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Abstract

For monocular 3D pose estimation conditioned on 2D

detection, noisy/unreliable input is a key obstacle in this

task. Simple structure constraints attempting to tackle this

problem, e.g., symmetry loss and joint angle limit, could

only provide marginal improvements and are commonly

treated as auxiliary losses in previous researches. It still

remains challenging to fully utilize human prior knowledge

in this task. In this paper, we propose to address above

issue in a systematic view. Firstly, we show that optimiz-

ing the kinematics structure of noisy 2D inputs is critical to

obtain accurate 3D estimations. Secondly, based on cor-

rected 2D joints, we further explicitly decompose articu-

lated motion with human topology, which leads to more

compact 3D static structure easier for estimation. Finally,

we propose a temporal module to refine 3D trajectories,

which obtains more rational results. Above three steps are

seamlessly integrated into deep neural models, which form

a deep kinematics analysis pipeline concurrently consider-

ing the static/dynamic structure of 2D inputs and 3D out-

puts. Extensive experiments show that proposed framework

achieves state-of-the-art performance on two widely used

3D human action datasets. Meanwhile, targeted ablation

study shows that each former step is critical for the latter

one to obtain promising results.

1. Introduction

Pose estimation is a hot-spot topic in computer vision

researches [35, 51, 2, 5]. Particularly, 3D pose estimation

for monocular video has drawn tremendous attention in the

past decades [21, 18, 37, 33, 1, 6], which involves estimat-

ing keypoint trajectories of human subject in 3D space. This

research topic possesses several valuable downstream appli-

cations, e.g., action recognition [3, 23], human body recon-
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Figure 1: Overview of proposed framework. Our model

pursues 3D pose estimation with more reasonable structure

and more compact output space, which incorporates kine-

matics analysis into deep models. Step 1: Noisy/unreliable

2D Inputs (denoted as red dots) are corrected with perspec-

tive projection. Step 2: 3D poses are further estimated in

a decomposed manner within more compact space. Step 3:

Unreliably estimated 3D poses are excluded from previous

outputs (denoted by red cross), which are finally refined as

a completion task.

struction [16, 13, 47] and robotics manipulation [34].

Recently, many works [11, 5] have used 2D pose detec-

tors to facilitate the 3D human pose estimation task. Sev-

eral previous researches [28, 25, 46, 38, 7] take detected

2D keypoints as input and predict corresponding 3D joint

locations from monocular video, which have promising re-

sults and require much less training resources compared to

other works fed with RGB images [19, 42, 10, 54]. Our

work belongs to this branch with explicit incorporation of

kinematics analysis, which would be discussed in detail at

latter paragraphs.

Despite considerable progress in 2D-keypoint condi-
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Figure 2: Detailed architecture of proposed framework. Three hierarchical modules (from left to right) correspond to 2D

pose correction (φ2D), 3D pose estimation (φlen
3D , φdir

3D) and 3D trajectory refinement (φctn
3D ) respectively. p̃2D is corrected 2D

pose and f̃ , c̃ refer to regressed camera parameters. l̃3D and r̃3D are estimated length and direction from φlen
3D , φdir

3D . S̃3D and

Ŝ3D stand for 3D pose before/after trajectory completion respectively.

tioned 3D pose estimation, several critical challenges re-

main yet to be solved. On one hand, 2D detections are

generally noisy and unreliable due to motion blur and self-

occlusion contained in video sequences. Current meth-

ods [25, 46, 33] adopt simple structure constraints, e.g.,

symmetric bone length [33] and limited joint angle [16],

to facilitate 3D joint predictions, which are insufficient to

bring significant improvements for this task. On the other

hand, the majority of existing approaches directly formu-

late this task as a coordinate regression problem, which do

not fully take the inherent kinematics structure of human

subject into consideration and commonly leads to invalid

results.

Real-world human motion obeys kinematics laws in-

volving 2D/3D correspondence and static/dynamic struc-

ture: (1) For camera-based view, 3D and projected 2D joints

should follow the constraint of perspective projection. (2)

For static structure, the length between two adjacent 3D

joints (defined by skeleton) should be constant throughout

the whole motion sequence. (3) For dynamic structure, es-

timated 3D trajectory formed by the same joint should be

smooth and continuous. We are thus motivated to integrate

all above laws forming a systematical analysis pipeline from

correspondence to structure, which facilitates pursuing 3D

poses within more rational solution space.

In this paper, we propose to systematically incorporate

kinematics analysis into deep models for effective utiliza-

tion of human prior knowledge. As illustrated in Fig. 1, we

firstly refine 2D inputs to be more reliable rather than only

consider the estimation accuracy of 3D keypoints [33, 1]. A

novel optimization scheme is designed for 2D keypoints un-

der the constraint of perspective projection, which mainly

facilitates kinematics structure correction of noisy 2D in-

puts. To our best knowledge, it is the first attempt that per-

spective projection is used for 2D joints refinement rather

than 3D counterparts. Experimental results demonstrate

that above 2D optimization scheme is critical for the follow-

ing 3D pose estimation. Secondly, starting from the static

structure of human subject, we decompose articulated mo-

tion based on rigid body assumption, which breaks uncon-

strained 3D trajectories down to a tree-structured combina-

tion of 2D sphere curves with much lower dimension. More

specifically, we split 3D coordinate regression problem into

two sub-tasks, i.e., length and direction estimation, which

are complementary to each other and reduce the learning

difficulty by a large margin. Finally, we notice that not all

parts are equally estimated. To pursue valid dynamic struc-

ture we exclude those joints with low reliability from above

predictions and the whole 3D trajectory is completed based

on more reliable parts. Above three steps are seamlessly in-

tegrated into deep neural models, which form a systematic

analysis pipeline, i.e., our model simultaneously considers

the kinematics structure of 2D inputs and 3D outputs.

We conduct detailed ablation study to demonstrate the

contribution of each component of proposed framework.

Further extensive experiments show that our model achieves

state-of-the-art performance on two widely used 3D human

motion datasets.

2. Related Work

In this section, we discuss the approaches that are based

on deep neural networks for 3D pose estimation.

Holistic 3D pose estimation. With the excellent fea-

ture extraction capacity of deep neural networks, many ap-

proaches [19, 31, 44, 42, 26, 32, 27, 10, 54, 6] utilize Deep

Convolutional Neural Networks to estimate 3D poses from

the images or other sources (e.g., point clouds [50, 22, 49])

directly. In this paper we concentrate on the image one. Li

et al. [19] firstly apply CNNs to jointly estimate 3D poses

and detect body parts via a multi-task framework. Tekin et

al. [42] use an overcomplete auto-encoder to learn a high-
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Figure 3: Example of perspective projection used to refine

2D inputs. This essentially incorporates 3D supervision sig-

nal for 2D pose training, where 2D/3D correspondence is

better preserved.

dimensional latent pose representation and account for joint

dependencies. Differently, [10] and [54] both utilize inter-

mediate 3D representations and 2D counterparts to regress

3D poses. However, training deep models directly from im-

ages requires expensive computation resources and careful

hyper-parameter tuning. Differently, our model starts with

detected 2D joints as inputs whose pipeline is largely sim-

plified but with comparable performance.

Two-step pose estimation. To avoid collecting 2D-3D

paired data, a variety of works [55, 25, 43, 4, 9, 53, 52, 28,

38, 7] decouple the task of 3D pose estimation into two in-

dependent stages: (1) firstly predicting 2D joint location in

image space using off-the-shelf 2D pose estimation meth-

ods; (2) and then learning a mapping to lift them to 3D

space. Moreno et al. [28] learn a mapping from 2D to

3D distance matrices. A simple yet effective method [25]

can directly predict 3D joint locations via deep CNNs. Re-

garding the prior knowledge of human structure, Wang et

al. [46] propose a progressive approach that explicitly ac-

counts for the distinct DOFs among the body parts. Sharma

et al. [38] synthesize diverse anatomically plausible 3D-

pose samples conditioned on the estimated 2D poses via a

deep conditional variational auto-encoder based model. The

generic combination [7] of Graph Convolutional Network

(GCN) and Connected Network (FCN) can also improve

the representation capability. These approaches mainly fo-

cus on the second stage and our method also belongs to this

branch. However, few researches have paid attention on the

inherent validity of 2D/3D poses in a systemic and compre-

hensive view, where kinematics structure and view corre-

spondence are generally ignored.

Video pose estimation. Since most previous works

operate in a single-frame setting, recently more atten-

tion [14, 21, 18, 8, 37, 33, 1, 6, 20, 36, 48] has been

put on temporal information from monocular video clips.

LSTMs [21] have been applied to refine 3D poses predicted

Table 1: Influence of 2D accuracy for 3D pose estimation.

Both are evaluated by mean squared error. M = 1 is no 2D

refinement is applied.

Window Length
2D Joints 3D Joints

Train/Test Train/Test

M=1 0.058 / 0.078 0.027 / 0.053

M=5 0.042 / 0.071 0.024 / 0.052

M=9 0.033 / 0.067 0.023 / 0.052

from single images. There has also been work on RNN

approach [18] which considers prior knowledge with body

part based structural connectivity. Rayat et al. [37] utilize

the temporal smoothness constraint across a sequence of 2D

joint locations to estimate a sequence of 3D poses. Pavllo et

al. [33] transform a sequence of 2D poses through tempo-

ral convolutions and make computational complexity inde-

pendent of key-point spatial resolution. Multi-scale features

for the graph-based representations [1] are critic to pose es-

timation by a local-to-global network architecture. Unlike

existing temporal based methods, our model explicitly in-

corporate a kinematics analysis pipeline for 3D pose esti-

mation.

3. Method

In this section, we present detailed description of pro-

posed method. The overall framework is illustrated in

Fig. 2. In our method and experiments, we focus on pose

estimation over a short video clip (T ≤ 9).

3.1. Projection based 2D Pose Correction

2D Temporal Refinement. Given a monocular video

clip with length of T time stamps, we first apply pretrained

2D pose detector (e.g., CPN [5]) to obtain 2D joints. 2D

detections on single frame are generally noisy and unreli-

able due to motion blur and occlusion [11]. We first utilize

a temporal CNN model (denoted as φ2D as shown in Fig. 2)

to refine 2D initial inputs (denoted as P̃ = {p̃t}
T
t=1

, K̃ =
{k̃t}

T
t=1

, p̃t ∈ R
J×2, k̃t ∈ R

J .) Here J refers to the num-

ber of joints for single human. Specifically, p̃t = [ãt, b̃t]
where ãt and b̃t represent 2D coordinates and k̃t is corre-

sponding confidence score. We adopt MSE loss weighted

by confidence score K̃ for trained as follows:

LTem
2D =

T
∑

t=1

k̃t

√

|at − ãt|22 + |bt − b̃t|22, (1)

where at,bt refers to the ground truth 2D joints. Intuitively,

this procedure utilizes temporal smoothness to refine de-

tected 2D joints.
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Limitation: Train/Test Imbalance. However, above

optimization does not directly facilitate performance boost-

ing for final 3D pose estimation. We conduct verification

experiments (on Human3.6M dataset [15]) to support our

statements. Specifically, we adopt single-frame 3D pose es-

timation model [33] with refined 2D joints as inputs. As

shown in Tab. 1, estimation accuracy of 2D and 3D joints on

both train and test set are reported. We can observe that with

increase of window length, the training accuracy boosts for

both 2D and 3D joints. But the improvement on 3D test set

is marginal (last column). We attribute this for imbalanced

inputs on Train/Test set. The large accuracy gap between

train and test inputs (first two columns) is unknown to the

following 3D pose estimation model, which leads to sub-

optimal results.

Solution: Projection Constraint. To this end, we pro-

pose to refine the 2D inputs in a different point of view,

i.e., 2D/3D correspondence is critical for rational pose es-

timation (as shown in Fig. 3). We denote 3D joints as

S = {st}
T
t=1

, st = [xt,yt, zt] ∈ R
J×3. For each time

stamp t, projected 2D joints p and 3D joints s should obey

perspective projection as follows:

a =
x

z
fx + cx,b =

y

z
fy + cy, (2)

where f = [fx, fy] and c = [cx, cy] are focal length and

point respectively. We omit subscript t for simplicity. Our

main idea is to recover f and c from refined 2D inputs and

ground truth 3D joints during training. Intuitively, well es-

timated f̃ and c̃ indicate the projection correspondence is

generally preserved. The remaining problem is how to ob-

tain f̃ and c̃ efficiently.

Linear squares regression is a simple yet effective ap-

proach for above issue. Take the projection x-axis coor-

dinates for example. As indicated by Eqn. 2, paired data

points (a, x

z
) = {(aj , xj

zj )}
J
j=1

involving single human sub-

ject follows a straight line whose intercept and slope corre-

spond to fx and cx respectively. For simplicity we omit the

dominator, i.e., xj

zj : xj . Given refined 2D detections p̃ and

ground truth 3D joints s, we estimate fx and cx as follows:

f̃x =
ā(
∑J

j=1
xj)2 − x̄

∑J

j=1
xj ãj

∑J

j=1
(xj)2 − Jx̄2

, c̃x = ā− f̃xx̄, (3)

where ā = 1

J

∑J

j=1
ãj , x̄ = 1

J

∑J

j=1
xj . We obtain ground

truth fx and cx the same as Eqn. 3 with ground truth p and

s as inputs. We adopt L1 loss for training as follows:

Lproj
2D = |fx − f̃x|+ |cx − c̃x|. (4)

Furthermore, estimated f̃x and c̃x at each time stamp should

be constant for the whole monocular video clip, which is

also utilized for training. More specifically, we randomly
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Figure 4: Illustration of articulated motion for a pair of

parent-children joints. The motion trajectory of children

joint relative to its parent degenerates to spherical curve.

select two time stamps, where estimated f̃x and c̃x are pe-

nalized with L1 difference. As shown in Fig. 2, φ2D adopts

an encoder-decoder architecture, the temporal length of out-

puts are equal to that of inputs. For detailed architecture

please refer to supplementary material.

Note that datasets used in our paper (Human3.6M [15]

and HumanEva [39] Dataset) are recorded by cameras with

fixed and almost identical (f ,c), which indicates a global

projection relation existing between all 2D and 3D poses.

The refinement model is trained towards a single projec-

tion relation. If video sequences are recorded by cam-

eras with varied (f ,c), we could feed the (f ,c) as inputs

to guarantee the generalization ability of proposed model.

As intrinsic parameters, (f ,c) are generally low cost to ob-

tain [33]. This part is leaved as future work worth studying.

3.2. Decomposed 3D pose estimation

Based on refined 2D joints, our second model (denoted

as φdcm
3D ) predicts corresponding 3D keypoints. As dis-

cussed in Sec. 1, 3D articulated motion involved in monoc-

ular video clip is structure constrained. Fig. 4 depicts this

kinematics law more explicitly. The motion trajectory of

children joint relative to its parent (defined by human skele-

ton) forms a spherical curve.

Explicit Pose Decomposition. Motivated by this, we

decompose original coordinate regression problem into two

complementary sub-tasks, i.e., length and direction regres-

sion. Specifically, for a 3D sequence S ∈ R
T×J×3, we first

obtain the relative coordinate according to predefined skele-

ton topology, i.e., ∆Sjc = Sjc − Sjp , where jc refers some

child joint and jp indicates its parent joint (shown in Fig. 4).

Suppose the skeleton defined by joint pair {jc, jp} is of

length ljc , ∆Sjc could be rewritten as ∆Sjc = {ljcrjct }Tt=1
,

where r
jc
t is the unit vector representing direction of skele-

ton between (jc, jp) at time stamp t. ljc is kept constant

across the whole video clip. Therefore we predict ljc and

r
jc
t as intermediate results, which are composed together

according to human skeleton for final estimation (Eqn. 5).

Global-local Combined 2D inputs. We extend inputs
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Figure 5: Per-joint estimation error in terms of MPJPE.

Notably, the estimation error of four limbs (indexed by

0/1/4/5/6/7/10/11 with red bar) is significantly higher than

other joints. Dashed black line indicates mean MPJPE for

all joints.

P̃ with similar manner as S, i.e., [P̃,∆P̃, ||∆P̃||2
2
] ∈

R
T×J×5. ∆P̃ ∈ R

T×J×2 is obtained the same as ∆S

and ||∆P̃||2
2
∈ R

T×J×1 is calculated pixel length for each

skeleton. Above operation combines both global and local

information as inputs, which provides more structured in-

formation for 3D pose estimation.

Length & Direction Estimation. We adopt a two-

stream architecture for length and direction estimation,

where two sub-modules are denoted as φlen
3D and φdir

3D re-

spectively. For length estimation, we first extract pose fea-

ture for each time stamp, and then conduct feature aggre-

gation at middle level representation, which are finally used

to predict skeleton length l̃ = {l̃j}Jj=1
. In contrast, skele-

ton direction is estimated independently at each time stamp

and the unit vector r̃t = {r̃jt}
J
j=1

is obtained through a L2

normalization layer. For detailed architecture of φlen
3D and

φdir
3D , please refer to supplementary material. Up to now we

obtain ∆S̃ = l̃R̃, where R̃ = {r̃t}
T
t=1

. Final estimation

S̃ is obtained through iterative summarization over ∆S̃ ac-

cording to human topology as follows:

S̃jc = ∆S̃jc + S̃jp . (5)

Correspondingly, we adopt intermediate loss functions to

facilitate the training procedure. For length estimation, we

use L1 loss (denoted as Llen
3D = |̃l − l|) to obtain more ac-

curate results. For direction estimation, a cosine similarity

loss (denoted as Ldir
3D = 〈r̃, r〉 − 1) is applied on R̃, which

penalizes angle difference rather than distance. For final

composed prediction, we use L2 loss (denoted as Lfin
3D ) for

training. All three loss functions are shown as follows. For

detailed architecture of φdir
3D and φlen

3D please refer to supple-

mentary material.

Ldcm
3D = Llen

3D + Ldir
3D ,Lfin

3D = ||S̃− S||2
2
. (6)

Discussion on Pose Decomposition. The most related

work for this part is Sun et al. [41], which conducts pose

estimation in an compositional way. However, our work

differentiates from Sun et al. [41] in following three as-

pects: (1) Our work concentrate on monocular pose esti-

mation rather than single image. (2) Instead of direct co-

ordinate regression, we explicitly decomposes output space

with rigid body structure, whose dimension is reduced from

3 × T × J to 2 × T × J + J , where the first part is about

direction estimation while the second part corresponds to

length estimation. More compact output space facilitates

3D pose estimation model to obtain more rational results

by a large margin. (3) We design targeted losses Ldir
3D and

Llen
3D based on above length/direction decomposition, which

reduces the learning difficulty by a large margin.

3.3. Pose Refinement as Trajectory Completion

Based on pose decomposition we estimate the skeleton

direction at each time stamp independently, which needs

further refinement. In this section, we consider above prob-

lem as trajectory completion task, where refinement is ap-

plied on unreliably estimated joints.

Which joints should be refined? Not all joints are esti-

mated equally. As shown in Fig 5, we can observe that the

estimation error of four limbs (i.e., joints 0/1/4/5/6/7/10/11

also as shown in Fig. 4) is significantly higher than oth-

ers. Therefore, we focus on four-limb regularization. Mean-

while, the confidence score K̃ (mentioned in Sec. 3.1) pro-

duced by 2D detectors is an informative indicator for unreli-

able estimation of joints location. To this end, we optimize

four-limb joints assigned with low 2D confidence score.

Trajectory Completion with Reliable Estimation.

Given estimated 3D joints S̃ ∈ R
T×J×3, we first apply a

dropout layer [40] directly on the joints associated with four

limbs. The dropout rate is 1−K̃ rather than a constant value,

i.e., unreliable joints are excluded from S̃ ∈ R
T×J×3 which

are further completed with reliable ones. The comple-

tion model is denoted as φctn
3D consisting of a bi-directional

LSTM [12] network (shown in Fig. 2). We denote com-

pleted output as Ŝ, which trained as follows:

Lctn
3D = ||Ŝ−S||2

2
+ ||H(Ŝ)−H(S)||2

2
+ ||F(Ŝ)−F(S)||2

2
,

(7)

where H and F refer to first and second order difference

over temporal axis respectively. Intuitively, high-order con-

tinuity facilitates better modelling of dynamic structure for

human subject.

3.4. Implementation Details

Our model is end-to-end trainable and the overall loss

function is Ltem
2D + 0.1Lproj

2D + 0.1Lpel
2D + Ldcm

3D + Lfin
3D +

0.1Lctn
3D . We adopt PyTorch [29] to implement our proposed

framework. During training phase, learning rate, learning

decay and weight decay are set to 1e−3, 0.93, 1e−4 respec-

tively. Dropout rate is set to 0.25 except the one mentioned
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Protocol 1: MPJPE Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Martinez et al. [25] ICCV’17 (T=1) 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Luvizon et al. [24] CVPR’18 (T=1) 49.2 51.6 47.6 50.5 51.8 60.3 48.5 51.7 61.5 70.9 53.7 48.9 57.9 44.4 48.9 53.2

Hossain & Little [37] ECCV’18 (T=5) 48.4 50.7 57.2 55.2 63.1 72.6 53.0 51.7 66.1 80.9 59.0 57.3 62.4 46.6 49.6 58.3

Lee et al. [18] ECCV’18 (T=3) 40.2 49.2 47.8 52.6 50.1 75.0 50.2 43.0 55.8 73.9 54.1 55.6 58.2 43.3 43.3 52.8

Pavllo et al. [33] CVPR’19 (T=1) 47.1 50.6 49.0 51.8 53.6 61.4 49.4 47.4 59.3 67.4 52.4 49.5 55.3 39.5 42.7 51.8

Pavllo et al. [33] CVPR’19 (T=9) - - - - - - - - - - - - - - - 49.8

Cai et al. [1] ICCV’19 (T=1) 46.5 48.8 47.6 50.9 52.9 61.3 48.3 45.8 59.2 64.4 51.2 48.4 53.5 39.2 41.2 50.6

Cai et al. [1] ICCV’19 (T=7) 44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9 57.9 61.9 49.7 46.6 51.3 37.1 39.4 48.8

Ours, 1-frame 40.6 47.1 45.7 46.6 50.7 63.1 45.0 47.7 56.3 63.9 49.4 46.5 51.9 38.1 42.3 49.2

Ours, 7-frames 38.2 44.4 42.8 43.7 47.6 60.3 42.0 45.4 53.2 60.8 46.4 43.5 48.5 34.6 38.6 46.3

Ours, 9-frames 37.4 43.5 42.7 42.7 46.6 59.7 41.3 45.1 52.7 60.2 45.8 43.1 47.7 33.7 37.1 45.6

Protocol 2: PA-MPJPE Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Sun et al. [41] ICCV’17 (T=1) 42.1 44.3 45.0 45.4 51.5 53.0 43.2 41.3 59.3 73.3 51.0 44.0 48.0 38.3 44.8 48.3

Fang et al. [9] AAAI’18 (T=1) 38.2 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 64.4 47.2 44.3 47.3 36.7 41.7 45.7

Pavlakos et al. [30] CVPR’18 (T=1) 34.7 39.8 41.8 38.6 42.5 47.5 38.0 36.6 50.7 56.8 42.6 39.6 43.9 32.1 36.5 41.8

Hossain & Little [37] ECCV’18 (T=5) 35.7 39.3 44.6 43.0 47.2 54.0 38.3 37.5 51.6 61.3 46.5 41.4 47.3 34.2 39.4 44.1

Pavllo et al. [33] CVPR’19 (T=1) 36.0 38.7 38.0 41.7 40.1 45.9 37.1 35.4 46.8 53.4 41.4 36.9 43.1 30.3 34.8 40.0

Cai et al. [1] ICCV’19 (T=1) 36.8 38.7 38.2 41.7 40.7 46.8 37.9 35.6 47.6 51.7 41.3 36.8 42.7 31.0 34.7 40.2

Cai et al. [1] ICCV’19 (T=7) 35.7 37.8 36.9 40.7 39.6 45.2 37.4 34.5 46.9 50.1 40.5 36.1 41.0 29.6 33.2 39.0

Ours, 1-frame 33.6 37.4 37.0 37.6 39.2 46.4 34.3 35.4 45.1 52.1 40.1 35.5 42.1 29.8 35.3 38.9

Ours, 7-frames 31.7 35.3 35.0 35.3 36.9 44.2 32.0 33.8 42.5 49.3 37.6 33.4 39.6 27.6 32.5 36.7

Ours, 9-frames 31.0 34.8 34.7 34.4 36.2 43.9 31.6 33.5 42.3 49.0 37.1 33.0 39.1 26.9 31.9 36.2

Table 2: Quantitative comparisons of Mean Per Joint Position Error (MPJPE) in millimeter between the estimated pose and

the ground-truth on Human3.6M under P1 and P2, where T denotes the number of input frames used in each method. Lower

is better and best is bold highlighted.

Protocol 2 Walk Jog Box

PA-MPJPE S1 S2 S3 S1 S2 S3 S1 S2 S3

Pavlakos et al. [31] 22.3 19.5 29.7 28.9 21.9 23.8 – – –

Pavlakos et al. [30] 18.8 12.7 29.2 23.5 15.4 14.5 – – –

Lee et al. [18] 18.6 19.9 30.5 25.7 16.8 17.7 42.8 48.1 53.4

Pavllo et al. [33] 13.9 10.2 46.6 20.9 13.1 13.8 23.8 33.7 32.0

Ours,9-frames 13.2 10.2 29.9 12.6 12.3 13.0 13.2 18.1 20.4

Table 3: Prediction accuracy on HumanEva Dataset [39]

in terms of Protocol # 2 evaluation. Note that we train

one model with all three actions (i.e., Walk, Jog and Box)

models. Lower is better and best is bold highlighted.

in Sec. 3.3. We adopt the same strategy for BN momen-

tum decay as in [33]. Adam Optimizer [17] is used for all

modules. The whole model is trained with 200 epoches.

4. Experiments

4.1. Datasets & Evaluation Metrics

Human3.6M Datasets [15]. In our work, we follow

the experimental setup in previous researches [10, 45, 33].

More specifically, we use Subject 1 / 5 / 6 / 7 / 8 for train-

ing and Subject 9 / 11 for testing. Without access to action

labels and camera parameters, all video sequences are used

for training one single model.

MPJPE(P1) PA-MPJPE(P2)

Baseline 51.8 40.0

2D Refine 49.9 39.4

2D Refine + 3D Decompose 47.1 37.5

2D Refine + 3D Decompose + 3D Completion 45.6 36.2

Table 4: Ablation study on the contribution of proposed

three modules in terms of both P1 and P2. Note that Base-

line refers to single-frame results of Pavllo et al. [33].

HumanEva-I Datasets [39]. Compared to Human3.6M

dataset [15], HumanEva-I [39] is more light-weight con-

taining three erect actions: Walk, Jog, Box. We follow the

same data preprocessing strategy used in [33] for train/test

split. We report the estimation accuracy with T = 9.

Evaluation Metrics. Following the majority of pre-

vious works [24, 37, 18, 1, 33] we evaluate our model

in terms of mean per joint position error (MPJPE, P1 for

short) commonly denoted as protocol #1. Several re-

searches [41, 9, 30, 37, 33, 1] estimate 3D pose after align-

ment involving rotation and translation (PA-MPJPE, P2 for

short), which is termed as protocol #2. Both protocols are

utilized in our work.
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Figure 6: Visualization of predicted 3D poses on monocular video clip. Each row corresponds to one action sequence.

4.2. Quantitative Evaluation

Results on Human3.6M Dataset [15]. As shown in

Tab. 2, we report pose estimation results in terms of Pro-

tocol #1 and #2. Note that previous works evaluate this

task with different temporal length. For fairness we com-

pare with them under the same inputs. When T = 1 tra-

jectory completion model φctn
3D is nonfunctional. Benefited

from 2D correction and 3D decomposition, our model out-

performs prior art (Cai et al. [1]) under both P1 and P2 eval-

uation when T = 1. Boosted by explicit kinematics anal-

ysis, the estimation accuracy outperforms Pavllo et al. [33]

by 8.4%(4.2mm) when T = 9. A notable performance im-

provement over Cai et al. [1] is also presented for T = 7,

i.e., 46.3mm v.s. 48.8mm. Regarding evaluation with action

classes, our final model (T = 9) achieves best performance

on the majority of them. Especially on several relatively

harder actions, e.g, sitting and sitting down with severe oc-

clusion, our model is robust enough to obtain better results

compared to Pavllo et al. [33] which merely considers tem-

poral smoothness rather than estimation reliability. This is

further validated in our own model. From T = 1 to T = 9,

estimation accuracy is enhanced constantly under both P1

and P2 evaluation, which is mainly facilitated by decom-

posed 3D pose estimation and 3D trajectory completion.

Results on HumanEva Dataset [39]. As shown in

Tab. 3, we report pose estimation results in terms of Proto-

col #2. Compared to Human3.6M Dataset [15], HumanEva

Dataset [39] is relatively easier to learn, where estimation

accuracy is near saturated. Still, performance gain is ob-

served for all three actions over Pavllo et al. [33]. By ex-

plicitly incorporating kinematics analysis into deep models,

reasonable spatial-temporal structure is well preserved and

output space is more compact, which finally lead to higher

estimation accuracy.

4.3. Qualitative Evaluation

We further present direct visualization results of monoc-

ular 3D pose estimation. As illustrated in Fig. 6, three se-

quences with diverse actions are presented. Meanwhile, for

each time stamp we demonstrate both refined 2D pose and

1-Frame 3-Frames 5-Frames 7-Frames 9-Frames

Pavllo et al. [33] 51.80 – – – 49.80

Cai et al. [1] 50.62 49.08 48.86 48.78 –

Ours 49.21 47.87 46.83 46.26 45.61

Table 5: Prediction accuracy with different input length and

in terms of MPJPE. We compare our model with Pavllo et

al. [33] and Cai et al. [1].

corresponding 3D prediction. Our model makes it to pro-

duce visually natural estimation which is mainly benefited

from explicit kinematics constraint. For example, sitting

down sequence (second row in Fig. 6) is well estimated for

both 2D and 3D joints, where the structure of four limbs

is properly handled by our model (requiring awareness of

human topology). More visual results are provided in sup-

plementary material for reference.

4.4. Ablation Study

Analysis on all modules. Recall that our model con-

sists of three modules: φ2D, φdcm
3D and φctn

3D . To validate

the contribution of each module, we present corresponding

ablation study on Human3.6M Dataset [15]. As shown in

Tab. 4, both accuracy on P1 and P2 are reported. Baseline

refers to single frame estimation model of Pavllo et al. [33].

We can notice that each module offers positive contribu-

tion under evaluation of P1 and P2. Notably, the most sig-

nificant improvement comes from 3D decomposition mod-

ule φdcm
3D , which benefits from φ2D with more reasonable

2D/3D correspondence and further leads to more compact

output space.

Analysis on temporal length. As shown in Tab. 5, we

report the estimation accuracy w.r.t. different input lengths.

We can notice that with the increase of temporal hori-

zon, our model constantly performs better than those with

shorter inputs. For the identical input length, our model also

produces more accurate results than prior arts, i.e., Pavllo et

al. [33] and Cai et al. [1].

Analysis on projection based 2D correction. One re-

maining but critical problem is: how does projection based
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Figure 7: Analysis on projection based 2D correction. A/C

correspond to fx, cx estimation without/with constraint of
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Figure 8: Analysis on decomposed 3D estimation. The

length (upper part) and direction (lower part) estimation of

left shank (skeleton between joint 4 and joint 5) are pre-

sented.

2D correction facilitate 3D pose estimation? As shown

in Fig 7(A and C), we plot estimated/ground thruth focal

length fx and point cx on test set for evaluation. Fig 7A cor-

responds to training without Lproj
2D while Fig 7C shows re-

sults trained with it. Orange dot corresponds to ground truth

and blue cross are estimated results. Boosted by Lproj
2D , the

estimated projection structure in camera view is more accu-

rate. Moreover, we present two typical examples of corre-

spondence between 2D and 3D joints in Fig. 7 (B and D).

Following Eqn. 2, X-axis represents x/z while Y-axis is a.

Notation is used the same as Fig. 7 (A and C). All joints be-

1-Frame 3-Frames 5-Frames 7-Frames 9-Frames

Full model w/o φctn

3D 7.80 5.11 4.03 3.57 3.29

Full model 7.80 3.70 2.45 2.13 2.01

Table 6: Prediction accuracy (Human3.6M Dataset [15])

with different input length in terms of MPJVE [33]. The

first row corresponds to training without trajectory model

φctn
3D , while the second row refers to full model. Note that

φctn
3D is nonfunctional when T = 1, whose estimation accu-

racy is identical to the first row.

long to one single frame. Orange dots referring ground truth

lie in a straight line. Similarly, Fig. 7D depicts test results

trained with Lproj
2D while Fig. 7B not. It clearly shows that

2D correction based on projection correspondence is more

reasonable and accurate.

Analysis on decomposed 3D estimation. To analyze

the contribution of φdcm
3D , we present both length and direc-

tion results shown in Fig. 8. Red line corresponds to ground

truth, blue line is single-frame estimation, green line refers

to the results of Pavllo et al. [33] and orange line is ours.

For length estimation, our model is robust to the variation

of 2D poses. One the contrary, both single-frame estimation

and the model of Pavllo et al. [33] fails to produce valid

length estimation which should keep constant throughout

the whole video clip. Based on accurate length estimation,

our model is capable of finding joint angle within more

compact space. As shown in Fig. 8B where the direction

is calculated as angle between left shank and Y-axis, our

model performs better than all other baselines by a large

margin, i.e, estimated direction is closer to ground truth (red

line) with smaller variation.

Analysis on 3D trajectory completion. Following

Pavllo et al. [33], we evaluate trajectory estimation accu-

racy in terms of MPJVE, i.e., velocity error, to further vali-

date the contribution of φctn
3D . As shown in Tab. 6, facilitated

by φctn
3D our model achieves lower velocity error with all ex-

perimented temporal lengths (from T = 3 to T = 9).

5. Conclusion

In this paper, we propose a deep kinematics analysis

framework for monocular 3D pose estimation. By explic-

itly incorporating kinematics regularization into deep mod-

els, we achieves more reliable estimation with noisy 2D

joints as inputs. Extensive experiments show that our model

achieves state-of-the-art performance on two widely used

3D human action datasets.
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