝑡−𝑛        (2) 𝜃𝑡 = 𝑏0 + 𝑏1𝜃𝑡−1 + 𝑏2𝜃𝑡−2 + ⋯+ 𝑏𝑚𝜃𝑡−𝑚      (3) 
where 𝑎0 ,𝑎1…𝑎𝑛  𝑎𝑛𝑑𝑏0 ,𝑏1…𝑏𝑚  are the models’ 
parameters for speed and acceleration, respectively 

meanwhile 𝑛 and 𝑚 are the number of lagged epochs (or the 
prediction window).  The Yule-Walker method [29] is used 

to estimate the coefficients 𝜙 of both speed and directional 
models as follows.  𝜙 = Γ−1𝑟                                                  (4) 
where 𝜙 is a vector that contains the unknown model 
parameters, Γ is the auto-covariance matrix (a square 

coefficients matrix), and 𝑟 is the autocorrelation vector. The 

models’ parameters 𝜙 are broadcasted with the CAMs so as 
the neighbouring vehicles can accurately capture the sender 
vehicle’s trajectories (See Algorithm 2). As shown in 

 

Algorithm 1:  EIAE-KF CAMs Self-Estimation 

// Step1: Initialization Phase 

1: Initialize 𝑥𝑘−1,𝑄𝑘−1, 𝑅𝑘−1,𝑃𝑘−1,𝐹 ,  H   

2: FOR Each Time Epoch 𝑘  

 

// Step 2: State Prediction Phase 

3: Predict the current CAM     𝑥𝑘|𝑘−1 = 𝐹𝑥𝑘−1  

4: The prediction error covariance 𝑃𝑘− = 𝐹𝑃𝑘−1+ 𝐹𝑇 +   𝑄𝑘    
 

// Step 3: Measurement Update Phase   

5: IF (Measurement Phase Started), THEN Obtain new 𝑦𝑘  

6:         �̌�𝑘 =  𝐻𝑥𝑘|𝑘−1 

7:         Calculate �̌�𝑘 = 𝑦𝑘 − 𝑦𝑘  //innovation error 

8:         Calculate 𝐶𝑘 = 1𝑚 ∑ �̂�𝑖�̂�𝑖𝑇𝑘𝑖=𝑘−𝑚+1  

9:           Solve using Yule − Walker 𝑧𝑘 = 𝜌 ∗ 𝑧𝑘−1 + 𝑢𝑘  

10:         𝐶𝑘 = 𝐶𝑘 1−𝜌𝑘2 ∗ [ 1 𝜌 𝜌2𝜌 1 𝜌. . . 𝜌3 . 𝜌𝑛−1𝜌2 . 𝜌𝑛−2. . .𝜌𝑛−1 𝜌𝑛−2 . . . 1 ] 
11:        Compute  �̂�𝑘 = 𝐶𝑘 − 𝐻(𝑃𝑘−𝐻𝑇)   
12: ELSE wait until new measurements are received END IF 

 

// Step 4: State Correction Phase and Uncertainty Estimation  

13: Compute Kalman Gain 𝐾𝑘 = 𝑃𝑘−𝐻𝑇𝐶𝑘−1
 

14:  Estimate the  CAM state   𝑥𝑘|𝑘  = 𝑥𝑘|𝑘−1 +  𝐾𝑘 �̌�𝑘 

15:  Compute 𝑃𝑘+  = (𝐼 −  𝐾𝑘𝐻 )𝑃𝑘−   
16: Compute 𝑄𝑘 = 𝐾𝑘𝐶𝑘𝐾𝑘𝑇     
17: CONTINUE LOOP 
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Algorithm 2, 𝜙 also used to update the Kalman filter 
transition matrix 𝐹𝑘 and the prediction of the CAM denoted 

by 𝑥𝑘|𝑘−𝑛 at time epoch 𝑘 is as follows. 𝑥𝑘|𝑘−𝑛 = 𝐹𝑘(𝜙𝑘−𝑛)𝑥𝑘−𝑛                                          (5) 
where 𝑘 − 𝑛 is the time epoch when 𝜙 is constructed  𝑥𝑘−𝑛 
the last broadcasted CAM by sender vehicle. 

C. Neighboring CAMs Prediction Module 

This module contains the second part of the DSA-ABR 

prediction which is responsible for predicting the CAMs of 

neighboring vehicles with 100ms resolution for each 

surrounding vehicle. That is, in each 100ms, a vehicle either 

receives or predicts the CAMs of the vehicles in its vicinity 

(See Algorithm 2, lines 1 to 5). More specifically, during the 

control channel interval (CCHI) vehicles receive the 

broadcasted CAMs and store them into  𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔_𝐶𝐴𝑀𝑠_𝑇𝑎𝑏𝑙𝑒 (𝑁𝑇) while in the service 

channel interval (SCHI) they predict the omitted or lost CAMs 

of the neighboring vehicles (See Algorithm 2, lines 6 to 11). 

The Kalman Filter algorithm assisted by the prediction model 

presented in Equation (5) is used for tracking the CAMs 

messages of the neighboring vehicles (See algorithm 2 lines 

10 to 13). Neighboring vehicles use this algorithm to predict 

the omitted and undelivered CAMs (𝑥𝑘) from previously 

delivered ones 𝑥𝑘−𝑛. Thus, in each time epoch 𝑘 the 

neighboring CAMs table 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔_𝐶𝐴𝑀𝑠_𝑇𝑎𝑏𝑙𝑒  (𝑁𝑇) 
contains the CAMs information of all neighboring vehicles.  

D. Context Estimation Module  

In this study, four variables were selected to represent 

vehicular context, namely, the individual driving behavior, 

uncertainty of the CAM estimation model, vehicle density, 

and traffic flow. The individual driving behavior has been 

represented by the prediction error of the Self CAM prediction 

algorithm. This is logical representation because the prediction 

error increases as the driver behavior changes due to the 

assumption of constant transition in the prediction model 

(constant speed or direction). The environmental noises have 

been represented by the uncertainty of the CAM estimator. 

The uncertainty of the CAM messages is estimated using a 

constructed deep learning model which was trained using 

realistic traffic dataset and simulated noises. The vehicle 

density and traffic flow both represent the traffic conditions 

and status. Vehicle density and traffic flow have been 

estimated based on the recent delivered CAMs messages from 

neighboring vehicles. The following subsection describes the 

methods used to estimate these contextual variables.  

1) INDIVIDUAL DRIVING BEHAVIOR ESTIMATION  

The individual driving behavior has been represented by the 

prediction error of the Self CAM prediction algorithm. To 

calculate the prediction error of vehicle 𝑖 at time epoch 𝑘, the 

following equation is used. �̌�𝑘 = |𝑥𝑘|𝑘−1 − 𝑥𝑘|𝑘|                           (6) 
Where �̌�𝑘 the prediction error (Kalman innovation 

sequence), 𝑥𝑘|𝑘, 𝑥𝑘|𝑘−1is the estimated and predicted CAMs, 

respectively. The prediction error has been used as a context 

variable in many previous studies such as in [30].   

2) UNCERTAINTY ESTIMATION MODEL 

To estimate the uncertainty of the estimated CAM 𝑈(𝑥𝑘|𝑘), 

a sequential deep learning neural network model [20] has 
been constructed to estimate the uncertainty of the CAM 
messages. Unlike traditional machine learning techniques 
that need manual features engineering by an expert, which is 

time-consuming and error-prone, deep learning can 
automatically extract the representative high order features 
embedded in the data. The sequential model is used in this 
study because it can learn the temporal dependency in the 
sequence, thus capture the temporal change in the noises on 
the vehicle's sensors [20]. As opposed to the statistical 

approach employed in [14] where the sample size used to 
estimate the context is affecting the estimation accuracy, the 
proposed sequential model can approximate the uncertainty 
through learning from previous scenarios utilizing the 
current instances without the need for a large sample size.  
The proposed uncertainty estimation model comprises three 

layers, namely, input, hidden, and output layer. The input 
layer contains 40 dense neurons. The hidden layer contains a 
dense of 12 neurons while the output layer contains one 
neuron. The Relu activation function is used in the input and 
hidden layers while the Sigmoid function is used in the 
output layer. The learning rate has been tuned during the 
validation process.  

To train the uncertainty estimation model, a ground truth 
labeled dataset is needed. Thus, a real traffic dataset namely 
the Next Generation SIMulation [31](NGSIM) dataset was 
used to construct the CAMs uncertainty estimation model. 
Three types of environmental noises were simulated and 
injected into vehicles’ trajectories to represent the 
uncertainties of the CAMs under different environments. 
Noise Type I (Stationary Noise) usually occurs when 
vehicles travel in an open sky environment, while Noise 
Type II (Dynamic Noise) occurs in dynamic environments 
when vehicles travel through under trees, and clouds in 

 

Algorithm 2:  Neighboring CAMs Prediction  

1: FOR Each Time Epoch 𝑘  

 

//During the CCHI CAMs Receiving 

2: WHILE time < CCHI THEN 

3:          𝑹𝒆𝒄𝒊𝒆𝒗𝒆𝒅  𝐶𝐴𝑀𝑠 →  𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 _𝐶𝐴𝑀𝑠_𝑇𝑎𝑏𝑙𝑒 (𝑁𝑇) 
4:          𝑨𝒑𝒑𝒆𝒏𝒅 𝑠𝑒𝑛𝑑𝑒𝑟  𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑖𝑑𝑠 →  𝑉  
5:          𝑚𝑜𝑑𝑒𝑙𝑠’  𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝜙 𝑜𝑓 𝑠𝑒𝑛𝑑𝑒𝑟𝑠 𝑣𝑒ℎ𝑖𝑐𝑙𝑒s  →  𝜙𝑘 and  

             𝑼𝒑𝒅𝒂𝒕𝒆 𝑲𝒂𝒍𝒎𝒂𝒏 𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔  𝑜𝑓 𝑠𝑒𝑛𝑑𝑒𝑟𝑠 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠  

 

//During SCHI CAMs Prediction  

6: FOR each vehicle 𝑖 in the CAM Table DO  

7:       𝐈𝐅 𝑣𝑒ℎ𝑖𝑐𝑙𝑒  𝑖 ∉ V THEN 

                // Predict the Lost or Omitted CAMs  

8:            ∀ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒  𝑖 ∈ 𝑁𝑇: 𝑥𝑘|𝑘−𝑛 = 𝐹𝑘(𝜙𝑘−𝑛)𝑥𝑘−𝑛  

9:     𝑮𝑬𝑻 𝐿𝑎𝑠𝑡 𝑈𝑝𝑑𝑎𝑡𝑒𝑑  𝐾𝑎𝑙𝑚𝑎𝑛  𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠  

10:   𝐾𝑎𝑙𝑚𝑎𝑛  𝑈𝑝𝑑𝑎𝑡𝑒  𝑃ℎ𝑎𝑠𝑒   →  𝑥𝑘|𝑘 

11:    𝑥𝑘|𝑘 → 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 _𝐶𝐴𝑀𝑠_𝑇𝑎𝑏𝑙𝑒 

12: CONTINUE LOOP 
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which water bodies absorb the positioning signal. 
Meanwhile, Noise Type III (Dynamic and Corelated Noise) 

occurs in specific places such as mid-town areas, particularly 
beside skyscrapers, under bridges, tunnels, or earth features. 
Table 1 lists the three types of environmental noises, their 
purposes, and used mathematical functions. EIAE-KF 
algorithm was used to estimate the CAMs messages under 
the three types of injected noises. The Kalman Filter 

parameters and its innovation errors as well as vehicle speed 
and acceleration were used as a features vector while the 

estimation errors 𝑒𝑘𝑖  was used as the target as follows.  Lets  𝑦𝑘𝑖  is the innovation error of Kalman filter of vehicle 𝑖 and 

time epoch 𝑘,  𝐾𝑘𝑖 is the Kalman Gain, 𝑃−𝑘𝑖  and 𝑃+𝑘𝑖  are the 
prior and the posterior error covariance matrices of Kalman 

Filter, and 𝑣𝑘𝑖 , 𝑎𝑘𝑖  are the speed and the acceleration of the 
vehicle, then the feature vector is represented by the 

following attributes. 𝐼𝑛𝑝𝑢𝑡: 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠  𝑉𝑒𝑐𝑡𝑜𝑟  {𝑦𝑘𝑖 , 𝐾𝑘𝑖 , 𝑃−𝑘𝑖  , 𝑃+𝑘𝑖 ,𝑣𝑘𝑖 , 𝑎𝑘𝑖 } 
→ 𝑡𝑎𝑟𝑔𝑒𝑡  {�̌�𝑘 = |�̌�𝑘|𝑘−1 −  �̌�𝑘|𝑘|}                    (7) 

where 𝑒𝑘𝑖  is the actual estimation error and 𝑥𝑘,𝑖, �̇�𝑘𝑖  are the 

actual and estimated CAMs, respectively. The aim is to 

estimate the uncertainty of the own CAMs by each vehicle 
to adapt the broadcasting decision. The estimated 
uncertainties along with vehicle density, traffic flow, and 
vehicle behavior are used as inputs to a Fuzzy Inference 
System   to adapt both the broadcasting threshold and the 
broadcasting rate.  

For the training 60% of the dataset has been used for the 
training and 10% are for validation, and 30% of the data used 
for the testing. Figure 3a shows the training and validation 
performance of the proposed uncertainty estimation model 
and Figure 3b presents the test performance. As shown in 
Figure 3b, the RMSE of the proposed model is under 0.16 

meter (16 centimeters) in most tested vehicles which 

indicates its efficacy for the proposed scheme. 

3) VEHICLES DENSITY ESTIMATION MODEL 

Each vehicle estimates the number of vehicles in its vicinity 
(in its communication range). By calculating the number of 
the unique CAMs received from neighboring vehicles in the 
last number of consecutive CCHIs, the vehicle density can 
be estimated. Although, some previous researchers used 
channel characteristics to estimate the number of vehicles in 

the communication range of a given vehicle. For instance, 
[26] used the messages delivery ratio for the estimation. As 
the message delivery ratio indicates the congestion level, the 
total number of vehicles in the transmission range can be 
estimated [26]. Although such a method can be effective 
when the broadcasting rate is homogeneous, it is not 

effective in heterogenous broadcasting rate schemes where 
vehicles have a different broadcasting rate.  Because the 
estimation will be biased to those vehicles which broadcast 
their CAMs in the given CCHIs. The density estimated by 
this method has been reported by VANET researchers as 

accurate and reliable [32]. 

4) TRAFFIC FLOW ESTIMATION MODEL 

According to the traffic flow theory, the traffic flow is a 
function of the vehicle density and their average speed [32]. 
As the received CAMs from neighboring vehicles contains 

their velocity information, each vehicle can calculate the 
average speed of neighboring vehicles. Thus, in this study, 
the Greenshield’s model, which also has been considered as 
an accurate model in traffic engineering, is used to estimate 
the traffic flow as follows. 𝑇𝑟𝑎𝑓𝑓𝑖 𝑐𝐹𝑙𝑜𝑤(𝑓𝑘) = 𝐴𝑣𝑒𝑟𝑎𝑔 𝑒𝑆𝑝𝑒𝑒𝑑 × 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (𝑑𝑘)                          (8) 

 
TABLE I 

THE SIMULATED ENVIRONMENTAL NOISES 
Noise Type Noise Model Description  

Stationary Noise 𝑁(𝜇 = 0, 𝜎 = 10) Open sky environment  

Dynamic Noise 𝑁(𝜇 = 0, 𝜎 = 20 ∗ 𝑟𝑎𝑛𝑑()) Under trees and Clouds 

Dynamic and Corelated Noise 𝑒𝑡 = 𝛼𝑒𝑡−1 + 𝑁(𝜇 = 0, 𝜎 = 5 ∗ 𝑟𝑎𝑛𝑑 ()) 
Mid-town areas, e.g. beside skyscrapers, under bridges, tunnels 

or earth features. 

 
Figure 3 The performance of the proposed uncertainty estimation model in terms of RMSE (a) Training, validation loss, and (b) The RMSE of the 
estimation error for the tested samples. 
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Figure 4 Input membership functions of (a) Prediction Error (Accuracy), (b) Vehicle Density, (c) Traffic Flow, (d) Uncertainty -  and the output 
membership functions of (e) broadcasting threshold (BT), (f) broadcasting interval size (BI).  
 

E. Broadcasting Decision Module 

Due to the rapid change in vehicle movements, the CAMs 

become outdated quickly. The performance of many 
applications in VANET relies on the availability of accurate 
and recent CAMs broadcasted by neighboring vehicles. The 
accuracy and reliability of CAMs messages depend highly 
on vehicular context. However, most of the existing 
broadcasting schemes either ignore the context or partially 

considers the context. The decision when and which CAM 
message should be broadcasted is context-dependent and it 
is the key for striking a balance between accuracy and 
reliability of the CAMs. Therefore, this study adopts two 
broadcasting variables the accepted broadcasting accuracy of 
the CAMs and the broadcasting rate.  

The vehicular context is represented by four variables 
namely, driver driving behavior, environmental noises, 
vehicle density, and traffic flows which are highly dynamic 
in VANET which influence the accuracy and reliability of 
the CAMs and thus VANET performance.  A fuzzy inference 
system is developed which takes the context variables as 

input and the outputs are the accepted broadcasting accuracy 
of the CAMs (the broadcasting threshold) and the 
broadcasting interval. Fuzzy logic is a generalization of crisp 
logic (Boolean logic) where the truth value of a variable is 
represented by a real number between one and zero. Fuzzy 
logic has been frequently used for decision making in 

artificial intelligence applications. A fuzzy inference system 
(FIS) is a rule-based system that can mimic human reasoning 
to automate their way of making decisions. FIS takes the 
fuzzy input vectors and maps it to output vectors using the 
fuzzy rules. Therefore, in this study, fuzzy logic has been 
used to assign output values to the broadcasting threshold 

and broadcasting interval based on a given vehicular context-
based fuzzy sets. Mamdani fuzzy inference method was 
followed to construct the proposed fuzzy inference system in 
this study as it is intuitive and easy to understand and derived 
based on human expert knowledge. The fuzzy inference 
system developed by this study consists of  three main steps, 

fuzzification, inference engine, and defuzzification. In the 
fuzzification step, the input and output fuzzy variables were 
identified, fuzzy sets were constructed, and the membership 
functions were selected.  Figures 4 (a),(b),(c), and (d) shows 
the input membership functions of Prediction Error 
(Accuracy), vehicle Density, traffic Flow, CAMs 

Uncertainty, respectively while Figure 4 (e), and (f) depicts 
the output membership functions of broadcasting threshold 
(BT) and broadcasting interval size (BI), respectively. The 
selection of the membership function has been inferred based 
on experience from previous experiments and application 
requirements. For example, Gaussian membership function 

is used for the uncertainty and traffic flows because they are 
chaotic and tend to have normal distribution as observed 
from the output of the uncertainty model and real traffic flow 
datasets. As recommended by [33] and for simplicity, in this 
study, the trapezoidal membership functions are used to 
represent the membership of fuzzy sets of the other used 

variables, namely, accuracy, density, broadcasting threshold 
(BT), and broadcasting interval (BI). Barua et al., [33] 
provided a theoretical explanation of why trapezoid 
functions work well in practical applications. Besides, 
according to Ross [34], as long as there is some amount of 
overlap among the fuzzy sets, the choice of the shapes of the 

membership function becomes less important. Therefore, the 

(a) (b) (c) 

(d) (e) (f) 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040903, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017) 

10 VOLUME XX, 2017 

selection of sample shapes such as triangular and trapezoidal 
membership functions is judicious as long as there is some 

degree of overlapping among the fuzzy sets. The overlap 
among the fuzzy sets develops the power of a membership 
function [34]. Based on trial and error, a triangular based 
fuzzy membership function which is a particular case of the 
trapezoidal functions were used to tune the broadcasting 
rate.[22].  The value of inputs variables uncertainty, density, 

and traffic follows were normalized between 0 and 1 because 
their values vary between a minimum and maximum range.  
Meanwhile, the output variables have been selected to be in 
the range of 0.5m to 5m range for the broadcasting threshold 
(BT)and from 100ms to 2s for the maximum broadcasting 
interval (BI).  

The second step in constructing the fuzzy inference system 
is designing the inference engine. The inference engine 
consists of a knowledge base that is represented by the fuzzy 
rules which are developed using expert knowledge and used 

to articulate the action in linguistic form. The knowledge-
based rules map the input to the output based on a careful 

understanding of broadcasting behavior under vehicular 
context.  Thus, 52 rules were constructed and used to build 
the fuzzy inference system.  Table 2 illustrates the 
knowledge-based of the used fuzzy rules. Each rule 
combines the input variables and the output is the fuzzy 
decision in terms of fuzzy set. For example, if the accuracy 

variable in terms of the prediction error is medium, density 
is medium, and traffic flow is high and the uncertainty is low, 
then, according to the knowledge base in Table 2, the 
broadcasting threshold (BT) is assigned to the low fuzzy set 
and the broadcasting interval (BI) is assigned to the short 
fuzzy set. This is intuitive reasoning as the broadcasting 

threshold should be lower when the CAMs prediction error 
and the uncertainty are low. Meanwhile, the CAMs updating 
interval is set to small due to the high traffic flow when 
CAMs messages become outdated quickly.    

Figure 5 The correlation between the input variables and output variables (a) Density and Prediction Error vs Broadcasting Threshold   (b) Flow and 

Prediction Error vs Broadcasting Threshold   (c) Uncertainty and Prediction Error vs Broadcasting Threshold   (d) Density and Flow vs Broadcasting 

Threshold   (e) Density and Uncertainty vs Broadcasting Threshold  (f) Flow and Uncertainty vs Broadcasting Threshold  (g) Density and Prediction Error 

vs Broadcasting Interval   (h) Flow and Prediction Error vs Broadcasting Interval   (i) Uncertainty and Prediction Error vs Broadca sting Interval   (j) 

Density and Flow vs Broadcasting Interval  (k) Density and Uncertainty vs Broadcasting Interval   (l) Flow and Uncertainty vs Broadcasting Interval    

 

TABLE II 

KNOWLEDGE STRUCTURE BASED ON FUZZY RULES 

INPUT VARIABLE OUTPUT VARIABLE 

Prediction  

Error Density Flow Uncertainty BT BI 

LOW LOW LOW LOW LOW LONGER 

LOW LOW LOW MEDIUM MEDIUM LONGER 

LOW LOW LOW HIGH HIGH LONGER 

LOW LOW MEDIUM LOW LOW LONG 

LOW LOW MEDIUM MEDIUM MEDIUM LONG 

LOW LOW MEDIUM HIGH HIGH LONGER 

LOW LOW HIGH LOW LOW SHORT 

LOW LOW HIGH MEDIUM MEDIUM MEDIUM 

LOW LOW HIGH HIGH HIGH SHORT 

LOW MEDIUM LOW LOW MEDIUM LONGER 

LOW MEDIUM LOW MEDIUM HIGH LONG 

LOW MEDIUM LOW HIGH HIGH MEDIUM 

LOW MEDIUM MEDIUM LOW MEDIUM MEDIUM 

INPUT VARIABLE OUTPUT VARIABLE 

Prediction  

Error Density Flow Uncertainty BT BI 

LOW MEDIUM MEDIUM MEDIUM HIGH MEDIUM 

LOW MEDIUM MEDIUM HIGH HIGH LONG 

LOW MEDIUM HIGH LOW MEDIUM LONGER 

LOW MEDIUM HIGH MEDIUM HIGH LONG 

LOW MEDIUM HIGH HIGH HIGH LONG 

LOW HIGH LOW ANY HIGH LONGER 

LOW HIGH MEDIUM LOW MEDIUM LONGER 

LOW HIGH MEDIUM MEDIUM HIGH LONGER 

LOW HIGH MEDIUM HIGH HIGH LONGER 

LOW HIGH HIGH ANY HIGH LONGER 

MEDIUM LOW LOW LOW LOW MEDIUM 

MEDIUM LOW LOW MEDIUM MEDIUM LONG 

MEDIUM LOW LOW HIGH HIGH LONGER 

MEDIUM LOW MEDIUM ANY LOW LONGER 

MEDIUM LOW HIGH LOW LOW MEDIUM 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

(i) (j) 

(k) (l) 
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INPUT VARIABLE OUTPUT VARIABLE 

Prediction  

Error Density Flow Uncertainty BT BI 

MEDIUM LOW HIGH MEDIUM MEDIUM LONG 

MEDIUM LOW HIGH HIGH HIGH LONG 

MEDIUM MEDIUM LOW LOW LOW MEDIUM 

MEDIUM MEDIUM LOW MEDIUM MEDIUM MEDIUM 

MEDIUM MEDIUM LOW HIGH HIGH LONGER 

MEDIUM MEDIUM MEDIUM LOW LOW LONG 

MEDIUM MEDIUM MEDIUM MEDIUM MEDIUM LONG 

MEDIUM MEDIUM MEDIUM HIGH HIGH LONG 

MEDIUM MEDIUM HIGH LOW LOW SHORT 

MEDIUM MEDIUM HIGH MEDIUM MEDIUM MEDIUM 

MEDIUM MEDIUM HIGH HIGH HIGH LONG 

MEDIUM HIGH ANY ANY HIGH LONGER 

HIGH LOW LOW LOW LOW MEDIUM 

HIGH LOW LOW MEDIUM MEDIUM LONG 

HIGH LOW LOW HIGH HIGH LONGER 

HIGH LOW MEDIUM LOW LOW MEDIUM 

HIGH LOW MEDIUM MEDIUM MEDIUM LONG 

HIGH LOW MEDIUM HIGH HIGH LONGER 

HIGH LOW HIGH LOW LOW LONG 

HIGH LOW HIGH MEDIUM MEDIUM LONGER 

HIGH LOW HIGH HIGH HIGH LONGER 

HIGH MEDIUM LOW LOW MEDIUM LONG 

HIGH MEDIUM LOW MEDIUM MEDIUM LONG 

HIGH MEDIUM LOW HIGH HIGH LONGER 

HIGH MEDIUM MEDIUM ANY MEDIUM LONGER 

HIGH MEDIUM HIGH ANY MEDIUM LONGER 

HIGH HIGH ANY ANY HIGH LONGER 

 
Since the output of Mamdani’s inference system is a fuzzy 
set, the third step is to perform the defuzzification to obtain 
the real values of control output variables. In the 

defuzzification step, the inferred fuzzy sets outputs are 
converted to crisp values. The centroid defuzzification 
method is used in this study for defuzzification. The centroid 
method calculates the center of gravity of the combined 
fuzzy sets of the input variables. The following formula is 
used to compute the centroid of fuzzy sets in the rule. 

𝒙𝑪𝒆𝒏𝒕𝒓𝒐𝒊𝒅 =  ∑ 𝝁(𝒙𝒊 )𝒙𝒊𝒊∑ 𝝁(𝒙𝒊)𝒊                                       (𝟗) 

where 𝜇(𝑥𝑖) is the membership value of a point 𝑥𝑖 in the 
fuzzy set. According to the formula in (8), to calculate the 
center of gravity of our previous example. Suppose the 
prediction accuracy is medium 0.5 (2.5 meter), the density is 
medium o.37 (74 vehicles per communication range), the 

flow is high 0.6 (62 vehicle per minute), and the uncertainty 
is low 0.1 (±0.5 meter), then the crisp value of BT is 0.12 

and BI 0.11. Thus, by denormalized these results a value of 
0.65 meters is assigned to the broadcasting threshold (BT), 

and 0.43 second is used for the broadcasting interval (BI).  
The chart in Figure 6 summarizes the flow of the proposed 
CA-ABS scheme. As shown in Figure 6, at each time epoch 𝑘, if SCHI begins then each vehicle collects the CAM 
elements from its sensors. Then, the EIAK-F algorithm (See 
Algorithm 1) is used to estimate the Self CAM (𝑥𝑘|𝑘) and 

stores it in the Local CAMs Table. Each vehicle then 
constructs a prediction model utilizing the series of past 
acquired CAM messages stored in the Local CAM table. The 

prediction model coefficients are stored in the Self CAM 
Predictor table. Then vehicles use the latest broadcasted 
model’s coefficients (∅𝑘−𝑛) to predict the current CAM 

messages (𝑥𝑘|𝑘−𝑛). The first context variable, which is the 

prediction error (𝑧𝑘), is obtained by subtracting the 
difference between the estimated CAMs (𝑥𝑘|𝑘)  and the 

predicted CAMs (𝑥𝑘|𝑘−𝑛) vehicles. Meanwhile, the second 

context variable namely the uncertainty of 𝑥𝑘|𝑘 is estimated 

using the developed deep learning prediction model. The 
third and fourth context variable are the vehicles density and 
traffic flow, respectively which were estimated by counting 
the received CAMs stored in the neighboring CAMs’ table 
and by using the traffic flow theory. During the CCHI, 

vehicles apply the Algorithm 2 to receive the broadcasted 
messages during the CCHI and predict the undelivered 
CAMs messages during the SCHI. The four estimated 

context variables, namely, the self-prediction error 𝑧𝑘 , the 
CAMs uncertainty 𝑢𝑘, vehicle density   𝑑𝑘, and traffic flow 𝑓𝑘 . Then, vehicles fuzzify the context variables, combine 
them, obtain the output fuzzy sets using the knowledge base 
in Table 2, and defuzzify the output set using the centroid 
method (See Equation 9). Finally, the broadcasting decision 
is taken. 𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑖𝑛𝑔 _Decision = {1 𝑧𝑘 > 𝐵𝑇 𝑜𝑟 𝑡 > 𝐵𝐼 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         (10) 
Thus, if the CAMs nominated for the broadcasting, vehicles 
broadcast it during the CCHI and the time t elapsed since last 

broadcasting is set to zero and the generated self-prediction 
coefficient is kept to be used in the next prediction. 
Otherwise, the elapsed time is incremented by 100ms 
according to the size of the time epoch, the generated self-
prediction coefficient is dropped and no message is 
broadcasted at this time epoch.
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Figure 6. Flowchart of the Proposed Context-Aware Adaptive Cooperative Awareness Messages Broadcasting Scheme (CA-ABS). 

 

IV.  PERFORMANCE EVALUATION 
This section describes the setup of experimental environment 

in which the implementation of the proposed scheme was 
conducted.  The procedure of evaluation the proposed 
scheme is explained. Then, the performance measures are 
described. 

 

A. Experimental Setup 

Nine traffic scenarios each of which has different vehicle 

density have been generated using SUMO (Simulation of 

Urban MObility). Vehicles trajectories have been generated 

with 100ms resolution. Thus, each vehicle is can generate 10 

CAMs every second. Different driving regimes were 

considered in scenarios such as flowing, free flow, and lane 

change behavior to resample a realistic driving behavior. To 

simulate CAMs uncertainty the three simulated environmental 

noises which are explained in the previous section were 

injected into the vehicle’s trajectories. IEEE 802.11p/WAVE 

protocol was used as the communication protocol [16, 35].  

The communication between vehicles was simulated in 

MATLAB that closely follows the IEEE 802.11p/WAVE 

protocol specifications and assumptions as described in [35, 

36]. The used network simulator in this study was also used in 
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many previous studies [28, 37, 38]. In the simulation, the 

transmission range was set to 1000 meters with a maximum 

broadcasting rate set to 10 messages per second. The 

broadcasting rate is vary based on the context which is 

estimated by the proposed scheme CA-ABR.  CAMs size was 

set to 500 bytes, the data rate was 3Mbps and the two-ray path-

loss propagation model was used. The study assumes that the 

channel is isotropic and homogeneous across the road, and 

vehicles use similar communication and inference range. The 

detailed simulation parameters of the communication are 

listed in Table III.  A real traffic dataset namely the Next 

Generation SIMulation [31] (NGSIM) dataset was used to 

construct the CAMs uncertainty estimation model. Vehicles 

trajectories were replayed, in Matlab programing 

environment. In each 100ms, vehicles use the adaptive 

Kalman algorithm (EIAE-KF) to estimate their own newly 

generated CAMs and use the constructed uncertainty 

estimation model to estimate the estimation error of the 

adaptive Kalman algorithm (EIAE-KF). Vehicles try to 

predict their own CAMs from a lagged broadcasted CAMs.  

The lag is the time when previous CAM was broadcasted. The 

Fuzzy inference system has two outputs, the broadcasting 

threshold, and the minimum broadcasting interval. Vehicles 

use these two outputs to determine which and when CAMs 

should be broadcasted. 
TABLE III  

SIMULATION PARAMETERS 

Configuration Name  Description  

Communication Protocol  IEEE 802.11p/WAVE 

Communication Range 1000 m 

Maximum broadcasting rate 10 CAMs per second 

message size 500 bytes 

Data Rate  3Mbps 

propagation model two-ray path-loss 

Contention window. 2 to 8 (32-128 microsecond) 

Vehicles Density  {10,30,50,70,90,110,130,150,170}  

Vehicles Per Kilometer Range  

Vehicles Speed 50-120 Kilometer Per Hour  

Driving Regime  Mixed  

B. Performance Measures 

Three performance measures were used to evaluate the 

effectiveness of the proposed Scheme namely, the root means 

square error of the neighboring CAMs prediction, the ratio of 

CAMs broadcasting reduction, and the ratio of the CAMs 

successfully delivery. The following equations present these 

three metrics.  𝐶𝐴𝑀𝑠 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 (𝑚) ≡ 𝑅𝑀𝑆𝐸  

= √∑(𝐴𝑐𝑡𝑢𝑎𝑙 𝐶𝐴𝑀−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐶𝐴𝑀)2𝑇𝑜𝑡𝑎𝑙 𝐶𝐴𝑀𝑠      (11) 
𝐶𝐴𝑀𝑠 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 (%)=  1 − 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑒𝑑 𝐶𝐴𝑀𝑠 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝐶𝐴𝑀𝑠    (12) 𝐶𝐴𝑀𝑠 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑅𝑎𝑡𝑖𝑜 (%) =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑦 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝐶𝐴𝑀𝑠𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑒𝑑 𝐶𝐴𝑀𝑠    (13) 

V.  EXPERIMENT RESULTS 

In this section, the performance of the proposed context-
aware broadcasting scheme is evaluated. The proposed 
scheme is compared with four related schemes, namely, the 
DSA-ABR[28], PPBR[17], PPBR[30], TSABR which is a 
fuzzy-logic based broadcasting scheme proposed by [22] 

augmented by Kalman Filter prediction model inspired by 
[27], and the baseline broadcasting scheme which is the 
standard 802.11p scheme assisted by Kalman Filter 
prediction model which is also inspired by [27]. CAMs are 
generated according to the standard (One CAM every 100ms 
by each vehicle). Every 100ms, each vehicle expects to 

receive the neighboring vehicles’ CAMs during the CCHI 
and uses the neighboring CAMs prediction model to predict 
the missing (omitted, dropped, or lost) CAMs during SCHI.  
Vehicles generate the CAMs at the end of the SCHI and 
contend for utilizing the channel to broadcast their messages 
at the beginning of the CCHI. In case of congestion, vehicles 

drop the unsent CAMs at the beginning of SCHI and 
regenerate a new CAMs at the end of the new SCHI to be 
broadcasted in the next CCHI. Three types of environmental 
noises were injected into vehicle trajectories to study the 
performance of the proposed scheme under different 
uncertainties of the generated CAMs. Nine traffic scenarios 

were also studied in each of which a different number of 
vehicles were used (varies between 10 vehicles and 170 
vehicles). Figures 7, 8, and 9 show the performance of the 
proposed scheme comparing with related ones under the 
three studied environmental noises, respectively. 

As shown in Figures 7a, 8a, and 9a, the accuracy of the 

predicted CAMs messages in terms of RMSE is compared 

under different vehicles densities and the three tested noise 

conditions while Figures 7b, 8b, and 9b illustrate the CAMs 

reduction ratio. The performance in terms of CAMs delivery 

ratio is presented in Figures 7c, 8c, and 9c.  Figure 10 presents 

a summary of the for the three studied performance measures 

namely, the CAMs prediction accuracy in Figure 10a, the 

CAMs reduction accuracy in Figure 10b, and the CAMs 

delivery ratio in Figure 10c. 
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FIGURE 7. Stationary Noise (Noise Type I) (a) Prediction RMSE(m) (b) Broadcasting Reduction Ratio (%) (c) CAMs Delivery Ratio (%). 

 

 

FIGURE 8.  Dynamic Noises (Noise Type II) (a) Prediction ACCURACY RMSE(m) (b) Broadcasting Reduction Ratio (%) (c) CAMs Delivery Ratio (%). 

 

 

FIGURE 9.  Dynamic and Correlated Noise (Noise Type III)  (a) Prediction ACCURACY RMSE(m) (b) Broadcasting Reduction Ratio (%) (c) CAMs 
Delivery Ratio (%). 

 

Figure 10 shows a summary of the performance of the 

proposed scheme comparing with related work. The results 

were obtained by averaging the results obtained from different 

scenarios Figure 10a illustrates the prediction accuracy in 

terms of RMSE. From Figure 10a, it can be observed that the 

proposed broadcasting schemes that broadcast the CAMs 

messages according to the individual driving behavior 

(microscopic variables) achieve higher prediction accuracy 

than those who use the macroscopic variables (density and the 

traffic flow) for adapting the broadcasting rate. The proposed 

scheme outperforms the others studied schemes in the three 

studied situations. Figure 10b shows that the proposed scheme 

achieved the highest reduction of the broadcasted CAMs 

comparing with the other studied schemes which interpret why 

the proposed scheme achieves the highest CAMs delivery 

ratio as shown in Figure 10c comparing with the other studied 

schemes. 

 

(a) (b) (c) 

(a) (b) (c) 

(a) (b) (c) 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040903, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017) 

VOLUME XX, 2017 15 

 
Figure 10 Summary of the Comparison (a) Prediction ACCURACY RMSE(m) (b) Broadcasting Reduction Ratio (%) (c) CAMs Delivery Ratio (%)

VI.  ANALYSIS AND DISCUSSION 

In this paper, a context-aware CAMs broadcasting scheme is 

introduced. The context is represented by four variables 

namely driving behavior, vehicles' density, traffic flow, and 

environmental noises. These four variables influence the 

performance of the broadcasting schemes and thus VANET 

performance.  Most of the existing broadcasting scheme either 

ignore the context or partially considered the context.  For 

example, while the FBR ignores the context, DSA-ABR and 

PPBR consider only the driving behavior to adapt the 

broadcasting rate of each vehicle, and TSABR uses the vehicle 

density and traffic flow to adapt the broadcasting rate. None 

of these schemes have studied the impact of the environmental 

noises on the performance of the broadcasting in VANTE. 

Moreover, none of these schemes have considered the four 

aforementioned context variables in the design of the 

broadcasting scheme for VANET. In the proposed scheme 

CA-ABS, the uncertainty of the own CAMs messages is 

predicted by the sender vehicles and then used to adapt the 

broadcasting rate. In doing so the number of broadcasted 

messages is reduced. Accordingly, the number of vehicles that 

compete to utilize the channel is reduced. Consequently, the 

message delivery ratio and the prediction accuracy of the 

neighboring vehicles’ CAMs are improved. Similarly, the 
message delivery is affected by traffic density i.e. when traffic 

density grows, the number of contend vehicles also increases 

until the channel is saturated and bandwidth is consumed and 

the channel is overloaded. Accordingly, most of the vehicles 

drop the CAMs causing low delivery ratio and thus high 

prediction error of neighboring vehicles CAMs. 

As can be observed in Figures 7, 8, and 9, the number of 

communicating vehicles (traffic density) and the uncertainty 

of the CAMs (environmental noises) affect the prediction 

accuracy of the neighboring CAMs messages. The prediction 

error increases as one or both of these variable increases as 

shown in Figures 7a, 8a, and 9a.  The prediction accuracy of 

the proposed scheme is more stable compared with the other 

studied schemes. The prediction error of the FBRS and 

TSABR schemes is high due to the ignorance of the 

uncertainty of the broadcasted CAMs. Both schemes failed to 

achieve an appropriate reduction of the broadcasted CAMs 

(see Figure 7b, 8b, and 9b) which causes high broadcasting of 

unnecessary messages which in turn increases the channel 

congestion and decreases the number of successful delivered 

MACs (see Figure 7c, 8c, and 9c). Meanwhile, DSA-ABR and 

PPABR schemes achieve higher prediction accuracy than 

FBRS and TSABR schemes due to the consideration of 

individual driving behavior as shown in Figures 7a, 8a, and 9a. 

This is because these schemes achieve a higher reduction of 

the broadcasted CAMs each CCHI only the important 

messages are broadcasted. However, DSA-ABR and PPABR 

schemes failed to archive appropriate reduction of the 

broadcasted CAMs when the accuracy of the generated CAMs 

is low due to the inconsideration of the CAMs' uncertainty. 

Consequently, the successfully delivered CAMs delivery and 

thus increasing the prediction error. The increase of the 

prediction error is the major effect of the rise in the number of 

broadcasted messages and the uncertainty of the CAMs' 

information either due to the increase of vehicle density or the 

increase of unnecessary broadcasting. The proposed CA-ABS 

scheme manages to achieve a higher reduction of unnecessary 

messages when the message uncertainty increases and 

manages to adapt to the change of vehicle's density. 

It is worthy to note that the proposed CA-ABR and DSA-ABR 

use the EIAE-KF algorithm for the acquisition of the CAMs 

elements including the position, the speed, and the 

acceleration from vehicles ‘sensors. Meanwhile, the PPABR 
and TSABR use the Standard Kalman Filter (SKF) algorithm 

for the acquisition. Table IV lists the performance of both 

algorithms under the three studied noise environments.  
TABLE IV  

CAMS ESTIMATION ERRORS  

Noise Type EIAE-KF SKF 

Stationary Noise (Noise Type I) 0.62±0.22 2.8±0.67 

Dynamic Noises (Noise Type II) 0.34±0.11 4.56±1.99 

Dynamic and Correlated Noise (Noise Type III)  0.73±0.5 13.21±7.49 

Average 0.56±0.28 6.86±3.38 

 

The error statistics that are shown in Table IV give insight 

about the overall performance of the EIAE-KF algorithm in 

terms of RMSE means and standard deviation. SKF achieved 

the lowest accuracy and stability in a dynamic noisy 

environment among all implemented algorithms. This implies 

that SKF which was used in the PPABR and TSABR is not 

robust enough for dynamic noise environment. Comparing 

with the EIAKF which is used in the proposed CA-ABS and 

the DSA-ABR broadcasting scheme. This interprets why both 

CA-ABS and DSA-ABR have achieved better prediction 
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accuracy as compared by the PPABR and TSABR schemes as 

shown in Figures 7a, 8a, and 9a.  especially when the number 

of vehicles less than 30 where the effect of message loss is 

low. 

 
 Although the proposed the CA-ABS and the DSA-ABR use 
similar prediction models, the performance of the proposed 

CA-ABS is better. This is because DSA-ABR broadcasting 
scheme suffers from two main issues. The first issue is that it 
ignores some important context variables such as the traffic 
flow and vehicles density which affects the broadcasting 
performance. The other issue is that it uses static predefined 
broadcasting threshold which doesn’t hold for VANET 
dynamic environment. In a vehicular harsh environment, the 
uncertainty of the CAMs is highly dynamic due to the dynamic 
and stochastic noises environment. The use of a predefined 
static threshold in such a dynamic environment leads to an 
increase in the broadcasting rate and causes congestions. The 
problem becomes worse when the other contextual variables 

such as vehicle density and traffic flow are ignored. The 
proposed CA-ABS solves the problem by considering both the 
representative vehicular context variables and vehicular 
dynamicity. Both microscopic (driving behavior) and 
macroscopic variables (uncertainty, vehicle density, and the 
traffic flow) were taken into consideration to adapt the 

broadcasting decision according to a given vehicular context. 
This explains why the delivery ratio of DSA-ABR degrades as 
vehicle density increases in Figures 7c, 8c, and 9c. Moreover, 
the accuracy of the uncertainty estimation model that is used 
by DSA-ABR is poor comparing to that proposed and used in 
the proposed CA-ABS scheme (See Figure 11). The accuracy 

of the uncertainty estimation model reflects the performance 
of the Kalman Filter estimation thus the reliability of the 
broadcasting decision. When the Kalman filter is highly 
uncertain about the difference between the estimated CAM 
and the predicted CAM becomes chaos, which causes 
unreliable broadcasting decisions. 

 

 
FIGURE 11.  Comparison between the Accuracy in terms of the 
estimation error of the Uncertainty Estimation of the Proposed deep 
learning-based model and the statistical model used in the DSA-ABR 
Scheme.  
 

The performance of the rule-based statistical CAMs 

estimation model that is used by the DSA-ABR cannot 

accurately approximate the uncertainty of the CAMs due to 

the lack of enough information at the time of the estimation. 

Thus, the uncertainty information that is shared by DSA-ABR 

is inaccurate and thus misleads the prediction model in the 

neighboring vehicles and increases the prediction error as 

shown in Figures 6a, 7a, and 8a. In contrary to the proposed 

CA-ABS, the used uncertainty estimation model utilizes the 

previous knowledge. The trained deep learning-based 

uncertainty estimation model has accurately extracted the 

representative features of the current context and gives an 

accurate prediction of the uncertainty. This explains the results 

obtained in Figures 6a, 7a, and 8a. 

The other studied PPBR, TSABR, and the standard 802.11p 

broadcasting schemes suffer in many ways compared to the 

proposed CA-ABS scheme. The use of a predefined static 

broadcasting threshold and the lack of consideration of 

appropriate representative variables of vehicular context that 

affect the performance of the broadcasting are their main 

drawbacks. This leads to partially improve either the CAM 

prediction accuracy or the CAMs delivery ratio. Meanwhile, 

the proposed CA-ABS scheme manages to improve both 

performance measures as illustrated in Figure 9a and 9c, 

respectively. 

In conclusion, the proposed CA-ABS scheme successfully 

improves both communication reliability and prediction 

accuracy which is the ultimate goal of VANET applications. 

We believed that the proposed context-aware approach, as 

oppose to the context-unaware approaches, which ignore 

including the context variables that influence the prediction 

accuracy of the neighboring CAMs, is sound enough while 

serving the application needs. 

VII.  CONCLUSION  

In this study, a context-aware adaptive cooperative awareness 

messages broadcasting scheme (CA-ABS) was proposed and 

developed for VANET. The scheme represents the vehicular 

context using four variables namely, individual vehicle 

driving behavior, CAMs uncertainties, vehicle density, and 

traffic flow. A CAMs uncertainty estimation model has been 

constructed utilizing the outputs of the Adaptive Kalman Filter 

in estimating a real traffic vehicles' trajectory using a deep 

sequential neural network to estimate the accuracy of the 

information as part of the context. The CA-ABS uses a fuzzy 

inference system that takes the context variables as inputs and 

the determines which and when CAMs should be broadcasted. 

The decision depends on two controlling variables; a dynamic 

broadcasting threshold which determines the message that 

should be broadcasted and the rate at which this message 

should be broadcasted.  Extensive experiments have been 

conducted to evaluate the performance of the proposed 

scheme. Results show that CA-ABS is more robust to 

vehicular dynamic context than the existing schemes. On 

average, CA-ABS achieves 37%, 60%, and 33% improvement 
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for CAMs prediction accuracy, broadcasting reduction, and 

CAMs delivery ratio, respectively. The proposed scheme 

could be used for improving the awareness of unmanned aerial 

vehicles (UAV) e.g. drones and flying ad hoc networks 

(FANET) to coordinate their movements and 

communications. 
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