
Deep Lattice Networks and Partial Monotonic

Functions

Seungil You, David Ding, Kevin Canini, Jan Pfeifer, Maya R. Gupta
Google Research

1600 Amphitheatre Parkway, Mountain View, CA 94043
{siyou,dwding,canini,janpf,mayagupta}@google.com

Abstract

We propose learning deep models that are monotonic with respect to a user-
specified set of inputs by alternating layers of linear embeddings, ensembles of
lattices, and calibrators (piecewise linear functions), with appropriate constraints
for monotonicity, and jointly training the resulting network. We implement the lay-
ers and projections with new computational graph nodes in TensorFlow and use the
Adam optimizer and batched stochastic gradients. Experiments on benchmark and
real-world datasets show that six-layer monotonic deep lattice networks achieve
state-of-the art performance for classification and regression with monotonicity
guarantees.

1 Introduction

We propose building models with multiple layers of lattices, which we refer to as deep lattice networks
(DLNs). While we hypothesize that DLNs may generally be useful, we focus on the challenge of
learning flexible partially-monotonic functions, that is, models that are guaranteed to be monotonic
with respect to a user-specified subset of the inputs. For example, if one is predicting whether to
give someone else a loan, we expect and would like to constrain the prediction to be monotonically
increasing with respect to the applicant’s income, if all other features are unchanged. Imposing
monotonicity acts as a regularizer, improves generalization to test data, and makes the end-to-end
model more interpretable, debuggable, and trustworthy.

To learn more flexible partial monotonic functions, we propose architectures that alternate three
kinds of layers: linear embeddings, calibrators, and ensembles of lattices, each of which is trained
discriminatively to optimize a structural risk objective and obey any given monotonicity constraints.
See Fig. 2 for an example DLN with nine such layers.

Lattices are interpolated look-up tables, as shown in Fig. 1. Lattices have been shown to be an
efficient nonlinear function class that can be constrained to be monotonic by adding appropriate
sparse linear inequalities on the parameters [1], and can be trained in a standard empirical risk
minimization framework [2, 1]. Recent work showed lattices could be jointly trained as an ensemble
to learn flexible monotonic functions for an arbitrary number of inputs [3].

Calibrators are one-dimensional lattices, which nonlinearly transform a single input [1]; see Fig. 1 for
an example. They have been used to pre-process inputs in two-layer models: calibrators-then-linear
models [4], calibrators-then-lattice models [1], and calibrators-then-ensemble-of-lattices model [3].
Here, we extend their use to discriminatively normalize between other layers of the deep model, as
well as act as a pre-processing layer. We also find that using a calibrator for a last layer can help
nonlinearly transform the outputs to better match the labels.

We first describe the proposed DLN layers in detail in Section 2. In Section 3, we review more related
work in learning flexible partial monotonic functions. We provide theoretical results characterizing
the flexibility of the DLN in Section 4, followed by details on our open-source TensorFlow imple-

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

-10 -5 0 5 10
0

1

(1,0,0)(0,0,0)

(1,1,0)

(1,1,1)

(1,0,1)(0,0,1)

(0,1,1)

(1,0,0)(0,0,0)

(1,1,0)

(1,1,1)

(1,0,1)

(0,1,1)

(.7,0,.8)

(.2,0,.4)

(.5,5,1)(0,0,1)

Figure 1: Left: Example calibrator (1-d lattice) with fixed input range [−10, 10] and five fixed
uniformly-spaced keypoints and corresponding discriminatively-trained outputs (look-up table values
values). Middle: Example lattice on three inputs in fixed input range [0, 1]3, with 8 discriminatively-
trained parameters (shown as gray-values), each corresponding to one of the 23 vertices of the unit
hypercube. The parameters are linearly interpolated for any input [0, 1]3 to form the lattice function’s
output. If the parameters are increasing in any direction, then the function is monotonic increasing
in that direction. In this example, the gray-value parameters get lighter in all three directions, so
the function is monotonic increasing in all three inputs. Right: Three examples of lattice values are
shown in italics, each interpolated from the 8 lattice parameters.

1d calibrator monotonic

Monotonic
inputs Wm ≥ 0

Non-
monotonic
inputs

Wn

multi-d lattice non-monotonic

Figure 2: Illustration of a nine-layer DLN: calibrators, linear embedding, calibrators, ensemble of
lattices, calibrators, ensemble of lattices, calibrators, lattice, calibrator.

mentation and numerical optimization choices in Section 5. Experimental results demonstrate the
potential on benchmark and real-world scenarios in Section 6.

2 Deep Lattice Network Layers

We describe in detail the three types of layers we propose for learning flexible functions that can
be constrained to be monotonic with respect to any subset of the inputs. Without loss of generality,
we assume monotonic means monotonic non-decreasing (one can flip the sign of an input if non-
increasing monotonicity is desired). Let xt ∈ R

Dt be the input vector to the tth layer, with Dt

inputs, and let xt[d] denote the dth input for d = 1, . . . , Dt. Table 1 summarizes the parameters and
hyperparameters for each layer. For notational simplicity, in some places we drop the notation t if it
is clear in the context. We also denote as xmt the subset of xt that are to be monotonically constrained,
and as xnt the subset of xt that are non-monotonic.

Linear Embedding Layer: Each linear embedding layer consists of two linear matrices, one

matrix Wm
t ∈ R

Dm
t+1×Dm

t that linearly embeds the monotonic inputs xmt , and a separate matrix

Wn
t ∈ R

(Dt+1−Dm
t+1)×(Dt−Dm

t) that linearly embeds non-monotonic inputs xnt , and one bias vector

2

bt. To preserve monotonicity on the embedded vector Wm
t x

m
t , we impose the following linear

inequality constraints:
Wm

t [i, j] ≥ 0 for all (i, j). (1)

The output of the linear embedding layer is:

xt+1 =

[

xmt+1
xnt+1

]

=

[

Wm
t x

m
t

Wn
t x

n
t

]

+ bt

Only the first Dm
t+1 coordinates of xt+1 needs to be a monotonic input to the t+ 1 layer. These two

linear embedding matrices and bias vector are discriminatively trained.

Calibration Layer: Each calibration layer consists of a separate one-dimensional piecewise linear
transform for each input at that layer, ct,d(xt[d]) that maps R to [0, 1], so that

xt+1 := [ct,1(xt[1]) ct,2(xt[2]) · · · ct,Dt
(xt[Dt])]

T
.

Here each ct,d is a 1D lattice with K key-value pairs (a ∈ R
K , b ∈ R

K), and the function for each
input is linearly interpolated between the two b values corresponding to the input’s surrounding a
values. An example is shown on the left in Fig. 1.

Each 1D calibration function is equivalent to a sum of weighted-and-shifted Rectified linear units
(ReLU), that is, a calibrator function c(x[d]; a, b) can be equivalently expressed as

c(x[d]; a, b) =
K
∑

k=1

α[k]ReLU(x− a[k]) + b[1], (2)

where

α[k] :=

b[k+1]−b[k]
a[k+1]−a[k] −

b[k]−b[k−1]
a[k]−a[k−1] for k = 2, · · · ,K − 1

b[2]−b[1]
a[2]−a[1] for k = 1

− b[K]−b[K−1]
a[K]−a[K−1] for k = K

However, enforcing monotonicity and boundedness constraints for the calibrator output is much
simpler with the (a, b) parameterization of each keypoint’s input-output values, as we discuss shortly.

Before training the DLN, we fix the input range for each calibrator to [amin, amax], and we fix the K
keypoints a ∈ R

K to be uniformly-spaced over [amin, amax]. Inputs that fall outside [amin, amax] are
clipped to that range. The calibrator output parameters b ∈ [0, 1]K are discriminatively trained.

For monotonic inputs, we can constrain the calibrator functions to be monotonic by constraining the
calibrator parameters b ∈ [0, 1]K to be monotonic, by adding the linear inequality constraints

b[k] ≤ b[k + 1] for k = 1, . . . ,K − 1 (3)

into the training objective [3]. We also experimented with constraining all calibrators to be monotonic
(even for non-monotonic inputs) for more stable/regularized training.

Ensemble of Lattices Layer: Each ensemble of lattices layer consists of G lattices. Each lattice
is a linearly interpolated multidimensional look-up table; for an example, see the middle and right
pictures in Fig. 1. Each S-dimensional look-up table takes inputs over the S-dimensional unit

hypercube [0, 1]S , and has 2S parameters θ ∈ R
2S , specifying the lattice’s output for each of the

2S vertices of the unit hypercube. Inputs in-between the vertices are linearly interpolated, which
forms a smooth but nonlinear function over the unit hypercube. Two interpolation methods have been
used, multilinear interpolation and simplex interpolation [1] (also known as Lovász extension [5]).
We use multilinear interpolation for all our experiments, which can be expressed ψ(x)T θ where the

non-linear feature transformation ψ(x) : [0, 1]S → [0, 1]2
S

are the 2S linear interpolation weights
that input x puts on each of the 2S parameters θ such that the interpolated value for x is ψ(x)T θ, and

ψ(x)[j] = ΠS
d=1x[d]

vj [d](1−x[d])1−vj [d], where vj [·] ∈ 0, 1 is the coordinate vector of the jth vertex

of the unit hypercube, and j = 1, · · · , 2D. For example, when S = 2, v1 = (0, 0), v2 = (0, 1), v3 =
(1, 0), v4 = (1, 1) and ψ(x) = ((1− x[1])(1− x[2]), (1− x[1])x[2], x[1](1− x[2]), x[1]x[2]).

The ensemble of lattices layer produces G outputs, one per lattice. When initializing the DLN, if
the t+ 1th layer is an ensemble of lattices, we randomly permute the outputs of the previous layer

3

Table 1: DLN layers and hyperparameters

Layer t Parameters Hyperparameters

Linear Embedding bt ∈ R
Dt+1 , Wm

t ∈ R
Dm

t+1×Dm
t , Dt+1

Wn
t ∈ R

(Dt+1−Dm
t+1)×(Dt−Dm

t)

Calibrators Bt ∈ R
Dt×K K ∈ N

+ keypoints,
input range [ℓ, u]

Lattice Ensemble θt,g ∈ R
2St

for g = 1, . . . , Gt Gt lattices
St inputs per lattice

to be assigned to the Gt+1 × St+1 inputs of the ensemble. If a lattice has at least one monotonic
input, then that lattice’s output is constrained to be a monotonic input to the next layer to guarantee
end-to-end monotonicity. Each lattice is constrained to be monotonic by enforcing monotonicity
constraints on each pair of lattice parameters that are adjacent in the monotonic directions; for details
see Gupta et al. [1].

End-to-end monotonicity: The DLN is constructed to preserve end-to-end monotonicity with
respect to a user-specified subset of the inputs. As we described, the parameters for each component
(matrix, calibrator, lattice) can be constrained to be monotonic with respect to a subset of inputs
by satisfying certain linear inequality constraints [1]. Also if a component has a monotonic input,
then the output of that component is treated as a monotonic input to the following layer. Because
the composition of monotonic functions is monotonic, the constructed DLN belongs to the partial
monotonic function class. The arrows in Figure 2 illustrate this construction, i.e., how the tth layer
output becomes a monotonic input to t+ 1th layer.

2.1 Hyperparameters

We detail the hyperparameters for each type of DLN layer in Table 1. Some of these hyperparameters
constrain each other since the number of outputs from each layer must be equal to the number of
inputs to the next layer; for example, if you have a linear embedding layer with Dt+1 = 1000
outputs, then there are 1000 inputs to the next layer, and if that next layer is a lattice ensemble, its
hyperparameters must obey Gt × St = 1000.

3 Related Work

Low-dimensional monotonic models have a long history in statistics, where they are called shape
constraints, and often use isotonic regression [6]. Learning monotonic single-layer neural nets by
constraining the neural net weights to be positive dates back to Archer and Wang in 1993 [7], and
that basic idea has been re-visited by others [8, 9, 10, 11], but with some negative results about
the obtainable flexibility, even with multiple hidden layers [12]. Sill [13] proposed a three-layer
monotonic network that used monotonic linear embedding and max-and-min-pooling. Daniels and
Velikova [12] extended Sill’s result to learn a partial monotonic function by combining min-max-
pooling, also known as adaptive logic networks [14], with partial monotonic linear embedding, and
showed that their proposed architecture is a universal approximator for partial monotone functions.
None of these prior neural networks were demonstrated on problems with more than D = 10 features,
nor trained on more than a few thousand examples. For our experiments we implemented a positive
neural network and a min-max-pooling network [12] with TensorFlow.

This paper extends recent work in learning multidimensional flexible partial monotonic 2-layer
networks consisting of a layer of calibrators followed by an ensemble of lattices [3], with parameters
appropriately constrained for monotonicity, which built on earlier work of Gupta et al. [1]. This work
differs in three key regards.

First, we alternate layers to form a deeper, and hence potentially more flexible, network. Second, a
key question addressed in Canini et al. [3] is how to decide which features should be put together in
each lattice in their ensemble. They found that random assignment worked well, but required large
ensembles. They showed that smaller (and hence faster) models with the same accuracy could be

4

trained by using a heuristic pre-processing step they proposed (crystals) to identify which features
interact nonlinearly. This pre-processing step requires training a lattice for each pair of inputs to judge
that pair’s strength of interaction, which scales as O(D2), and we found it can be a large fraction of
overall training time for D > 50.

We solve this problem of determining which inputs should interact in each lattice by using a linear
embedding layer before an ensemble of lattices layer to discriminatively and adaptively learn during
training how to map the features to the first ensemble-layer lattices’ inputs. This strategy also means
each input to a lattice can be a linear combination of the features. This use of a jointly trained linear
embedding is the second key difference to that prior work [3].

The third difference is that in previous work [4, 1, 3], the calibrator keypoint values were fixed a
priori based on the quantiles of the features, which is challenging to do for the calibration layers
mid-DLN, because the quantiles of their inputs are evolving during training. Instead, we fix the
keypoint values uniformly over the bounded calibrator domain.

4 Function Class of Deep Lattice Networks

We offer some results and hypotheses about the function class of deep lattice networks, depending
on whether the lattices are interpolated with multilinear interpolation (which forms multilinear
polynomials), or simplex interpolation (which forms locally linear surfaces).

4.1 Cascaded multilinear lookup tables

We show that a deep lattice network made up only of cascaded layers of lattices (without intervening
layers of calibrators or linear embeddings) is equivalent to a single lattice defined on the D input
features if multilinear interpolation is used. It is easy to construct counter-examples showing that this
result does not hold for simplex-interpolated lattices.

Lemma 1. Suppose that a lattice has L inputs that can each be expressed in the form θTi ψ(x[si]),
where the si are mutually disjoint and ψ represents multilinear interpolation weights. Then the output

can be expressed in the form θ̂T ψ̂(x[∪si]). That is, the lattice preserves the functional form of its
inputs, changing only the values of the coefficients θ and the linear interpolation weights ψ.

Proof. Each input i of the lattice can be expressed in the following form:

fi = θTi ψ(x[si]) =

2|si|
∑

k=1

θi[vik]
∏

d∈si

x[d]vik[d](1− x[d])1−vik[d]

This is a multilinear polynomial on x[si]. The output can be expressed in the following form:

F =

2L
∑

j=1

θi[vj]

L
∏

i=1

f
vj [i]
i (1− fi)

1−vj [i]

Note the product in the expression: fi and 1− fi are both multilinear polynomials, but within each
term of the product, only one is present, since one of the two has exponent 0 and the other has
exponent 1. Furthermore, since each fi is a function of a different subset of x, we conclude that
the entire product is a multilinear polynomial. Since the sum of multilinear polynomials is still a
multilinear polynomial, we conclude that F is a multilinear polynomial. Any multilinear polynomial
on k variables can be converted to a k-dimensional multilinear lookup table, which concludes the
proof.

Lemma 1 can be applied inductively to every layer of cascaded lattices down to the final output
F (x). We have shown that cascaded lattices using multilinear interpolation is equivalent to a single
multilinear lattice defined on all D features.

4.2 Universal approximation of partial monotone functions

Theorem 4.1 in [12] states that partial monotone linear embedding followed by min and max pooling
can approximate any partial monotone functions on the hypercube up to arbitrary precision given

5

sufficiently high embedding dimension. We show in the next lemma that simplex-interpolated lattices
can represent min or max pooling. Thus one can use a DLN constructed with a linear embedding layer
followed by two cascaded simplex-interpolated lattice layers to approximate any partial monotone
function on the hypercube.

Lemma 2. Let θmin = (0, 0, · · · , 0, 1) ∈ R
2n and θmax = (1, 0, · · · , 0) ∈ R

2n , and ψsimplex be
the simplex interpolation weights. Then

min(x[0], x[1], · · · , x[n]) = ψsimplex(x)
T θmin

max(x[0], x[1], · · · , x[n]) = ψsimplex(x)
T θmax

Proof. From the definition of simplex interpolation [1], ψsimplex(x)
T θ = θ[1]x[π[1]] + · · · +

θ[2n]x[π[n]], where π is the sorted order such that x[π[1]] ≥ · · · ≥ x[π[n]], and due to sparsity, θmin

and θmax selects the min and the max.

4.3 Locally linear functions

If simplex interpolation [1] (aka the Lovász extension) is used, the deep lattice network produces
a locally linear function, because each layer is locally linear, and compositions of locally linear
functions are locally linear. Note that a D input lattice interpolated with simplex interpolation has D!
linear pieces [1]. If one cascades an ensemble of D lattices into a lattice, then the number of possible
locally linear pieces is of the order O((D!)!).

5 Numerical Optimization Details for the DLN

Operators: We implemented 1D calibrators and multilinear interpolation over a lattice as new C++
operators in TensorFlow [15] and express each layer as a computational graph node using these
new and existing TensorFlow operators. Our implementation is open sourced and can be found
in https://github.com/tensorflow/lattice. We use the Adam optimizer [16] and
batched stochastic gradients to update model parameters. After each batched gradient update, we
project parameters to satisfy their monotonicity constraints. The linear embedding layer’s constraints
are element-wise non-negativity constraints, so its projection clips each negative component to zero.
This projection can be done inO(# of elements in a monotonic linear embedding matrix). Projection
for each calibrator is isotonic regression with chain ordering, which we implement with the pool-
adjacent-violator algorithm [17] for each calibrator. This can be done inO(# of calibration keypoints).
Projection for each lattice is isotonic regression with partial ordering that imposes O(S2S) linear
constraints for each lattice [1]. We solved it with consensus optimization and alternating direction
method of multipliers [18] to parallelize the projection computations with a convergence criterion of
ǫ = 10−7. This can be done in O(S2S log(1/ǫ)).

Initialization: For linear embedding layers, we initialize each component in the linear embedding
matrix with IID Gaussian noise N (2, 1). The initial mean of 2 is to bias the initial parameters
to be positive so that they are not clipped to zero by the first monotonicity projection. However,
because the calibration layer before the linear embedding outputs in [0, 1] and thus is expected to
have output E[xt] = 0.5, initializing the linear embedding with a mean of 2 introduces an initial bias:
E[xt+1] = E[Wtxt] = Dt. To counteract that we initialize each component of the bias vector, bt, to
−Dt, so that the initial expected output of the linear layer is E[xt+1] = E[Wtxt + bt] = 0.

We initialize each lattice’s parameters to be a linear function spanning [0, 1], and add IID Gaussian
noise N (0, 1

S2) to each parameter, where S is the number of input to a lattice. We initialize each
calibrator to be a linear function that maps [xmin, xmax] to [0, 1] (and did not add any noise).

6 Experiments

We present results on the same benchmark dataset (Adult) with the same monotonic features as
in Canini et al. [3], and for three problems from Google where the monotonicity constraints
were specified by product groups. For each experiment, every model considered is trained with
monotonicity guarantees on the same set of inputs. See Table 2 for a summary of the datasets.

6

https://github.com/tensorflow/lattice

Table 2: Dataset Summary

Dataset Type # Features (# Monotonic) # Training # Validation # Test

Adult Classify 90 (4) 26,065 6,496 16,281
User Intent Classify 49 (19) 241,325 60,412 176,792
Rater Score Regress 10 (10) 1,565,468 195,530 195,748
Usefulness Classify 9 (9) 62,220 7,764 7,919

Table 3: User Intent Case Study Results

Validation Test # Parameters G× S
Accuracy Accuracy

DLN 74.39% 72.48% 27,903 30× 5D
Crystals 74.24% 72.01% 15,840 80× 7D
Min-Max network 73.89% 72.02% 31,500 90× 7D

For classification problems, we used logistic loss, and for the regression, we used squared error. For
each problem, we used a validation set to optimize the hyperparameters for each model architecture:
the learning rate, the number of training steps, etc. For an ensemble of lattices, we tune the number of
lattices, G, and number of inputs to each lattice, S. All calibrators for all models used a fixed number
of 100 keypoints, and set [−100, 100] as an input range.

In all experiments, we use the six-layer DLN architecture: Calibrators → Linear Embedding →
Calibrators → Ensemble of Lattices → Calibrators → Linear Embedding, and validate the number
of lattices in the ensemble G, number of inputs to each lattice, S, the Adam stepsize and number of
loops.

For crystals [3] we validated the number of ensembles, G, and number of inputs to each lattice, S,
as well as Adam stepsize and number of loops. For min-max net [12], we validated the number of
groups, G, and dimension of each group S, as well as Adam stepsize and number of loops.

For datasets where all features are monotonic, we also train a deep neural network with a non-negative
weight matrix and ReLU as an activation unit with a final fully connected layer with non-negative
weight matrix, which we call monotonic DNN, akin to the proposals of [7, 8, 9, 10, 11]. We tune the
depth of hidden layers, G, and the activation units in each layer S.

All the result tables are sorted by their validation accuracy, and contain an additional column for
chosen hyperparameters; 2× 5D means G = 2 and S = 5.

6.1 User Intent Case Study (Classification)

For this real-world Google problem, the problem is to classify the user intent. This experiment
is set-up to test generalization ability to non-IID test data. The train and validation examples are
collected from the U.S., and the test set is collected from 20 other countries, and as a result of this
difference between the train/validation and test distributions, there is a notable difference between
the validation and the test accuracy. The results in Table 3 show a 0.5% gain in test accuracy for the
DLN.

6.2 Adult Benchmark Dataset (Classification)

We compare accuracy on the benchmark Adult dataset [19], where a model predicts whether a
person’s income is at least $50,000 or not. Following Canini et al. [1], we require all models to be
monotonically increasing in capital-gain, weekly hours of work and education level, and the gender
wage gap. We used one-hot encoding for the other categorical features, for 90 features in total. We
randomly split the usual train set [19] 80-20 and trained over the 80%, and validated over the 20%.

7

Table 4: Adult Results

Validation Test # Parameters G× S
Accuracy Accuracy

DLN 86.50% 86.08% 40,549 70× 5D
Crystals 86.02% 85.87% 3,360 60× 4D
Min-Max network 85.28% 84.63% 57,330 70× 9D

Results in Table 4 show the DLN provides better validation and test accuracy than the min-max
network or crystals.

6.3 Rater Score Prediction Case Study (Regression)

For this real-world Google problem, we train a model to predict a rater score for a candidate result,
where each rater score is averaged over 1-5 raters, and takes on 5-25 possible real values. All 10
monotonic features are required to be monotonic. Results in Table 5 show the DLN has very test
MSE than the two-layer crystals model, and much better MSE than the other monotonic networks.

Table 5: Rater Score Prediction (Monotonic Features Only) Results

Validation MSE Test MSE # Parameters G× S

DLN 1.2078 1.2096 81,601 50× 9D
Crystals 1.2101 1.2109 1,980 10× 7D
Min-Max network 1.3474 1.3447 5,500 100× 5D
Monotonic DNN 1.3920 1.3939 2,341 20× 100D

6.4 Usefulness Case Study (Classifier)

For this real-world Google problem, we train a model to predict whether a candidate result adds
useful information given the presence of another result. All 9 features are required to be monotonic.
Table 6 shows the DLN has slightly better validation and test accuracy than crystals, and both are
notably better than the min-max network or positive-weight DNN.

Table 6: Usefulness Results

Validation Test # Parameters G× S
Accuracy Accuracy

DLN 66.08% 65.26% 81,051 50× 9D
Crystals 65.45% 65.13% 9,920 80× 6D
Min-Max network 64.62% 63.65% 4,200 70× 6D
Monotonic DNN 64.27% 62.88% 2,012 1× 1000D

7 Conclusions

In this paper, we proposed combining three types of layers, (1) calibrators, (2) linear embeddings,
and (3) multidimensional lattices, to produce a new class of models we call deep lattice networks that
combines the flexibility of deep networks with the regularization, interpretability and debuggability
advantages that come with being able to impose monotonicity constraints on some inputs.

8

References

[1] M. R. Gupta, A. Cotter, J. Pfeifer, K. Voevodski, K. Canini, A. Mangylov, W. Moczydlowski,
and A. Van Esbroeck. Monotonic calibrated interpolated look-up tables. Journal of Machine
Learning Research, 17(109):1–47, 2016.

[2] E. K. Garcia and M. R. Gupta. Lattice regression. In Advances in Neural Information Processing
Systems (NIPS), 2009.

[3] K. Canini, A. Cotter, M. M. Fard, M. R. Gupta, and J. Pfeifer. Fast and flexible monotonic
functions with ensembles of lattices. Advances in Neural Information Processing Systems
(NIPS), 2016.

[4] A. Howard and T. Jebara. Learning monotonic transformations for classification. Advances in
Neural Information Processing Systems (NIPS), 2007.

[5] L. Lovász. Submodular functions and convexity. In Mathematical Programming The State of
the Art, pages 235–257. Springer, 1983.

[6] P. Groeneboom and G. Jongbloed. Nonparametric estimation under shape constraints. Cam-
bridge Press, New York, USA, 2014.

[7] N. P. Archer and S. Wang. Application of the back propagation neural network algorithm with
monotonicity constraints for two-group classification problems. Decision Sciences, 24(1):60–75,
1993.

[8] S. Wang. A neural network method of density estimation for univariate unimodal data. Neural
Computing & Applications, 2(3):160–167, 1994.

[9] H. Kay and L. H. Ungar. Estimating monotonic functions and their bounds. AIChE Journal,
46(12):2426–2434, 2000.

[10] C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia. Incorporating functional knowledge
in neural networks. Journal Machine Learning Research, 2009.

[11] A. Minin, M. Velikova, B. Lang, and H. Daniels. Comparison of universal approximators
incorporating partial monotonicity by structure. Neural Networks, 23(4):471–475, 2010.

[12] H. Daniels and M. Velikova. Monotone and partially monotone neural networks. IEEE Trans.
Neural Networks, 21(6):906–917, 2010.

[13] J. Sill. Monotonic networks. Advances in Neural Information Processing Systems (NIPS), 1998.

[14] W. W. Armstrong and M. M. Thomas. Adaptive logic networks. Handbook of Neural Computa-
tion, Section C1. 8, IOP Publishing and Oxford U. Press, ISBN 0 7503 0312, 3, 1996.

[15] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Joze-
fowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Va-
sudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow.org.

[16] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[17] M. Ayer, H. D. Brunk, G. M. Ewing, W. T. William, E. Silverman, et al. An empirical
distribution function for sampling with incomplete information. The annals of mathematical
statistics, 26(4):641–647, 1955.

[18] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical
learning via the alternating direction method of multipliers. Foundations and Trends R© in
Machine Learning, 3(1):1–122, 2011.

[19] C. Blake and C. J. Merz. UCI repository of machine learning databases, 1998.

9

