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Abstract. Surfaces serve as a natural parametrization to 3D shapes.
Learning surfaces using convolutional neural networks (CNNs) is a chal-
lenging task. Current paradigms to tackle this challenge are to either
adapt the convolutional filters to operate on surfaces, learn spectral
descriptors defined by the Laplace-Beltrami operator, or to drop surfaces
altogether in lieu of voxelized inputs. Here we adopt an approach of con-
verting the 3D shape into a ‘geometry image’ so that standard CNNs can
directly be used to learn 3D shapes. We qualitatively and quantitatively
validate that creating geometry images using authalic parametrization
on a spherical domain is suitable for robust learning of 3D shape sur-
faces. This spherically parameterized shape is then projected and cut to
convert the original 3D shape into a flat and regular geometry image.
We propose a way to implicitly learn the topology and structure of 3D
shapes using geometry images encoded with suitable features. We show
the efficacy of our approach to learn 3D shape surfaces for classification
and retrieval tasks on non-rigid and rigid shape datasets.

Keywords: Deep learning · 3D Shape · Surfaces · CNN · Geometry
images

1 Introduction

The ground-breaking accuracy obtained by convolutional neural networks
(CNNs) for image classification [16] marked the advent of deep learning methods
for various vision tasks such as video recognition, human and hand pose track-
ing using 3D sensors, image segmentation and retrieval [9,13,27]. Researchers
have tried to adapt the CNN architecture for 3D non-rigid as well as rigid shape
analysis.

The lack of a unified shape representation has led researchers pursuing
deformable and rigid shape analysis using deep learning down different routes.
One strategy for learning rigid shapes is to represent a shape as a probability
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distribution on a 3D voxel grid [20,32]. Other approaches quantify some mea-
sure of local or global variation of surface coordinates relative to a fixed frame
of reference [26]. These representations based on voxels or surface coordinates
are extrinsic to the shape, and can successfully learn shapes for classification
or retrieval tasks under rigid transformations (rotations, translations and reflec-
tions). However, they will naturally fail to recognize isometric deformation of
a shape, say the deformation of a standing person to a sitting person. Invari-
ance to isometry is a necessary property for robust non-rigid shape analysis.
This is substantiated by the popularity of the intrinsic shape signatures for 3D
deformable shape analysis in the geometry community [31]. Hence, CNN-based
deformable shape analysis methods propose the use of geodesic convolutional
filters as patches or model spectral-CNN’s using the eigen decomposition of the
Laplace-Beltrami operator to derive robust shape descriptors [1,6,19]. In sum-
mary, the vision community has focussed on extrinsic representation of 3D shapes
suitable for learning rigid shapes, whereas the geometry community has focussed
on adapting CNN’s to non-Euclidean manifolds using intrinsic shape properties
for creating optimal descriptors. A method to unify these two complementary
approaches has remained elusive.

Here we propose a 3D shape representation that serves to learn rigid as well
as non-rigid objects using intrinsic or extrinsic descriptors input to standard
CNNs. Instead of adapting the CNN architecture to support convolution on
surfaces, we adopt the alternate approach of molding the 3D shape surface to fit
a planar structure as required by CNNs. The traditional approach to create a
planar surface parametrization is to first cut the surface into disk-like charts, then
piecewise parameterize them in the plane followed by stitching them together
into a texture atlas [18]. This approach fails to preserve the connectivity between
different surfaces, vital for holistic shape analysis. In contrast, we create a planar
parametrization by introducing a method to transform a general mesh model into
a flat and completely regular 2D grid, which we term ‘geometry image’, following

Fig. 1. Left Shape representation using geometry images: The original teddy model
to the left is reconstructed (right) using geometry image representation correspond-
ing to the X, Y and Z coordinates (center), Right Learning 3D shape surfaces using
geometry images: Our approach to learn shapes using geometry images is applicable
to rigid (left) as well as non-rigid objects undergoing isometric transformations (right).
The geometry image encode local properties of shape surfaces such as principal curva-
tures (Cmin, Cmax). Topology of a non-zero genus surface is accounted for by using a
topological mask (Ctop) as in the bookshelf example.
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[11] (see Fig. 1 left). The traditional approach to create a geometry image has
critical limitations for learning 3D shape surfaces (see Sect. 2). We validate that
an intermediate shape representation for creating geometry images in the form of
an authalic parametrization on a spherical domain overcomes these limitations
and is able to efficiently learn 3D shape surfaces for subsequent analysis. To
this end, we develop a robust method for authalic spherical parametrization
applicable to general 3D shapes. We use this parametrization to encode suitable
intrinsic or extrinsic features of a 3D shape for 3D shape tasks. This encoded
spherical parametrization is converted to a completely regular geometry image
of a desired size. We demonstrate the use of these geometry images to directly
learn shapes using a standard CNN architecture to classify and retrieve shapes.
In summary our main contributions are: (1) robust authalic parametrization of
general 3D shapes for creating geometry images, and (2) a procedure to learn 3D
surfaces using a geometry image representation which encodes suitable features
for rigid or non-rigid shape tasks (see Fig. 1 right).

Our article is organized as follows. Section 2 rationalizes our choice of parame-
trization. Section 3 discusses our parametrization method. Section 4 is devoted to
learning shapes using geometry images and CNNs followed by results in Sect. 5.

2 Frame of Reference and Related Work

In this section we first validate that authalic parametrization on a spherical
domain has key advantages over alternate surface parametrization techniques
in the context of learning shapes using geometry images. We briefly overview
existing techniques and point the readers to [7] for a good overview of surface
parametrization.

Why spherical parametrization?: Geometry images as the name suggests
are a particular kind of surface parametrization wherein the geometry is resam-
pled into a regular 2D grid akin to an image. Geometry images are advantageous
for learning shapes using CNNs over free boundary or disc parameterizations as
every pixel encodes desired shape information. This reduces memory and learn-
ing complexity in CNNs as the need to abstract the mask of inside/outside shape
boundary is obviated. The traditional approach to create a geometry image is
to cut the surface into a disc using a network of cut paths and then map the
disc boundary to a square [11]. However, defining consistent a priori cuts over a
range of shapes in a class is a hard problem. A natural solution to overcome this
limitation is a data-driven approach to learn a shape over several cuts. This is
computationally inefficient for cuts defined a priori. Another assumption of [11]
is that the surface cut into a disc maps well onto a square. Different cuts lead to
variation in geometry image boundaries [22], and hence, learning them requires
the CNN to learn maps between image boundaries in addition to image pixels.
These two limitations of traditional geometry images are overcome by geome-
try images created by first parameterizing a 3D shape over a spherical domain,
then sampling onto an octahedron and finally cutting the octahedron along its
edges to output a flat and regular geometry image. This is because: (1) Cuts are
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defined a posteriori to the parametrization. This enables us to efficiently create
many geometry images for a given shape by sampling several cuts and feed it as
input to data driven learning techniques such as CNNs. (2) Spherical symme-
try allows creating a regular geometry image boundaries without discontinuities.
The symmetry enables us to implicitly inform the CNN that the geometry image
is derived from a spherical domain via padding. Although spherical parametriza-
tion is only applicable to genus zero surfaces, we propose a heuristic extension
to higher genus surface models using a topological mask.

Why authalic parametrization?:There are two strategies for spherical para-
metrization of a 3D shape: (a) Authalic or area conserving, (b) Conformal or angle
conserving. Although, methods for conformal (angle preserving) mesh parame-
trization abound [4,12,25], there is relatively less work on authalic (area preserv-
ing) mesh parametrization. This is because a conformal parametrization preserves
local shape, which is useful to the graphics community for feature oriented applica-
tions such as texture mapping. However, an authalic parametrization of a shape is
more compatible with the notion of convolving surface patches with constant size
(equi-areal) filters. Also, conformal parametrization induces severe distortion to
elongated shape structures common in deformable shape models [34]. The neces-
sity of authalic parametrization arises from the fact that the number of training
samples and learning parameters in the CNN sometimes limit the input resolu-
tion of the geometry images. Under the constraint of resolution, authalic geome-
try images encode more information about the shape as compared to conformal
geometry images (see Fig. 2). Note that a mapping that is both conformal and
authalic is isometric, and must have zero Gaussian curvature everywhere. This is
rare in the context of general 3D mesh models and one must choose one or the
other. There exist only a handful of methods in literature that authalically para-
meterize a shape on a spherical domain. Dominitz and Tannenbaum [5] and Zhao
et al. [34] use optimal transport for area-preserving mapping. Although efficient to

Fig. 2. Authalic vs Conformal parametrization: (Left to right) 2500 vertices of the
hand mesh are color coded in the first two plots. A 64× 64 geometry image is created
by uniformly sampling a parametrization, and then interpolating the nearby feature
values. Authalic geometry image encodes all tip features. Conformal parametrization
compress high curvature points to dense regions [12]. Hence, finger tips are all mapped
to a very small regions. The fourth plot shows that the resolution of geometry image
is insufficient to capture the tip feature colors in conformal parametrization. This is
validated by reconstructing shape from geometry images encoding x, y, z locations for
both parameterizations in final two plots. (Color figure online)



Deep Learning 3D Shape Surfaces Using Geometry Images 227

implement, these methods introduce smoothing and sharp edges get lost [29]. This
is a critical drawback for CAD-like objects which contain several sharp edges. A
method that implicitly corrects area distortion by penalizing large triangle sizes is
proposed in [8]. However, our experiments indicate that this approach fails to work
in a practical setting. A method similar in spirit to ours uses Lie advection to itera-
tively minimize the planar areal distortion of a parametrization [35]. However, the
method frequently introduces singularities and triangle flips, highly undesirable
for coherent 3D shape representation and analysis.

Why geometry images?: As discussed previously, current methods employ-
ing deep learning for 3D rigid shape analysis such as ShapeNets [32], VoxNet
[20], DeepPano [26] are extrinsic representations and are not suitable for analyz-
ing non-rigid shapes undergoing isometric deformations. Another bottleneck in
voxel based approaches is that the 3rd extra dimension introduces a large com-
putational overhead. Consequently, the voxel grid is restricted to a relatively
low resolution. Also, active voxels interior to the shape are less useful if the
boundary surface is well defined. Methods using CNN for 3D non-rigid shape
analysis such as [1,19] focus on deriving robust shape descriptors suitable for
local shape correspondence. The potential of CNN’s to automatically learn hier-
archical abstractions of a shape from raw input features is not realized by these
approaches. In contrast to all approaches, the pixels in geometry images can
encode either extrinsic or intrinsic surface property as suitable for the task at
hand. A standard CNN then automatically learn discriminative abstractions of
the 3D shape, useful for shape classification or retrieval.

3 Authalic Parametrization of 3D Shapes

We briefly discuss preprocessing steps to transform erroneous or high genus
mesh models into a genus zero topology. These steps ensure that parametrization
techniques from discrete differential geometry literature are applicable to a shape
of arbitrary topology. A surface mesh, M is represented as V, F,E wherein V is
the set of vertex coordinates, F the set of faces and E the set of edges constituting
all faces. With abuse of notation, we term mesh models following the Euler
characteristic to be accurate, given by:

2 − 2m = |V | − |E| + |F | (1)

where |x| indicates the cardinality of feature x and m is the genus of the sur-
face. If a mesh model is not accurate, a heuristic but accurate procedure is
discussed in the supplementary material to transform it into an accurate mesh.
In our experiments we perform this procedure only for models in the Princeton
ModelNet [32] benchmark. If the genus of an accurate mesh model is evaluated
to be non-zero, we propose another heuristic in the supplementary material to
convert the mesh into a genus-0 surface. This genus-0 shape serves as input to
the authalic parametrization procedure. Note that a non genus-0 shape has an
associated topological geometry image informing the holes in the original shape.
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Fig. 3. Progression of our authalic spherical parametrization algorithm: Individual
plots display the shape reconstructed from the geometry image corresponding to a
spherical parametrization. The area distortion associated with the geometry image,
and hence the spherical parametrization, progressively decreases with more iterations
given an initial spherical parametrization.

Fig. 4. Left Left: Harmonic field corresponding to area distortion on sphere displayed
on the original mesh. Center: Area restoring flow on the spherical domain mapped onto
the original mesh as a quiver plot. Right: Enlarged plot of area restoring flow. Right:
Explanation of geometry image construction from a spherical parametrization: The
spherical parametrization (A) is mapped onto an octahedron (B) and then cut along
edges (4 colored dashed edges in line plot below) to output a flat geometry image (C).
The colored edges share the same color coding as the one in the octahedron. Also the
half-edges on either side of the midpoint of colored edges correspond to the same edge
of the octahedron. (Color figure online)

Our method for authalic spherical parametrization takes as input any spher-
ically parameterized mesh and iteratively minimizes the areal distortion (see
Fig. 3) in 3 steps described in detail below and outputs a bijective map onto the
surface of a sphere. We use the spherical parametrization suggested in [10] for
initialization due to its speed and ease of implementation. We evaluated different
initial parameterizations [25] and our experiments indicate that our method is
robust to initialization. We now detail the 3 steps:

(1) At every iteration we first evaluate a scalar harmonic field corresponding to
the areal distortion ratio of vertices in the original mesh and spherical mesh
by solving a Poisson equation. Mathematically, we solve

∇2g = δh (2)

where g is a function defined on the vertex set V , ∇2 transforms to the
Laplacian operator, L (see supplement) for a closed mesh surface [14], and
δh is the areal distortion ratio wherein each element of the vector is defined
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as δhu =
As

u

Au

− 1. As
u is the spherical triangular area associated with the

Voronoi region around vertex u and Au is the triangular area associated
with vertex u on the mesh model. Equation 2 now becomes

Lg = δh (3)

The scalar field g is evaluated using the above equation at every iteration for
the vector δh (see Fig. 4 left). Due to the sparsity of L, Eq. 3 can be efficient
evaluated at every iteration using the preconditioned bi-conjugate gradient
method. However, we precalculate the pseudoinverse of L once, and use it
for every iteration. This saves the overall computational time. Note, k-rank
approximation (k ≈ 300) of the pseudoinverse when |V | is large does not
noticeably affect the final result.

(2) We then evaluate the gradient field of the harmonic function on the original
mesh. This field is indicative of the required vertex displacements on the
spherical mesh so as to decrease the areal distortion ratio. Consider a face
fuvw in the original mesh with its three corners lying at u, v, w. Let n be a
unit normal vector perpendicular to the plane of the triangle. The gradient
vector ∇g for each face is solved as [33]:

⎡

⎣

v − u
w − v

n

⎤

⎦∇g =

⎡

⎣

gv − gu

gw − gv

0

⎤

⎦

A unique gradient vector for each vertex is obtained as weighted mean of
incident angle of each face at the vertex and the corresponding gradient
value as done in [35]:

∇gu =
1

∑

fuvw
cu
vw

∑

fuvw

cu
vw∇g(fuvw) (4)

fuvw are the faces in the one ring neighborhood of vertex u and cu
vw is the

angle subtended at vertex u by the edge vw. Figure 4 shows the gradient
low field using a quiver plot on the mesh model.

(3) We finally displace the vertices on the original mesh and then map these
displacements onto the spherical mesh using barycentric mapping, i.e., ver-
tex displacements on the original mesh serve as proxy to determine the
corresponding displacements on the spherical mesh. Barycentric mapping is
possible because the original and spherical mesh have the same triangula-
tion. Each vertex in the original mesh is (hypothetically) displaced by:

v = v + ρ∇gv (5)

where ρ is a small parameter value. A large value of ρ leads to a large dis-
placement of the vertex and may displace it beyond the its 1-neighborhood.
This causes triangle flips and the error propagates through iterations. How-
ever, a small value of ρ leads to large convergence time. We empirically
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set ρ equal to 0.01 in all our experiments which achieves the right tradeoff
between number of iterations to convergence and accuracy. The barycentric
coordinates of displaced vertices are evaluated with respect to triangles in
the one-ring, and the triangle with all coordinates less than 1 is naturally
chosen as the destination face. The vertex in the spherical mesh is then
mapped to the corresponding destination face with the same barycentric
weights. In contrast to [35] which operates directly on the spherical mesh
domain, the indirect mapping procedure has the following advantages: (1)
The vertex displacements minimizing areal distortion are constrained to be
on the input mesh, which in turn ensure the mapped displacements onto
the spherical domain are well behaved. (2) The constraint that the vertices
remain on the mesh model minimize triangle flips and alleviate the need
for an expensive retriangulation procedure after each iteration. The iter-
ations continue until convergence. In practice we stop the iterations after
the all areal distortion ratios fall below a threshold or the maximum num-
ber of iterations has been reached. The maximum number of iterations is
set to 100. Supplementary material provides a pseudo code of the above
procedure and MATLAB code for creating geometry images are available
at: https://github.com/sinhayan/learning geometry images. Next, we dis-
cuss the geometry image and its application to deep learning.

4 Deep Learning Shapes Using Geometry Image

In this section we briefly discuss the creation of a geometry image with desirable
surface properties encoded in the pixels to learn 3D shapes. We also discuss our
CNN architecture for shape classification and retrieval.

4.1 Geometry Image and Descriptors

The spherical parametrization maps the surface of the mesh onto a sphere. We
then project this spherical surface onto an octahedron and cut it to obtain a
square, thus creating a geometry image. We consider spherical triangular area
when sampling from sphere to octahedron, so that the authalic parametrization
is respected, and hence, the areas are preserved after projection onto a octa-
hedron. The advantage of mapping the surface onto an octahedron over other
regular polyhedra such as a tetrahedron or cube is that the signals can be linearly
interpolated onto a regular square grid [22]. For brevity, we skip details on the
spherical area sampling for projecting points on the sphere onto an octahedron
and refer readers to [22] for details. The edges of the octahedron cut to flatten
the polyhedron are shown in Fig. 4 right. Observe the reflective symmetry of the
geometry image along the vertical, horizontal and diagonal axes shown in Fig. 4
right. Due to this symmetry, we can create replicates without any discontinu-
ities along any edge or corner of the image (see Fig. 5 right). This property is
useful for implicitly informing a deep learning model about the warped mesh
the image represents, further explained below. The procedure of creating the

https://github.com/sinhayan/learning_geometry_images
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geometry image is visually elucidated in Fig. 4 right. Additionally, a MATLAB
implementation is provided in supplementary material. Having obtained a geom-
etry image from a mesh model, we next discuss encoding the pixel values with
local surface property descriptors. There exist several possibilities of which we
enumerate a few:

1. Principal curvatures: The two principal curvatures, κ1 and κ2 measure the
degree by which the surface bends in orthogonal directions at a point. They
are in effect the eigenvalues of the shape tensor at a given point.

2. Gaussian Curvature: The Gaussian curvature κ is defined as the product
of the principal curvatures at a point on the surface, κ = κ1κ2. Gaussian
curvature is an intrinsic descriptor. The sign of Gaussian curvature indicates
whether a point is elliptic (κ > 0), hyperbolic (κ < 0) or flat (κ = 0)

3. Heat kernel signature [31]: The heat kernel, ht is the solution to the differential
equation δht

δt
= −∆ht (ht is the heat kernel). The heat kernel signature (HKS)

at the point is the amount of untransferred heat after time t, given by

ht(u, u) =
∑

i≥0

e−tλiΦi(u)Φi(u) (6)

Where λ and Φ are the eigenvalues and eigenvectors of the Laplace-Beltrami
operator. The heat kernel is invariant under isometric transformations and stable
under small perturbations to the isometry, such as small topological changes or
noise, i.e., is intrinsic. Additionally, the time parameter t in the HKS controls the
scale of the signature with large t representing increasingly global properties, i.e.
its a multiscale signature. Variants of the heat kernel include the GMS [28], GPS
[23]which differ in the weighting of the eigenvalues. Figure 5 left discusses the
difference between intrinsic HKS and point coordinates which are extrinsic in the
context of analyzing articulated shapes. The invariance of intrinsic descriptors
to articulations of a deformable object such as a hand is further demonstrated
in Fig. 5 center. In our experiments we use the HKS for non-rigid shape analysis
and the two principal curvatures for rigid-shape analysis.

4.2 Convolutional Neural Net

We discuss four aspects of learning rigid and non-rigid shapes using geometry
images created using the authalic parametrization method discussed in the pre-
vious section as input to a CNN, i.e., encoding a property, padding the image,
robustness to cut and the CNN architecture which takes geometry images as
inputs and performs shape analysis tasks.

(1) Encoded Property: After parameterizing the shape, we are interested in
encoding the geometry image with a suitable property. These are the RGB
pixel values in images which are fed as input to a CNN. Unlike traditional
deep architectures, CNN’s have the attractive property of weight sharing
reducing the number of variables to be learned. The principle of weight
sharing in convolutional filters extensively applied to image processing is
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Fig. 5. Left Intrinsic vs. Extrinsic properties of shapes. Top left: Original shape. Top
Right: Reconstructed shape from geometry image with cut edges displayed in red.
The middle and bottom rows show the geometry image encoding the y coordinates
and HKS, respectively of two spherical parameterizations (left and right). The two
spherical parameterizations are symmetrically rotated by 180 degrees along the Y-
axis. The geometry images for Y-coordinate display an axial as well as intensity flip.
Whereas, the geometry images for HKS only display an axial flip. This is because HKS
is an intrinsic shape signature (geodesics are persevered) whereas point coordinates
on a shape surface are not. Center Intrinsic descriptors (here the HKS) are invariant
to shape articulations. Right Padding structure of geometry images: The geometry
images for the 3 coordinates are replicated to produce a 3× 3 grid. The center image in
each grid corresponds to the original geometry image. Observe no discontinuities exist
along the grid edges.

Fig. 6. Left Geometry images created by fixing the polar axis of a hand (top) and
aeroplane (bottom), and rotating the spherical parametrization by equal intervals along
the axis. The cut is highlighted in red. Center Four rotated geometry images for a
different cut location highlighted in red. The plots to the right show padded geometry
images wherein the similarity across rotated geometry images are more evident and the
five finger features coherently visible Right Changing the viewing direction for a cut
inverts the geometry image. The similarity in geometry images for the two diametrically
opposite cuts emerges when we pad the image in a 3×3 grid (Color figure online)
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applicable to learning 3D shapes using geometry images as well. This is
because shapes like images are composed of atomic features and have a
natural notion of hierarchy. However, we encode different features in the
pixels of the geometry image for rigid and non-rigid shapes as it helps a
CNN to discriminatively learn shape surfaces. The Gaussian curvature is
the most atomic and intrinsic property suitable for non-rigid shape analysis.
The heat kernel signature too can be interpreted as an extension to gaussian
curvature [31]. We use the HKS for our experiments on non-rigid datasets
as it enforces long-range consistency to geometry images. In rigid shape
analysis, the principal curvatures serve as the atomic local descriptors for
points on a surface. Although, the intrinsic HKS can be used for rigid shape
analysis, HKS has a high computational cost unsuitable for large datasets
like the Princeton Shape Benchmark.

(2) Padding: We now have a geometry image with a suitably encoded property.
It is naturally beneficial to inform the CNN that this flat geometry image
stems from a compact manifold. The spherical symmetry of our parame-
trization allows us to implicitly inform the CNN about the genus-0 surface
via padding. There are no edge and corner discontinuities if we connect repli-
cates of a geometry image along each of the 4 edges of the image which are
rotated by 180 degrees (or flipped once along the x-axis and y-axis each).
This is due to spherical symmetry and orientation of edges in the derived
octahedral parametrization. This is visually illustrated for the geometry
images encoding the x, y, and z coordinates of the mesh model in Fig. 5
right. No subsequent layer in the CNN is padded so as to not distort this
information.

(3) Cut: Recall that the octahedral edges cut to create a geometry image are
dependent on the orientation of the spherical parametrization. We implicitly
inform the CNN that different cuts resulting in slightly different geometry
images stem from the same shape. When the shape is known to be upright
as in the Princeton shape benchmark, we realign north pole of the derived
spherical parametrization to be coincident with the highest point along the
centroid axis to make the north pole to be approximately co-located for
the same class of shapes. The directed axis connecting the north and south
pole can be thought of as a viewing direction of the sphere, and hence the
geometry image. Rotation around this polar axis of the sphere will result in
different cuts of the octahedron and hence slightly different geometry images
which are rotationally related. This rotational relationship between geome-
try images for the same object is learnt by rotating the spherical parame-
trization in equal intervals about the polar axis for a shape (see Fig. 6 left).
This is analogous to the procedure of augmenting data by rotation along the
gravity direction as done in voxel based approaches such as [20,30,32] to cre-
ate models in arbitrary poses, and hence, remove pose ambiguity. The rota-
tional variance along the polar axis for geometry images of upright objects
can be further resolved by incorporating an additional feature map in CNN
architecture as the geometry image encoding the angle between a vertex
normal and the gravity direction [9]. When there is no information about
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orientation of the shape, we naturally set multiple radial axes of the sphere
to be the directed polar axes (we set six orthogonal directed axes of the
sphere to be the polar axes in our experiments with non-rigid datasets) and
then rotate the sphere by equal intervals along each polar axes to holistically
augment the training data along different viewing directions of the spherical
parametrization. Figure 6 left and center show the rotated geometry images
for an articulated hand for two different polar cutting axes. Observe that
although the geometry images appear very different for the two cuts, they
are functionally related as they are just projections along different viewing
directions of spherical parametrization onto the flat geometry image. For
example there are 5 primary features in both geometry images correspond-
ing to the 5 fingers and their relative locations are similar in both images.
The mild stretch variations among geometry images would not appear if
the parametrization was isometric. Indeed, the accuracy of our approach
stems from the power of CNNs to automatically abstract these similarity in
patterns robust against different cut locations in the augmented data across
articulations of a deformable object or variations of objects in a class.

(4) Resolution and architecture: There are two determining factors for the
resolution of a geometry image: (i) The number of training samples (ii)
Features in the mesh model. Currently there are no large databases for
non-rigid shapes, and hence, a large resolution will lead to a large number
of weight parameters to be learnt in the CNN. Although we have large
databases for rigid shapes, the number of geometry features (eg. protrusion,
corners etc.) in rigid shapes is typically much lower compared to images and
even articulated objects. We set the size of the geometry image to be 56×56
for all our experiments on rigid and non-rigid datasets which balances the
number of weights to be learnt in CNN and capturing relevant features of
a mesh model. The number of layers in CNN is determined by the size of
the training database. Hence, we choose a relatively shallow architecture for
non-rigid database compared to the rigid database. The precise architecture
of the CNNs are discussed in the supplementary section.

5 Experiments

In this section we first compare our parametrization scheme. Then we discuss
results for 3D shape analysis tasks on rigid as well as non-rigid datasets.

Authalic parametrization: We compare our authalic spherical parametriza-
tion scheme to other area correcting methods. We qualitatively adjudge the
parametrization in terms of the geometry image created from the corresponding
spherical parameterizations on some prototypical meshes. The methods com-
pared to are the lie advection based method in [35], and the penalty-term based
method proposed in [8], both of which are iterative methods. For fair comparison,
the maximum number of iterations was fixed to 100 for all methods along with
suggested parameter settings. Figure 7 left shows the comparison. We observe
that our method is the only method to consistently complete the shape while
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Fig. 7. Left Comparison of authalic surface parametrization methods in terms of shape
reconstruction using geometry image. Left to Right: Original mesh model, Our authalic
parametrization, Lie advection based method in [35], Penalty based method proposed
in [8]. Right Top to Bottom: Area distortion viewed as a histogram over triangles for
ours, [8,35].

keeping extraneous noise at a minimum. For example no method apart from
ours is able to complete the bunny’s ears or completely reveal all 5 fingers. This
validates our approach in the context of geometry image creation and authalic
spherical parametrization in general. Next we quantitatively evaluate the accu-
racy of our authalic parametrization by comparing the area distortion across all
triangles in all 148 shapes in TOSCA database. The distortion metric is δhA.
Figure 7 right shows area distortion as a histogram as done in [35]. A perfect
authalic parametrization would manifest as a delta function in this plot. Hence
we evaluate the variance of these three approaches. Observe that our method
has the sharpest peak and the variance is evaluated to be 9.8e-8 for our method
compared to 5.2e-7 for [35] and 2.65e-7 for [8], i.e., lowest among all.

Non-rigid shapes: We evaluated our approach for surface based intrinsic learn-
ing of shapes on two datasets. We used 200 shapes from the McGill 3D shape
benchmark consisting of articulated as well as non-articulated shapes from 10
classes (20 in each class). To test the robustness of our approach, we also eval-
uated our approach on the challenging SHREC-11 [17] database of watertight
meshes consisting of 20 shapes from 30 classes (600 in total). For each of the 2
databases, we performed classification tasks on 2 splits: (1) 10 randomly chosen
shapes from each class were used for training and 10 were test (2) 16 randomly
chosen shapes were in the train set and the rest were test cases. Due to the
small size of the database, we kept our CNN relatively shallow (3 convolutional,
1 fully connected layer and a classification layer) so as to limit the number of
training parameters. We augment the data in order to be robust to cut loca-
tion by inputting 36 geometry images for a shape created by (1) fixing the six
directed intersections of the three orthogonal coordinate axes with the spheri-
cal parametrization as the polar axes and then (2) creating a geometry image
for each incremental rotation of the sphere along the polar axes by 60 degrees
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starting from 0 to cover a full 360 degrees. Images of size 56 × 56 were padded
as described in Sect. 4.2 to produce a 64 × 64 image as input to the CNN. For
features, we used HKS sampled at 5 logarithmically sampled time scales to pro-
duce a 5 dimensional feature map. Due to the small training sample, the CNN
using only gaussian curvature failed to converge. CNNs using principal curva-
tures naturally failed to converge as the principal curvatures are not intrinsic
properties for non-rigid shapes. Training using the HKS features converged after
30 epochs. We compare our approach to 4 other methods: ShapeGoogle (SG)[2],
Zerkine moments (Zer) [21], Light Field Descriptor (LFD) and 3DShapeNets
(SN) [32] for classification and retrieval. A class was assigned to each shape in
our method by simply pooling predictions from the softmax layer over the 36
views and then selecting the one with the highest overall score. Multi-view CNN
architecture [30] can be directly employed for a more principled way to pool
and learn across different cuts within the CNN architecture itself, which we wish
to investigate in the future when larger non-rigid databases are available. We
trained a linear SVM classifier for SG, LFD and Zer methods.1 We see that our
method significantly outperforms all other methods on both splits for the 2 data-
bases (Table 1) indicating that our geometry image representation was able to
learn the shape structure of each class. Our method performs significantly better
than SN [32] on these benchmarks because voxels capture extrinsic shape infor-
mation, and hence, confuse shape articulations. It performs better than SG [2]
because of the same reason that CNNs outperform bag of feature (BOF) based
approaches on image tasks, i.e., CNNs are better able to automatically abstract
relevant information for tasks than BOFs. We also quantitatively validate that
authalic parametrization is more suitable for shape analysis compared to confor-
mal (Conf) parametrization [12] or Spharm (Sph) [24] which minimizes length
distortion. Performance of authalic parametrization is a lot higher than others
for non-rigid shapes, as expected because the other two parameterizations do
not robustly capture elongated protrusions. We use the L2 distance to measure
the similarity between all pairs of testing samples and retrieval accuracy was
measured in terms of mean average precision (MAP) as standard in literature.
The penultimate 48-dimensional activation vector in the fully connected layer
was used for measuring the retrieval accuracy of our method. We perform best in
all but one dataset, i.e., 2nd to SG for SHREC2, inspite our feature vector being
1/50th the size of SG. This highlights that our method can be used to output
highly informative shape signatures. Figure 8 shows precision-recall curves for
the 4 splits.

Rigid shapes: We evaluate our approach for surface-based learning of 3D shape
classification on the two versions of the large scale Princeton ModelNet dataset:
ModelNet40 and ModelNet10 consisting of 40 and 10 classes respectively follow-
ing the protocol of [32]. We use four feature maps encoded in geometry images:
2 principal curvatures, topological mask along with a height field encoded as
angle to the positive gravity direction. Additionally, each spherical parametriza-

1 Note we do not report the scores for SG on Mcgill because the author provided
implementation failed on several shapes and produced spurious results.
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Fig. 8. Precision recall curves for shape retrieval on non-rigid datasets

Table 1. Classification/Retrieval accuracy of our method compared to 4 other methods
and compared to 2 other surface parameterizations.

Database SG [2] Zer [21] LFD [3] SN [32] Conf [12] Sph [24] Ours

McGill1 NA 63.0/0.64 75.0/0.67 65.0/0.29 55.0/0.36 62.0/0.35 83.0/0.75

Mcgill2 NA 57.5/0.69 72.5/0.68 57.2/0.28 80.0/0.58 82.5/0.58 92.5/0.72

SHREC1 62.6/0.65 43.3/0.47 56.7/0.50 52.7/0.10 60.6/0.45 59.0/0.65 88.6/ 0.65

SHREC2 70.8/0.74 50.8/0.64 65.8/0.65 48.4/0.13 85.0/0.45 82.5/0.66 96.6/0.72

Table 2. Classification/Retrieval accuracies of our method on the ModelNet40 and
ModelNet10 database compared to 5 other 3D learning methods and two alternate
surface parameterizations.

Database VN [20] DP [26] LFD [3] SN [32] SH [15] Conf [12] Sph [24] Ours

ModelNet10 92.0/NA 85.5/84.1 79.8/49.8 83.5/69.2 79.9/45.9 78.2/67.4 79.9/65.2 88.4/74.9

ModelNet40 83.0/NA 77.6/76.8 75.4/40.9 77.3/49.9 68.2/34.4 75.6/46.2 75.9/44.8 83.9/51.3

tion is augmented by incrementally shifting by 30 degrees along the centroid axes
described in Sect. 4.2 to create 12 replicates. The size and structure of the geome-
try image is the same as the ones used for non-rigid testing. Supplementary mate-
rial validates technical parameter settings on the ModelNet10 dataset. Table 2
shows the classification accuracies (same method as non-rigid) and retrieval
results (MAP %) relative to 5 methods (VN is VoxNet, DP is DeepPano, SH is
spherical harmonic) and 2 alternate parameterizations. We employ the procedure
in [32] to use the L2 distance between the penultimate 96-dimensional activation
vectors in the fully connected layer for retrieval. We achieve the best classification
accuracy on ModelNet40 dataset. Our MAP retrieval is second only to Deep-
Pano on both splits, however our classification accuracies are higher suggesting
the a panoramic representation may be more suitable for retrieval with high
intra-class discrimination, whereas geometry images are highly robust for classi-
fication. Our method performs better than SN [32] on these benchmarks because
(i) encoding local principal curvatures in geometry images is analogous to pixel
intensities in images, which suit CNN’s architecture. (ii) Learning is harder for
voxel locations compared to surface properties. Indeed training required about
3 hours on the ModelNet40 benchmark compared to 2 days for SN [32].
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6 Conclusion

We introduce geometry images for intrinsically learning 3D shape surfaces. Our
geometry images are constructed by combining area correcting flows, spherical
parameterizations and barycentric mapping. We show the potential of geometry
images to flexibly encode surface properties of shapes and demonstrate its effi-
cacy for analyzing both non-rigid and rigid shapes. Furthermore, our work serves
as a general validation of surface based representations for shape understanding.
In the future we wish to build upon these insights for generative modeling of 3D
shapes using geometry images instead of traditional images using deep learning.
We believe that deep learning using geometry images can potentially spark a
closer communion between the 3D vision and geometry community.
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