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Abstract

We propose a fine-grained recognition system that incor-

porates part localization, alignment, and classification in

one deep neural network. This is a nontrivial process, as the

input to the classification module should be functions that

enable back-propagation in constructing the solver. Our

major contribution is to propose a valve linkage function

(VLF) for back-propagation chaining and form our deep lo-

calization, alignment and classification (LAC) system. The

VLF can adaptively compromise the errors of classification

and alignment when training the LAC model. It in turn help-

s update localization. The performance on fine-grained ob-

ject data bears out the effectiveness of our LAC system.

1. Introduction

Fine-grained object recognition aims to identify sub-

category object classes, which includes finding subtle dif-

ference among species of animals, product brands, and even

architectural styles. Thanks to recent success of convolu-

tional neural networks (CNN) [13], good performance was

achieved on fine-grained tasks [4, 27].

The large flexibility of CNN structures makes fine-

grained recognition still have much room to improve. One

challenge is that discriminative patterns (e.g., bird head in

bird species recognition) appear possibly in different loca-

tions, and with rotation and scaling in the collected images.

Although research of [17, 10] showed that CNN features are

reasonably robust to scale and rotation variation, it is nec-

essary to directly capture these types of change to increase

the recognition accuracy [27, 4].

Existing solutions perform localization, alignment, and

classification independently and consecutively. This proce-

dure is illustrated in Figure 1 using solid-line arrows where

parts are localized, aligned according to templates, and then

fed into the classification neural network. Obviously, any

error arising during localization could influence alignment

and classification.

In this paper, we propose a feedback-control framework
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Figure 1: The one-way procedure from localization to tem-

plate alignment makes each module rely on results from the

previous one. Contrarily, back-propagation highlighted by

dashed arrow makes it possible to refine localization accord-

ing to the classification and alignment results. It forms a

bi-directional refinement process.

to back-propagate alignment and classification errors to lo-

calization, in order to optimally update all states in itera-

tions. This process is highlighted by dashed arrows in Fig-

ure 1, which, in our experiments, benefits final classifica-

tion. This framework is constructed as one deep neural net-

work including all localization, alignment and classification

tasks.

The difficulty of forming a neural network for all mod-

ules stems from the special requirement of classification

sub-network input. As shown in Figure 1, the input to clas-

sification is an image after alignment. It cannot achieve the

back-propagation chain during the whole network solving

due to the fact that the derivation of a constant, which is the

aligned region, is zero.

The main focus of this paper is thus to propose a valve

linkage function (VLF) in alignment sub-network to opti-
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Figure 2: Deep LAC. It consists of localization, alignment and classification sub-networks. With the help of VLF, alignment

sub-network outputs pose-aligned part images for classification in the FP stage, while classification and alignment errors can

be propagated back to localization in the BP stage.

mally connect the localization and classification modules

in our deep LAC framework. The architecture is shown in

Figure 2. Because we involve these tasks in one network,

forward-propagation (FP) and backward-propagation (BP)

solving procedures become available.

In FP, VLF outputs a pose-aligned part image to classi-

fication. In BP, it should be a function containing neces-

sary parameters for updating the localization sub-network.

Our VLF not only connects all sub-networks, but also func-

tions as information valve to compromise classification and

alignment errors. If alignment is good enough in the F-

P stage, VLF guarantees corresponding accurate classifica-

tion. Otherwise, errors propagated from classification fine-

ly tune the previous modules. These effects make the whole

network reach a stable state. Note this scheme is general,

as similar VLF can be proposed for other networks that in-

volve several modules and various parameters.

Other contribution includes the new localization and

alignment sub-networks. As shown in Figure 2, localiza-

tion [20] is with regression of part location. It differs from

general object detection by making use of relatively stable

relationship between the fine-grained object (e.g., bird) and

part region (e.g., bird head), which contrarily cannot be p-

reserved for general objects. On the alignment side, we in-

troduce multi-template selection to effectively handle pose

variance of parts.

With our system joint modeling localization, alignment,

and classification, decent performance is accomplished in

comparison to the solutions where these modules are con-

sidered independently. We apply our method to data for au-

tomatic classification without part annotation in the testing

phase.

2. Related Work

Pioneer work in this area concentrated on constructing

discriminative whole-image representation [22, 15, 23]. It

was later found suffering from the problem of losing sub-

tle difference between subordinate categories. Localization

and alignment can ameliorate this problem by extracting

parts from visually similar regions and reducing their vari-

ance. Recent work exploits these operations.

Farrell et al. [7] and Yao et al. [26] used templates to get

the location of parts. Yang et al. [25] learned templates to

localize important parts of fine-grained objects in an unsu-

pervised manner. Gavves et al. [8] aligned images in order

to accommodate the possibly large variation of poses. In

[5, 1, 24], segmentation and part localization were unified

in one framework to alleviate the distracting effect of back-

ground. Berg et al. [3] put forward part-based one-vs-one

feature (POOF). Zhang et al. [28] enforced DPM to extract



part regions and features as image representation.

Recently, fine-grained recognition was achieved by com-

bining localization, alignment, and deep neural networks.

Zhang et al. [28] applied pre-trained convolutional neural

network [13] to extract feature on the localized part. In

their later work [27], selective search [21] was used for part

proposal. Branson et al. [4] studied higher-order geomet-

ric warping to align parts. In [27, 4], the fine-tuned CNN

model on dataset [22] was used to extract representation on

parts. This method accomplished state-of-the-art results on

bird identification [22].

These methods did not perform joint refinement of local-

ization, alignment, and classification in one network. Em-

ployment of these modules together in our system is found

profitable for fine-grained recognition. We give more de-

tails below.

3. Our Approach

To recognize fine-grained classes, we learn deep LAC

models for distinct and meaningful parts. Features extract-

ed on parts are used in classical classifiers, e.g. SVM. The

main network consists of three sub-ones for the aforemen-

tioned three tasks – localization sub-network provides part

position; alignment sub-network performs template align-

ment to offset translation, scaling and rotation of localized

parts; pose-aligned parts are fed to the classification sub-

network.

As aforementioned, the way to connect those three mod-

ules within a unified deep neural network is worth studying.

In what follows, we first describe localization and classifi-

cation sub-networks, which are implemented according to

the CNN model [13]. Then we detail our alignment sub-

network where forward-propagation (FP) and backward-

propagation (BP) stages are implemented.

3.1. Localization Sub­network

Our localization sub-network outputs the common-

ly used coordinates for the top-left and bottom-right

bounding-box corners denoted as (x1, y1) and (x2, y2), giv-

en an input natural image for fine-grained recognition. In

the training phase, we regress bounding boxes of part re-

gions. Ground truth bounding boxes are generated with part

annotation. We unify input image resolution and construct

a localization sub-network [13], which consists of 5 convo-

lutional layers and 3 fully connected ones. Our last fully

connected layer is a 4-way output for regressing bounding-

box corners (x1, y1) and (x2, y2).
With output L = (x1, y1, x2, y2), our localization sub-

network is expressed as

L = fl(Wl; I), (1)

where Wl is the weight parameter set and I is the input

image. During training, ground truth locations of parts Lgt

are used. The location objective function is given by

El(Wl; I,L
gt) =

1

2
||fl(Wl; I)− Lgt||2. (2)

We minimize it over Wl. This framework works well on

part location regression because the appearance of objects

and part regions are generally stable in fine-grained tasks.

The location of parts thus can be reasonably predicted. Fig-

ure 5 shows the examples of localized bird heads and bod-

ies.

3.2. Classification Sub­network

The classification sub-network is the last module shown

in Figure 2. Our classification takes the pose-aligned part

image as input, denoted as φ∗, and generates the category

label. This classification CNN [13] is expressed as

y = fc(Wc;φ
∗), (3)

where Wc is the weight parameter set in this sub-network.

The output is the category label y.

During training, the ground truth label ygt is provided.

The predicted category label y in Eq. (3) should be consis-

tent with ygt. We enforce a penalty on y, which is denoted

as Ec(Wc;φ
∗, ygt). In classification, we follow the method

of [13] to use softmax regression loss in order to penalize

the classification error.

Our major contribution in this system is the construction

of the alignment sub-network, which is detailed below to-

gether with the formulation of φ∗ in Eq. (3).

3.3. Alignment Sub­network

Alignment sub-network receives part location L (i.e.,

bounding box) from the localization module, performs tem-

plate alignment [18] and feeds a pose-aligned part image

to classification, as shown in Figure 2. Our alignment sub-

network offsets translation, scaling, and rotation for pose-

aligned part region generation, which is important for ac-

curate classification. Apart from pose aligning, this sub-

network plays a crucial role on bridging the backward-

propagation (BP) stage of the whole LAC model, which

helps utilize the classification and alignment results to re-

fine localization.

We propose a new valve linkage function (VLF) as the

output of alignment sub-network to accomplish the above

goals. In what follows, we present our alignment part and

then detail our VLF in line with the FP and BP stages of the

LAC model.

3.3.1 Template Alignment

We rectify localized part regions, making their poses close

to the templates. To evaluate the similarity of poses, we
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Figure 3: Examples of alignment templates of bird (a) head

and (b) body.

define the function between part regions Ri and Rj as

S[Ri,Rj] =

255∑

m=0

255∑

n=0

pij(m,n)log(
pij(m,n)

pi(m)pj(n)
), (4)

where pi,pj ∈ R
c form distributions of gray-scale val-

ues of uniform-size images Ri and Rj respectively. pij ∈
R

256×256 is for the joint distribution. This pose similarity

function is based on mutual information [18]. A large value

means similar poses between Ri and Rj .

To resist large pose variation, we generate a template set

for alignment. For each pair in N training part images, we

calculate the similarity using Eq. (4) and finally form a sim-

ilarity matrix St ∈ R
N×N . St is then processed with spec-

tral clustering [16] to split the N part images into K cluster-

s. From each cluster, we select the part region closest to the

cluster center as template to represent this set. To include

mirrored poses, we also flip each template. Eventually, we

obtain a template set T.

Figure 4 shows the pipeline of alignment. Given an

input image I, the regressed part bounding box L gener-

ated by localization sub-network and the center cr(L) =
(x1+x2

2 , y1+y2

2 ) of the bounding box, we assume the pose-

aligned part region is with center location c, rotated with θ

degree and is scaled with factor α. To compare it with a

template t, we extract the region, denoted as φ(c, θ, α; I).
Using the above similarity function, alignment is done by

finding c, θ, α and t that maximize

Ea(c, θ, α, t; I,L) =

S[φ(c, θ, α; I), t] + λ exp(−
1

2
‖c− cr(L)‖2),

c ∈ [x1, x2]× [y1, y2], θ ∈ Θ, α ∈ A, t ∈ T, (5)

where λ is a constant. Using the second term of Eq. (5), we

adjust the aligning center c according to the regressed cen-

ter cr(L) of parts. This helps resist imperfectly regressed

Figure 4: Alignment sub-network selects optimally pose-

aligned parts for classification.

part centers and locate the aligning centers within part re-

gions, making alignment more reliable. Θ, A, and T define

the ranges of parameters. A large value from Eq. (5) indi-

cates reliable alignment. Maximizing Eq. (5) is achieved

by searching the quantized parametric space.

3.3.2 Valve Linkage Function (VLF)

Our VLF defines the output of the alignment sub-network,

which is important to link the sub-networks and make them

work as a whole in training and testing. It is expressed as

P (L; I,Lf ) =
Ea(c

∗, θ∗, α∗, t∗; I,L)

Ea(c∗, θ∗, α∗, t∗; I,Lf )
φ(c∗, θ∗, α∗; I),

(6)

where

{c∗, θ∗, α∗, t∗} = argmax
c,θ,α,t

Ea(c, θ, α, t; I,Lf ),

s.t. c ∈ [x1, x2]× [y1, y2], θ ∈ Θ, α ∈ A, t ∈ T. (7)

Here φ(c∗, θ∗, α∗; I) is the pose-aligned part and Lf is the

output of localization sub-network in the current forward-

propagation (FP) stage. The role of valve function in FP

and BP is discussed below.

FP stage In the FP stage of the neural network, align-

ment sub-network receives part location Lf and aligns it

as P (Lf ; I,Lf ) for further classification. The output is ex-

pressed as

P (Lf ; I,Lf ) = φ(c∗, θ∗, α∗; I), (8)

which is exactly the pose-aligned part.



BP stage In the BP stage, the output of alignment sub-

network P (L; I,Lf ) becomes a function of L. Therefore,

the objective function of LAC model is formulated as

J(Wc,Wl; I,L
gt, ygt) =

Ec(Wc;P (L; I,Lf ), y
gt) + El(Wl; I,L

gt), (9)

where Wc and Wl are the parameters to be determined. Ec

and El are defined in two other sub-networks. We minimize

this objective function to update localization and classifica-

tion sub-networks during training.

To update the classification sub-network, we compute

the gradients of objective function J with respect to Wc.

It is the same as those presented in [13].

To update the localization sub-network, gradients with

respect to Wl are computed, written as

∇Wl
J=

∂El

∂Wl

+
∂Ec

∂Wl

=
∂El

∂Wl

+
∂Ec

∂P (L; I,Lf )

∂P (L; I,Lf )

∂L

∂L

∂Wl

,(10)

where the former term ∂El

∂Wl
represents the BP stage within

localization.

Analysis In the second term of Eq. (10), ∂Ec

∂P (L;I,Lf)
and

∂L
∂Wl

pass useful information in the BP stages within classi-

fication and localization sub-networks respectively. With-

out the valve linkage function part
∂P (L;I,Lf )

∂L
, informa-

tion propagation from classification to localization would

be blocked.

We further show that VLF provides information control

from classification to other sub-networks. In the BP stage,

P (L; I,Lf ) can be rewritten as

P (L; I,Lf ) =
1

e
Ea(c

∗, θ∗, α∗, t∗; I,L)φ(c∗, θ∗, α∗; I),

(11)

where e = Ea(c
∗, θ∗, α∗, t∗; I,Lf ) is the alignment ener-

gy generated in FP stage. With it becoming a constant in

backward propagation,
∂P (L;I,Lf )

∂L
can be expressed as

∂P (L; I,Lf )

∂L
=

1

e
φ(c∗, θ∗, α∗; I)

∂Ea

∂L
. (12)

And the term ∂Ea

∂L
is extended to

∂Ea

∂L
= −

λ

2
exp(−

1

2
‖c− cr(L)‖)

∂‖c− cr(L)‖2

∂L
,

(13)

where c = (cx, cy) and

∂‖c− cr(L)‖2

∂L
= (

x1 + x2

2
− cx,

y1 + y2

2
− cy,

x1 + x2

2
− cx,

y1 + y2

2
− cy). (14)

Here, factor 1
e

can be deemed as a valve controlling influ-

ence from classification. As described in Section 3.3.1, a

larger alignment score e corresponds to better alignment in

the FP stage. In BP stage, 1
e

is used to re-weight the BP

error ∂Ec

∂P (L;I,Lf )
from classification. It functions as a com-

promise between classification and alignment errors.

In this case, a large e means good alignment in the BP

stage, for which information from the classification sub-

network is automatically reduced given a small 1
e

. In con-

trast, if e is small, current alignment becomes less reliable.

Thus more classification information is automatically intro-

duced by the large 1
e

to guide Wl update. Simply put, one

can understand 1
e

as a dynamic learning rate in the BP stage.

It is adaptive to matching performance.

With this kind of auto-adjustment mechanism in our

VLF connecting classification and alignment, localization

can be refined in the BP stage. We verify the powerfulness

of this design in experiments.

4. Experiments

We evaluate our method on two widely employed

datasets: 1) the Caltech-UCSD Bird-200-2011 [22] and 2)

Caltech-UCSD Bird-200-2010 [23].

In implementation, we modify the Caffe platform [11]

for CNN construction. Bird heads and bodies are consid-

ered as semantic parts. We train two deep LACs for them

respectively. All CNN models are fine-tuned using the pre-

trained ImageNet model. The 6th layer of the CNN clas-

sification models (i.e., two part models + one whole image

model) is extracted to form a 4096× 3D feature. Then we

follow the popular CNN-SVM scheme [19] to train a SVM

classifier on our CNN feature.

The major parametric setting for each part model is as

follows. 1) In the localization sub-network, all input images

are resized to 227×227. We replace the original 1,000-way

fully connected layer with a 4-way layer for regressing part

bounding box. The pre-trained ImageNet model is used to

initialize our localization sub-network. 2) For alignment,

in template selection, all 5,994 part annotations for head or

body in the training set of Caltech-UCSD Bird-200-2011

[22] are used. The 5,994 parts are cropped and resized to

227× 227. Using spectral clustering, we obtain the 5,994-

part split into 30 clusters. From each cluster, we select the

part region closest to the cluster center and its mirrored ver-

sion as two templates. This process forms 60-template T

eventually.

During template alignment, the rotation degree θ is an

integer and its range is Θ = [−60, 60]. Meanwhile, we

search the scale α within A = {2.5, 3, 3.5, 4, 4.5}. An-

other controllable parameter in alignment is λ in Eq. (5).

Empirically, we set it to 0.001. Finally the classification

sub-network takes input images each with size 227 × 227.



(a)

(b)

Figure 5: Localization examples of (a) bird head and (b) bird body.

Methods Head Body

(Strong DPM) [27, 2] 43.49% 75.15%

(Selective Serach) [27, 21] 68.19% 79.82%

Ours 74.00% 96.00%

Table 1: Comparison with state-of-the-arts in terms of part

localization accuracy on part overlap ≥ 0.5 with ground

truth on the CUB-200-2011 dataset.

The last fully connected layer is a 200-way one since the

two datasets contain 200 categories. Again, the pre-trained

ImageNet model is used to initialize weight parameters.

The major computing hardware is a Nvidia TITAN Z

graphics card with 5,760 cores and 12GB memory.

4.1. Caltech­UCSD Bird­200­2011 Dataset

We first evaluate our method on Caltech-UCSD Bird-

200-2011 [22]. This dataset contains 11,788 images of bird-

s, divided into 200 subordinate categories. Each image is

labeled with its species and with the bounding box for the

whole bird. It also provides annotations of bird parts includ-

ing back, beak, belly, breast, crown, forehead, left eye, left

leg, left wing, nape, right eye, right leg, right wing, tail, and

throat.

During the training and testing phases, we make use of

the bounding box provided in the dataset to simplify classi-

fication, as most previous methods did [14, 3, 5, 8, 28, 27].

Our experiments follow the training/testing split fixed in

[22]. We define two kinds of semantic templates, i.e.,

“head” and “body”, as in [27, 4]. Because there is no such

annotation, we follow the method of [27] to get correspond-

ing rectangles covering annotated parts distributed within
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Figure 6: PCPs of (a) bird head and (b) bird body under

different overlap rates. “LAC” and “LOC” refer to the LAC

model and localization sub-networks respectively.

bird heads and bodies.

The first experiment is to evaluate part localization. Two

previous methods [21, 2] localize heads and bodies. With

the same experimental setting, we make a comparison in

Table 1 based on Percentage of Correctly Localized Parts

(PCP) [27], which is computed on the top-ranked part pre-

diction and regards parts with ≥ 0.5 overlap with ground

truth as correct.

For the head parts, our result is 74.00% against previous

43.49% [2] and 68.19% [21]. For bird bodies, our accuracy

is as high as 96.00% compared to the previous best 79.82%.

Figure 5 shows a few examples for part localization, where

(a) and (b) visualize the predicted bounding boxes of bird

heads and bodies. Our localization sub-network is intrigu-

ingly beneficial to bounding box regression.

Localization Module Analysis To further understand the

importance of the localization module using our VLF, we

move this sub-network out of the joint LAC model and com-

pare it with our overall LAC in terms of PCP with overlaps

≥ 0.5, 0.6, 0.7 and 0.8. The results are plotted in Figure 6.

In all configurations, the localization network (LOC) alone

performs notably worse than applying the whole LAC mod-

el. It is because LOC does not get feedback from alignment

and classification while our LAC updates all of them in iter-

ations using our FP and BP processes. Experimental results

match our understanding of the network structure.

Sub-network Combination Analysis Our above exper-

imental results manifest that LAC with all three sub-

networks is powerful in part localization. We also evalu-

ate its performance in fine-grained classification and exper-

iment with removing one or two components in the follow-

ing four cases.

First, we remove the localization sub-network by vali-

dating the classification accuracy on whole images without

localization. The results are listed in the first row of Table

2. Without the localization module, the whole-image clas-

sification accuracy is 65.00%.

Methods Head Body

Case 1 65.00% 65.00%

Case 2 67.83% 43.00%

Case 3 70.00% 48.00%

Case 4 72.00% 52.65%

Table 2: Classification accuracy of semantic parts, i.e. head

and body, on CUB-200-2011 dataset. We respectively block

localization and alignment sub-networks to evaluate perfor-

mance.

Second, we block the alignment sub-network to interdict

FP and BP in the LAC framework. The localization sub-

network is used to propose part hypotheses for classifica-

tion. The remaining localization and classification modules

are trained independently in BP stages. The values in the

second row of Table 2 indicate that lack of message propa-

gation in alignment is not recommended.

Third, we use VLF in the alignment sub-network to out-

put pose-aligned part for classification in the FP stage. But

VLF is disabled in the BP stage to prevent classification and

alignment errors from back propagation to localization. In

this case, we boost the accuracy to 70.00% on bird head-

s (the third row of Table 2). The alignment sub-network,

along with FP and BP, is thus necessary.

Finally, we use the complete LAC model. It yields the

best score 72.00% for head recognition in Table 2, bearing

out that our VLF-involved LAC is suitable for fine-grained

recognition and actually improves both classification and

localization.

We observe about 34% performance gap in the four cas-

es (65.00% vs 43.00%) for classifying the body part. Com-

pared to the high PCP (96.00%) for body localization in

Table 1, we conclude that bird bodies are not that distinct

for bird species identification. The localization errors are

however low. After adding alignment (with VLF), the per-

formance gain is about 22% (52.65% vs 43.00%).

Overall Comparison Our final classification accuracy

compared with other state-of-the-arts is presented in Table

3. All results are accomplished under the setting that the

bounding box for the entire bird is given in training and test-

ing. In our system, we feed each image into the two trained

networks to extract features of head and body.

Table 3 shows using the features of head and body

achieve accuracies 72.00% and 52.65%. We concatenate

the two feature vectors to form a combined representation.

It yields accuracy 78.12%. We finally tune the CNN model

based on the whole image using the pre-trained model [11].

The 6th layer of it is extracted for training a SVM classi-

fier, obtaining accuracy 65.00%. After concatenating the



Methods Accuracy

Lee et al. [14] 41.01%

Berg et al. [3] 56.89%

Goering et al. [9] 57.84%

Chai et al. [5] 59.40%

Gravves et al. [8] 62.70%

Zhang et al. [28] 64.96%

Zhang et al. [27] 76.37%

Ours (head) 72.00%

Ours (body) 52.65%

Ours (head+body) 78.12%

Whole image 65.00%

Ours (head+body) + whole image 80.26%

Table 3: Comparison with state-of-the-arts on the CUB-

200-2011 dataset.

Methods Head Body

No localization 48.00% 48.00%

Localization 50.48% 40.71%

Localization & alignment 54.00% 45.12%

Table 4: Classification accuracy of semantic parts, i.e. head

and body, on CUB-200-2010 dataset. We respectively block

localization and alignment sub-network for performance e-

valuation.

features of head, body and the whole image, our accuracy

increases to 80.26%. In comparison, the method of Zhang

et al. [27] also considers the same head and body parts and

combines the CNN feature of the whole image. We believe

our accuracy increase is mainly due to reliable localization

and alignment in the VLF-enabled LAC.

4.2. Caltech­UCSD Bird­200­2010 Dataset

Caltech-UCSD Bird-200-2010 [23] provides 6,033 im-

ages from 200 bird categories. It does not offer part annota-

tion and contains less training/testing data, It thus can verify

whether our LAC, which is trained on Caltech-UCSD Bird-

200-2011, is able to be generalized to this dataset or not.

The classification results are listed in Table 4. The lo-

calization and alignment sub-networks are obtained using

the training data from Caltech-UCSD Bird-200-2011. The

classification sub-network is updated on this dataset after

getting the pose-aligned part images.

Our whole-image classification accuracy (in the “No lo-

calization” row) is 48.00%. By localization of bird heads,

the performance gain is about 5% (50.48% vs 48.00%). The

gain is up to 12.5% after further incorporating alignment.

The best body recognition accuracy 45.12% is achieved by

Methods Accuracy

Yao et al. [26] 19.20%

Khan et al. [12] 22.40%

Yang et al. [25] 28.20%

Angelova et al. [1] 30.20%

Deng et al. [6] 32.80%

Goering et al. [9] 35.94%

Farrell et al. [7] 37.12%

Chai et al. [5] 47.30%

Ours (head) 54.00%

Ours (body) 45.12%

Ours (head+body) 58.67%

Whole image 48.00%

Ours (head+body) + whole image 65.25%

Table 5: Comparison with the state-of-the-arts on CUB-

200-2010 dataset.

adding localization and alignment.

In the final experiment, we make comparison with other

methods in terms of classification accuracies. The results

are tabulated in Table 5. The previous best result is 47.30%

[5]. Our bird-head representation obtains 54.00% accuracy.

The combined head and body representations yield 58.67%

accuracy.

Similar to previous experiments, we also take the whole

image into consideration. After combining all three fea-

tures, our classification performance is boosted to 65.25%

– i.e., 32% accuracy increase. We believe better perfor-

mance can be achieved if the localization and alignmen-

t sub-networks are adapted with part annotation, which is

however not available for this dataset.

5. Concluding Remarks

We have presented a deep neural network to achieve fine-

grained recognition. We share the same observation as pre-

vious work that proper localization and alignment of salien-

t object parts are important in this process. Based on it,

we contribute a unified LAC system to incorporate local-

ization, alignment and classification as three sub-networks.

They are connected with an optimally defined VLF to en-

able smooth forward- and backward-propagation. Our re-

sults show this process improves part finding and matching,

which eventually helps classification.
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