

Deep Learning Acceleration with Neuron-to-Memory
Transformation

Mohsen Imani, Mohammad Samragh Razlighi, Yeseong Kim, Saransh Gupta
Farinaz Koushanfar, Tajana Rosing

University of California San Diego, La Jolla, CA 92093, USA
{moimani, msamragh, yek048, spupta, farinaz, tajana}@ucsd.edu

ABSTRACT

Deep neural networks (DNN) have demonstrated effective-
ness for various applications such as image processing, video
segmentation, and speech recognition. Running state-of-the-
art DNNs on current systems mostly relies on either general-
purpose processors, ASIC designs, or FPGA accelerators,
all of which suffer from data movements due to the limited
on-chip memory and data transfer bandwidth. In this work,
we propose a novel framework, called RAPIDNN, which
performs neuron-to-memory transformation in order to ac-
celerate DNNs in a highly parallel architecture. RAPIDNN
reinterprets a DNN model and maps it into a specialized
accelerator, which is designed using non-volatile memory
blocks that model four fundamental DNN operations, i.e.,
multiplication, addition, activation functions, and pooling.
The framework extracts representative operands of a DNN
model, e.g., weights and input values, using clustering meth-
ods to optimize the model for in-memory processing. Then,
it maps the extracted operands and their pre-computed re-
sults into the accelerator memory blocks. At runtime, the
accelerator identifies computation results based on efficient
in-memory search capability which also provides tunability
of approximation to improve computation efficiency further.
Our evaluation shows that RAPIDNN achieves 68.4×, 49.5×
energy efficiency improvement and 48.1×, 10.9× speedup as
compared to ISAAC and PipeLayer, the state-of-the-art DNN
accelerators, while ensuring less than 0.5% quality loss.

1. INTRODUCTION
The emergence of Internet of Things (IoT) significantly

increases sizes of application datasets required to be pro-
cessed [1, 2]. As a solution which automatically extracts
useful information from the largely generated data, artificial
neural networks have been actively investigated. In particular,
deep neural networks (DNNs) demonstrate superior effective-
ness for diverse classification problems, image processing,
video segmentation, speech recognition, computer vision, and
gaming [3–7]. Although many DNN models are implemented
on high-performance computing architectures such as GPG-
PUs by parallelizing tasks, running neural networks on the
general purpose processors is still slow, energy-hungry, and
prohibitively expensive [8, 9].

Earlier work proposed FPGAs [10–14] and ASIC designs [15–
19] to accelerate neural networks. However, these techniques
pose a critical technical challenge due to data movement cost,
since they require dedicated memory blocks, e.g., SRAM, to
store the large size of network weights and input signals. In

the context of efficient DNN implementation, prior works
employ a variety of techniques to optimize the enormous
computation cost, yet the memory still takes up to 90% of the
total energy consumption to perform DNN inference tasks
even in highly optimized ASIC designs [16, 20].

Processing in-memory (PIM) is a promising solution to ad-
dress the data movement issue by implementing logics within
a memory [21–28]. Instead of sending a large amount of
data to the processing cores for computation, PIM performs
a part of computation tasks, e.g., bit-wise computations, in-
side the memory; thus the application performance can be
accelerated significantly by avoiding the memory access bot-
tleneck. Several existing works have proposed PIM-based
neural network accelerators which keep the input data and
trained weights inside memory [29, 30]. For example, the
work in [30] showed that memristor devices could model
the input-weight multiplications of each neuron in a crossbar
memory. These approaches store the trained DNN weights as
device resistance values, and then pass input values as an ana-
log voltage to these devices [31]. Although these approaches
are the first pace towards employing PIM for DNN accelera-
tion, they have three significant downsides: (i) They utilize
Analog to Digital Converters (ADCs) and Digital to Analog
Converters (DACs) which take the majority of the chip area
and power consumption, e.g., 98% of chip area in DNN accel-
erator [30]. In addition, the mixed-signal ADC/DAC blocks
do not scale as fast as the memory device technology does.
(ii) The existing PIM approaches use multi-level memristor
devices that are not sufficiently reliable for commercializa-
tion unlike commonly-used single-level NVMs, e.g., Intel
3D Xpoint [32]. (iii) Finally, they only support matrix multi-
plication in analog memory while other operations such as
activation functions are implemented using CMOS-based dig-
ital logic. This makes the design non-generic and increases
the expense of fabrication.

In this paper, we propose a novel DNN acceleration frame-
work, called RAPIDNN, which performs neuron-to-memory
transformation to accelerate DNN in a highly parallel ar-
chitecture. RAPIDNN supports all DNN functionalities in
a digital-based memory design. RAPIDNN first analyzes
computation flows of a DNN model and encodes key DNN
operations for a specialized PIM-enabled accelerator. Our
framework identifies representative parameters processed in
each neuron, i.e., weights and input values, using clustering
algorithms. The other key operations, e.g., activation func-
tions, are also approximately modeled to enable in-memory
processing. Based on these techniques, we create a new
DNN model which is compatible with the memory-based

1

accelerator.
The key finding underlying this procedure is that, even

though the operations of a DNN model, e.g., multiplications
and activation functions, are continuous functions, they can
be approximated as step-wise functions without losing the
quality of inference. Once a step-wise approximation is de-
veloped, we can create computation tables which store the
finite pre-computed values, and map them into specialized
memory blocks capable of in-memory computations. The
naive solution for step-wise approximation would employ
linear quantization to represent the inputs (operands) and
outputs of pertinent functions [33]. To ensure maximum ac-
curacy of the step-wise approximation, we propose to employ
a non-linear quantization which takes account of statistical
properties of each operand and output within the DNN, thus
improving the accuracy. For example, although we quantize
the Rectified Linear Unit (ReLU) activation function with 64
pairs for inputs and outputs, the inference accuracy can be
maintained at the same level.

The proposed RAPIDNN framework supports three layers
popularly used for designing a DNN model: fully-connected,
convolution, and pooling layer. We group the computation
tasks of the networks by four operations, multiplication, ad-
dition, activation function, and pooling. Our accelerator sup-
ports the multiplication and addition operations inside a cross-
bar memory, and other operations, activation function and
pooling, are modeled with associative memory (AM) blocks
which are a form of a lookup table. The main contribution of
the paper is listed as follows:

• To the best of our knowledge, RAPIDNN is the first neural
network accelerator which maps all functionalities inside
the memory block. Using direct digital-based computation
without any analog-to-digital conversion ensures a scalable
design approach for our accelerator. In addition, we remove
the necessity of using unreliable multi-level memristors
by implementing RAPIDNN using commonly used single-
level memristor devices.

• We present software support for RAPIDNN along with
novel algorithms which reinterpret DNN models to enable
in-memory processing with minimal accuracy loss of DNN
inference.

• Providing adjustable DNN reinterpretation mechanisms
that allow users to configure RAPIDNN for different DNN
applications optimally. We explore how different memory
sizes impact the inference accuracy.

• Proof-of-concept evaluations on six DNN applications
demonstrate that using small-sized memory blocks, e.g.,
around 5 KBytes for each neuron, RAPIDNN can pro-
vide the same level of the prediction quality. For instance,
we achieve 68.4×, 49.5× energy efficiency improvement
and 48.1×, 10.9× speedup on average as compared to
ISAAC [30] and PipeLayer [34] (state-of-the-art PIM-
based DNN accelerators), respectively, while ensuring less
than 0.5% of quality loss.

2. RAPIDNN DESIGN

2.1 Overview of RAPIDNN
Figure 1 illustrates a high-level overview of the proposed

RAPIDNN framework. It consists of two interconnected
blocks: a software module, DNN composer and a hardware

Data Block 1

Reg.Reg.Reg. ConfigController

DNN Model
Model

Reinterpretion Accelerator

DNN Composer

Model

Writing

Retraining

Data Block 1 Data Block 2

Neuron
Neuron

Neuron
RNA

Data Block 1
Neuron

Neuron
Neuron

RNA
Data Block 1

Neuron
Neuron

Neuron
RNA

Broadcast Buffer

Figure 1: Overview of RAPIDNN framework.

module, accelerator. The role of the DNN composer is to
convert each neural network operation to a table that can be
stored in the accelerator memory blocks which process all
neural network computations inside memory. The entries of
these tables are operands (inputs) and outputs of pertinent op-
erations, e.g., multiplication and activation functions, that are
employed to construct neural networks. We adopt the idea
of step-wise function approximation to form input-output
tables that can replace CMOS-based logic units of current
processors. By statistically analyzing the input and outputs of
the corresponding functions in an offline stage, starting with
a given DNN model, the DNN composer analyzes weights
and inputs of each neuron and generates a new DNN model
which is compatible to the proposed PIM-based accelerator.
Particularly, the output of the DNN composer module is a
neural network whose operations can be efficiently imple-
mented using finite tables inside the memory. The newly
constructed DNN model is repeatedly revised through multi-
ple retraining procedures. After generating the final model
through the iterations, it is stored into the accelerator so that
it can perform the online inference.

The proposed RAPIDNN accelerator supports both mem-
ory and computing functionalities by using two different
memories, data blocks and RNA blocks. The data block is a
typical crossbar memory which stores an input dataset pro-
cessed by the DNN model. The resistive neural acceleration
(RNA) blocks designed with multiple memory banks are in
charge of processing the DNN. In the execution phase, each
input data is applied to all RNA blocks in parallel using a
memory buffer which keeps them in a FIFO. Then, the RNA
blocks, which are the main cores of the RAPIDNN acceler-
ator, process the sequence of the input data. A single RNA
block computes the output for one neuron using multiple
internal memories which model the fundamental neural net-
work operations, i.e., multiplication, activation function, and
pooling. Once the inference is completed, the accelerator
writes the computed results back to the crossbar memory. In
the next few sections, we describe our strategies to map the
DNN to the RAPIDNN accelerator.

2.2 Preliminary of DNN Reinterpretation
A DNN model consists of multiple layers which have mul-

tiple neurons. These layers are stacked on top of each other
in a hierarchical formation; that is, the output of each layer is
forwarded to the next layer. The outputs of the last layer are
used for inference. In this paper, we focus on three types of

2

Xn

W1

X1

Wn

Activation

Function

Weights

Inputs

Weighted

Accumulation

b (Bias)

Array
Lookup

Table

Activation

Function Encoding

1

n

i i

i

W X b

Weighted

Accumulation

Lookup

Table

Y

(a) (b)

A

B

y

z

Z

00

01

10

11

(y,z)

Z
Z

Y Z

(c) (d)

Y

Adder

c1 c2 c3 c4

Non-linear

quantization

Figure 2: A representation of computations of a neuron and its reinterpretation in the proposed framework.

layers that are most commonly utilized in designing efficient
neural networks: (i) convolution layers, (ii) fully connected
layers, and (iii) pooling layers. RAPIDNN is inherently capa-
ble of applying pooling layers without any modification of the
neural network. For convolution and fully connected layers,
the framework reinterprets the layers in an offline process to
ensure compatibility with the memory-based accelerator.

Figure 2a depicts one neuron which computes its output in
two steps: (i) weighted sum and (ii) activation function com-
putation. The neuron takes a vector of neuron values from the
preceding layer X = 〈X0, · · · ,Xn〉, then computes its output
as follows ϕ(∑n

i=1 WiXi +b), where Wi and Xi correspond to
a weight and an input respectively, b is a bias parameter, and
ϕ(.) is a nonlinear activation function.

In the RAPIDNN framework, we interpret the computa-
tions of a neuron to a series of operations shown in Figure 2b
to make the DNN compatible with the proposed accelerator.
We describe each operation below in details.
Weighted accumulation: There are two basic operations
required for weighted accumulation: multiplication and addi-
tion. Here we consider the multiplication operation, while we
address additions in Section 4.1. Consider the two operands
of a multiplication, a and b, where each operand belongs
to a finite set. For instance, in a 32-bit floating-point rep-
resentation, each input can take one of 232 different possi-
bilities. If we could store all pairwise multiplications (i.e.,
232×232 = 264 possibilities) in an array beforehand, we could
fetch the correct result from the array instead of performing
actual multiplication using CMOS logic. Obviously, in this
naive approach, the size of pairwise results would be unac-
ceptably huge to create an array in real-world systems. Thus,
the key technical challenge is how to reduce the size of two
input sets.

We propose to reduce the input span by carefully selecting
a subset from the input spaces, called “best representatives,”
and approximating every input operand by its closest repre-
sentative. In our design, the DNN composer selects the best
representatives by analyzing the weights and input values
given to the networks (Section 3.1). For instance, we may
find 4 values to account for each input operand, in which case
we would have 4×4 = 16 different possible output values. In
practice, our experiments show that using a maximum num-
ber of 64 representatives (4096 possible outputs) can fully
recover the DNN accuracy.

Figure 3a presents the schematic view of an example mem-
ory based multiplier which is configured to operate using 4
representatives. For each operand, the first step is to deter-
mine which entry in the table is the closest value. Each input
table generates an index to the corresponding closest repre-

-1.25
-0.5
0.25
0.45

-0.1
0.2
0.3
0.4

C
o
n

ca
te

n
a
te

-1.25×-0.1
-1.25×0.2
-1.25×0.3

0.45×0.2
0.45×0.3
0.45×0.4

Input Table

a=-1.2

Input Table

Index=0

Index=2

A
d
d
r
e
s
s
=
2

Output Table

(a) (b)

b=0.33

-1.25
-0.5
0.25
0.45

-0.1
0.2
0.3
0.4

C
o
n

ca
te

n
a
te

-1.25×-0.1
-1.25×0.2
-1.25×0.3

0.45×0.2
0.45×0.3
0.45×0.4

Input Table

a=-1.2

Input Table

Index=0

Index=2

A
d
d
r
e
s
s
=
2

Output Table

b=0.33

Figure 3: (a) In-memory approximate multiplication us-
ing raw data. (b) Multiplication using encoded data.

sentative. Therefore, the approximate multiplication result
can be fetched from the output table according to the indices
generated by the two input tables. This design requires two
lookup tables for the input operands; however, below we
describe how we can completely remove the input tables and
simply replace them with wires.

Note that the operands and the outputs can be mapped
into the set of best representatives using fewer bits, e.g., 2-
bits for inputs (22 = 4 possibilities) based on one-to-one
correspondences. We call elements of the mapped set as
encoded values. In particular, for every weight value Wi and
neuron value Xi, we denote the encoded values by W i and X i.
Activation function: We also model the activation function
for enabling PIM. Neural networks use different types of ac-
tivation functions. For example, “sigmoid” has been used as
one of the basic activation functions [35], and there are other
activation functions which recently gain popularity due to the
better inference accuracy for some applications, e.g., ”Recti-
fied linear unit” (ReLU) and ”Softsign” [36, 37]. One way
to support different activation functions is to exploit different
CMOS-based logic, but they may be expensive to fabricate
and could not support other activation functions. In our de-
sign, we approximately model an activation function using a
small lookup table. Using this approach, we can represent any
activation function. Figure 2c shows this procedure for the
sigmoid function as an example. A lookup table stores multi-
ple (y,z) coordinates of the activation function. For a given
input value, (i.e., the output of the weighted accumulation Y),
the table identifies a stored coordinate whose value is closest
to the input and generates the corresponding output z. We
elaborate on the definition of “closeness” and the hardware
implementation of the table in Section 4.2.2.

Since a typical activation function is saturated for either
very large or small input values, we can effectively limit the
domain using two upper and lower points (A and B in Fig-
ure 2) with a minimal quality change. We can equally or

3

non-equally quantize the range from A and B to select the
intermediate values. Intuitively, the accuracy of the approx-
imated function mainly depends on the number of values
in the lookup table. For example, increasing the number of
data points provides better accuracy. Non-linear quantization
enables putting more points on the regions that activation
function has sharper changes. This way of quantization im-
proves the quality of approximation. Note that the proposed
technique ensures the generality of the algorithm. However,
for easy activation functions such as ReLU, our design can
replace the lookup table with a simple comparator block.
Encoding block: Since the neurons of our reinterpreted
model operate on encoded values, we need to convert the
output of the activation function into an encoded value. For
this purpose, we utilize a lookup table with a similar structure
to the one used for activation function modeling. Figure 2d
presents an example of encoding into 2-bits (4 representa-
tives). Since the encoded value for the activation units, Z, is
used as the input of the neurons of the next layer, say X j, we
encode the outputs based on their similarity to the representa-
tives corresponding to the next DNN layer. Figure 3b shows
how encoded operands can facilitate the in-memory multipli-
cation: there is no need to search for the closest value in the
input tables as the inputs themselves represent the indices;
thus, the input tables can simply be replaced by wires. The
first operand (W i) is simply encoded offline and stored in the
weight matrix. The second operand (X i) is encoded during
DNN execution after the neuron output is computed in the
preceding layer. In the case of the input layer, to encode each
raw input data, we add one more virtual layer as an initial
layer of the DNN. The neuron of this layer does not perform
any computation tasks, i.e., the weighted accumulation and
an activation function, but only encodes the input values to
pass them to the first computation layer, e.g., fully connected
or convolution layer.

3. DNN COMPOSER
Figure 4 shows the overall procedure of the DNN composer.

The DNN composer performs the DNN reinterpretation in an
offline stage in four main steps: parameter clustering, quality
management, network retraining, and RNA configuring.

The parameter clustering module uses the pre-trained DNN
model and the training data to find the best representatives
for each layer’s inputs and weights. In particular, we use the
k-means algorithm [38] and interpret the resulting centers
of clusters as the representative values. Once the multiplica-
tion, activation function, and encoding tables are generated
for each DNN layer, the error estimation module evaluates
the reinterpreted memory-based DNN on the validation data.
If an error criterion is not satisfied, the model is retrained
under the modified condition, so that the model is more fitted
with the clustered weights. We proceed the same procedure
until an error rate, ε , is satisfied or a pre-defined number of
iterations is repeated. After the iterations, the new model
compatible with the proposed accelerator is stored into the
accelerator for real-time inference.

3.1 Multiplication Operand Clustering
As discussed in Section 2.2, the proposed RAPIDNN

framework converts key arithmetic computations to memory-
based computations to reduce the cost of data movement. The
first key procedure is to identify the best representatives for
multiplication based on k-means clustering. Assuming that

the actual numerical values belong to the set θ , the objec-
tive of the clustering algorithm is to find a set of k cluster
centroids {c1, c2, . . . , ck} that can best represent the values
within θ . Formally, the objective is to reduce the Within
Cluster Sum of Squares (WCSS):

min
c1, c2, ...,ck

(WCSS =
k

∑
j=1

∑
θi∈c j

||θi − c j||
2) (1)

where θi is the ith sample drawn from θ and k is the number
of clusters. In the rest of this paper, we refer to the set of
these representatives found in the clustering procedure as a
codebook. We use the k-means clustering algorithm to solve
the minimization objective for each neural network layer
separately, as the distribution of weights and inputs can vary
across different layers. The weights and inputs are clustered
differently as follows:

• Weights: The weights of each layer are fixed in the infer-
ence phase; therefore, to form the codebook for the fixed
parameters, the clustering algorithm is applied on the fixed
weights. Assuming that a fully-connected layer maps N
neurons into M outputs, the corresponding matrix WM×N

is clustered once, and a single codebook is generated for
the whole matrix. For convolution layers, the weights
corresponding to different output channels are clustered
separately: a convolution layer mapping N channels into M
channels using a weight tensor Wh×h×N×M is divided into
M different tensors and each tensor is clustered separately,
resulting in M different codebooks.

• Inputs: The input of each layer is determined by its pre-
ceding layer, hence, the inputs of all layers depend on the
raw data given to the network; therefore, we execute the
feed-forward procedure with the training dataset to form
θ for each DNN layer, then apply k-means on this θ to
find the corresponding codebook. In our implementation,
we run the network with a set of inputs randomly sampled
from the training dataset. The sampling technique signifi-
cantly reduces the overhead of computing the codebook as
our experiments show that sampling as low as 2% of the
data is sufficient to achieve reasonable accuracy.

Multi-level clustering: The codebook size determines the
multiplications precision with the lookup table-based ap-
proach: the more cluster centroids are chosen, the more the
precision will be. Note that this is the numerical precision
and the classification accuracy (the objective of the neural
network) depends on the application too. Some applications
would require more fine-grained clusters in order to deliver
reasonable classification accuracy, while other applications
might show high classification accuracy with smaller numeri-
cal precision.

To offer flexibility for configuring the accelerator, we pro-
pose a multi-level clustering method which creates the code-
book as a tree. Figure 5a shows an example of the tree-
based codebook. The first level includes 2 cluster centroids:
{−2.1, 1.9}; in the second level, each cluster is again parti-
tioned into 2 separate clusters that more accurately represent
the data. For instance, the cluster representing 1.9 in the
first level is partitioned into {0.9, 2.3} in the second level to
provide more precision.

The tree is created by recursively calling the k-means clus-
tering module. First, the k-means module clusters the whole
θ into two clusters: θ1 and θ2 represented by codebook val-
ues -2.1 and 1.9, respectively. Next, θ1 and θ2 are separately

4

Error < ε
Input

Hidden

Output

No

Training

Retrain

Weights

Parameter Clustering Quality Managment

Configurator

Error Estimation

RNA

Configuration

RNA Configuration

Accelerator
RNA RNA

Precision

bit
Yes

RNA

Clustered

Inputs

Table

C
lu

ster
in

g

Clustered

Weight

TableTrained

DNN

Quantized

Activation

Function

Training

Dataset

Validation

Dataset

E
n

c
o

d
e
r

Figure 4: DNN composer which reinterprets a model and configures the proposed accelerator.

H
ig

h
e

r A
c

c
u

ra
c

y

(a) codebook

values -2.1, 1.9

-2.5, -1.1

-2.53, -2.49,

-2.48, -2.44

-1.13, -1.11,

-1.09, -1.08

2.21, 2.27,

2.29, 2.32

0.83, 0.86,

0.89, 0.94

0.9, 2.3

0, 1

00, 01

0000, 0001,

0010, 0011

0100, 0101,

0110, 0111

1100, 1101,

1110, 1111

1000, 1001,

1010, 1011

10, 11

H
ig

h
e

r A
c

c
u

ra
c

y

(b) Encoded

codebook

values

Figure 5: Illustration of tree-based codebook generation.

partitioned to two different clusters, so that each sub-cluster
itself is represented using a codebook of 2 values. This re-
cursive process is continued to create the last level of the tree
(three levels in this example), and then all codebook values
are computed.

Figure 5b shows the encoding tree for the same hierar-
chical codebook. Deeper layers’ encodings are formed by
appending extra bits to those of their parent nodes in the
tree. Deeper levels provide higher multiplication precision,
whereas shallower levels deliver less precision but reduce the
area overhead and power consumption. As such, the accuracy
can be dynamically tuned for different applications. Note that
the codebook values in each level are sorted before encod-
ing; thus, comparison over the encoded values has the same
output as a comparison over the original codebook values.
This property enables RNA to perform max-pooling over
the encoded data. We explain how the hardware accelerator
implements the pooling functionality in Section 4.2.1.

3.2 Quality Estimation and Model Retraining
We retrain the model with the reinterpreted condition to

ensure better accuracy. This procedure is done by two steps,
weight retraining and error estimation described below.
Weight Retraining: Consider the distribution of the param-
eters within a layer shown in Figure 6a. Weight clustering
essentially finds the best matches that can represent this distri-
bution and replaces all parameters with their closest centroids
(Figure 6b). Weight clustering is often accompanied by some
degree of additive error, ∆e= eclustered −ebaseline. To compen-
sate for this error, our algorithm retrains the neural network
for a pre-specified number of epochs. After retraining, the
parameters have a clustered distribution as illustrated in Fig-
ure 6c. Therefore, a retrained weight matrix is more robust

(a) (b)

(c) (d)

Figure 6: The effect of the weight clustering on DNN
weights distribution during retraining.

against the clustering error. Note that The overall trend of
the weight distribution is the same before and after retraining.
For example, Figure 6c has many vertical bars in the range
of [0, 0.3] and less bars in the range of [−0.4, −0.2], thus
it has the same distribution as Figure 6a. The classification
error decreases in subsequent clustering/retraining iterations
as shown in Figure 6d.
Error Estimation: After the weight clustering, the error esti-
mation module forms a software version of the reinterpreted
DNN and estimates the classification error. This module
replaces the original weights and neuron outputs with their
closest codebook values. The classification error eclustered is
estimated by cross-validating the clustered DNN over a por-
tion of the original data. If the error rate does not satisfy the
tolerance ∆e < ε , the model will be retrained and clustered.
This procedure is repeated for a defined number of iterations.
Note that all pre-processing operations in the DNN Composer
module are performed offline and their overhead will be amor-
tized among all future executions of RAPIDNN accelerator.
In our evaluation, we empirically set the maximum number
of iterations to 5 while ε is given by 0, to get the best model
within reasonable analysis time. We discuss the running time
overhead of the whole procedure in Section 5.1.

3.3 RNA Configuration
After retraining the networks sufficiently, we configure

the reinterpreted model into the accelerator. To write the
neurons of either the fully-connected or convolution layers,

5

D
e
M

U
X

Crossbar Memory

X1 × W1

X1 × W2

X1 × W3

Y1

Nearest

Distance Table

Y2

Yq

Crossbar

Memory

Bias (b)

Activation FunctionWeighted Accumulation

Z1

Z2

Zq

D
ri

v
e

r

D
ri

v
e

r

(a)

Input buffer

(Yi, Zi) points in activation

function

Sense Amp

Z1

Nearest

Distance Table

Z2

Zu

Z1

Z2

ZN

D
ri

v
e

r

D
ri

v
e

r

Input buffer

Sense Amp

(Zi, Zi)

Zi: Center of clustered inputs

Zi: Encoded values

Encoding/Pooling

Xu × Ww

Crossbar

Memory

(b)
(c)MUX max/min

Pool

i1

Input Buffer

i2i3in

i1i2i3in

i1i2i3in

indexing

C
o

u
n

te
r

R
e
g

 R
e

g

S
e

q
u

e
n

c
e

 D
e

te
c

to
r

In
-M

e
m

o
ry

 A
d

d
itio

n

Figure 7: An RNA block for accelerating reinterpreted neurons.

an adjustable parameter is utilized to select the level of the
codebook tree, i.e., the number of encoding bits. Based on
the encoding bits, we store pairwise multiplication results
extracted from all possible pairs of codebook values into a
crossbar memory. The lookup tables for the quantized ac-
tivation function and the encoding table are stored in two
AM blocks. As explained in Section 2.2, the virtual layer
responsible for encoding the raw inputs is also stored into
a AM block . For the neurons of the pooling layer, we al-
locate a set of RNA blocks. In the next section, we explain
how the RNA memory blocks are designed to perform the
computation tasks of each neuron in different types of layers.

4. RNA ACCELERATOR
Figure 7 illustrates the structure of an RNA block which

performs the computation tasks of a single neuron in the
reinterpreted model. An RNA block consists of three major
memristor memory blocks, (a) weighted accumulation, (b)
activation function, and (c) encoding/ pooling blocks, each
corresponding to one of the fundamental operations discussed
in Section 2.2. The weighted accumulation sub-block is a
crossbar memory capable of processing addition in-memory.
The other two sub-blocks are designed using AM structures
that implement a lookup table like functionality and have
the capability of searching for the most similar value in the
memory.

4.1 RNA Weighted Accumulation
Since all the weights and inputs are passed to the RNA

block as encoded values, we can directly fetch the multi-
plication results from the crossbar memory as discussed in
Section 2.2. Although our design significantly reduces the
cost of multiplication, serially accumulating the values in
the neuron can be a bottleneck. Weight and input cluster-
ing significantly reduces the number of possible results of
multiplications. For instance, in a neuron with 1024 incom-
ing branches, there are w×u different pre-computed values,
where w and u are the number of codebook values for weights
and inputs. Our design replaces each incoming edge of the
neuron with one of the pre-computed multiplication values.
As w× u is usually smaller than the number of incoming
edges to the neuron, we do not need to really accumulate
1024 numbers together. Instead, using counter blocks, we
record the number of times that each pre-stored value repeats.
Finally, the pre-stored values are added together based on the
number of times that each value occurs. This improves the
performance and energy efficiency of accumulation.

4.1.1 Parallel Counting:

The system introduced above can be easily implemented

by having a FIFO at the input of each layer and having an
increment by 1 counter corresponding to each pre-stored
value. Each output of this buffer increments the correspond-
ing counter by 1. This procedure is highly serialized and
may bottleneck the entire process. Hence, it would be ben-
eficial to take in multiple inputs at a time and increment
counters in parallel. The problem arises when two or more
of these inputs correspond to the same pre-stored value. In
this case, the counter would increment by just 1, resulting in
erroneous results. We address this issue by exploiting the fact
that each input-weight combination corresponds to a unique
pre-stored value. We implement hardware such that only one
input-weight pair is selected per weight at a time.

Our design assigns w buffers for w distinct weights. These
buffers store the input indexes which use the same weight.
For example, buffer corresponding to W0 weight stores the
indexes of all inputs to the neuron which use W0 weight. The
buffer size is determined by the size of the largest layer in
the neural network, as this number determines the maximum
incoming edges to a neuron. Our design picks one index
from each weight buffer in one cycle and increments the
corresponding counter. Since the input-weight combinations
selected in one cycle have different weights, no two of these
combinations increment the same counter.

The output of this procedure is the values of the counter
which show the number of times each pre-stored value is
accessed. Now, instead of repeatedly adding the numbers
together, our design first shifts each pre-stored value depend-
ing upon the number of times it repeats. For instance, if the
first pre-stored value repeats 4 times, our design shifts that
value by two bits. The values with counters equal to 8 and 16
shift by three and four bits respectively. If the counter value
is not a power of two, our design breaks the number into
multiple powers of two. For example, when the counter is 9,
our design breaks it to 8+1; thus the value is shifted by three
bits and then added to itself. To further improve the efficiency
of the process, our design tracks the longest sequence of 1s
in the value of the counter and changes it to a power of 2
followed by subtraction of 1. For example, when the counter
is 15 (b:1111), our design changes it to 16-1.

4.1.2 In-Memory Addition:

A crossbar memory supports addition as well as a multipli-
cation between two vectors stored in two rows or columns of
a memory block [39, 40]. In RAPIDNN, the multiplication is
modeled using a lookup table; thus we only need to support
addition in memory blocks. We break down the addition
operation into a series of NOR operations, where each NOR

operation in the crossbar memory is executed with a latency
of 1 cycle [41]. Previous work has demonstrated ways, both

6

in literature [42, 43] and fabricated chips [44], to implement
logic using memristor switching. The output device switches
between two resistive states, RON (low resistive state, ‘1’) and
ROFF (high resistive state, ‘0’), whenever the voltage across
the device exceeds a threshold [45]. This property can be
exploited to implement NOR gate in the digital memory by
applying a fixed voltage across the memristor devices [42].
To accelerate addition, our design supports addition operation
in a tree structure [39]. As in-memory computation is slow
in propagating delay, our design uses the idea of carry-save-
adder to add multiple numbers together in a tree structure.
This in-memory implementation can add multiple numbers
in parallel while delaying the propagation to the final stage
in the tree. For w× u inputs in a crossbar memory, our de-
sign can handle addition in log3/2(w×u) stages. Each stage
takes 13 cycles to complete the addition operation. Finally,
the last stage requires 13N cycles to perform addition while
propagating carry (N is the size of numbers to be added).

4.2 RNA AM-Based Computation

4.2.1 Activation Function, Encoding / Pooling:

The two sub blocks which implement the activation func-
tion and encoding/pooling are designed as AM blocks, i.e.,
lookup tables. As shown in Figure 7b and c, an AM block has
two memories, a nearest distance table designed by a CAM
structure, and a crossbar memory which stores data associ-
ated with each row of the nearest distance table. Since the
activation function and encoding are approximately modeled
by the DNN composer and stored in the AM blocks, they can
be computed by activating the corresponding AM block. In
other words, the AM block for the activation function first
activates its nearest distance CAM. Then, this CAM finds
the row with the data most similar to the value computed
by the weighted accumulation. The crossbar memory stores
the result of the activation function which is sent to the next
AM block for encoding. Similarly, the encoding AM block
produces the encoded value.

The neurons of pooling layers are implemented by reusing
the last AM block which was used for the encoding task.
Since the pooling layer does not have the computation func-
tionality, it bypasses the encoded input data, X i, to the last
AM block which is then written in its CAM block. Then
we find the largest (smallest) value in the AM block if the
pooling layer implements max (min) pooling. Note that our
design can also support average pooling using the weighted
accumulation block. As explained in Section 4.1.2, the cross-
bar memory can perform in-memory addition without the
need for external circuits. The division required in average
pooling is implemented by normalizing the weights in the
offline stage. In the following subsection, we explain how
we design the nearest distance table using a CAM, called
NDCAM.

4.2.2 Nearest Distance CAM:

A conventional CAM design finds the exact same data as
given input data. As discussed in Section 6, there are some
NVM-based designs that allow the search for a “similar” data.
To quantify this “similarity”, there exist different metrics such
as hamming distance and absolute distance. The Hamming
distance (HD) is one of the simplest distance metrics which
can be implemented in the memory in a relatively easy way.
However, this metric ignores the impact of the bit indices on

the computation. For example, 11111 has the same HD to
11110 and 01111, while the absolute distances in numeric
values are significantly different. In this work, we first show
how to design a CAM with the capability of searching for
the nearest HD value. Then, we present how to make a
modification on lookup circuits to enable a precise search
operation in NDCAM which identifies the value with the
smallest absolute distance for real numbers.
NDCAM Search Functionality: Figure 8 shows the struc-
ture of our NDCAM design. Before the search operation, the
input data is stored in the buffer, and the buffer strengthens
the input signals to ensure every row can receive the input
signals at the same time. A typical way to differentiate the
HDs of stored values to the input signal is to exploit a timing
characteristic of the discharging current for each row [46, 47].
In this approach, for the search operation, match lines (ML)
of all rows are precharged to V dd. Then, if the bit stored in
each cell is different from the input signal, the corresponding
ML starts discharging. For a large number of mismatched bits,
the rows discharge ML voltage with higher current and at a
faster rate compared to other rows with smaller mismatched
bits. Thus, a sense amplifier can detect the CAM row which
lastly discharges, i.e., the value with the nearest HD, by keep-
ing track of ML voltages in all rows. However, this approach
makes the sense amplifier complicated due to the additional
circuity such as counters. In addition, it needs to wait for a
long time to determine the row lastly discharged.

To address these design issues, the CAM cells in proposed
NDCAM work inversely compared to the typical CAM. The
table shown in Figure 8 presents the functionality of NDCAM
cells storing inverse resistance values in the match and mis-
match cases. In contrast to the conventional cells, NDCAM
cell discharges the ML in case of matching, while a mismatch
ML stays charged. Therefore, a row which has more matched
bits creates a faster discharging current than other rows. The
inverse mode simplifies the sense amplifier design to detect
the nearest HD row, since we only need to find the row which
discharges the ML fastest. On the top of the inverse scheme,
we modify the CAM design to support the precise search
operation which identifies the row with the smallest absolute
distance. To this end, each CAM for different bit indices is
designed using different access transistor sizes. Based on the
binary weight of an unsigned integer value, each cell in a ith

position has access transistors which are 2× larger than the
cell in the i−1th adjacent bit. This results in 2× higher ML
discharging current in each match cell than its adjacent least
significant bit (LSB).

In fact, the number of block bits, and the size of transistors
and capacitors affects the timing characteristic. Thus, we
identified viable configurations so that they can guarantee the
correct functionality even for the worst case. In our HSPICE
evaluation of 5000 Monte Carlo simulations considering 10%
of process variation, the discharging speed is sufficiently
distinguishable when an ML has 8 subsequent bits. Thus, we
divide 32 bits into 4 pipeline stages and find the closest row by
performing sequential search starting from most significant
bits. A CAM block only includes 8 bits, and thus the access
transistors can be a reasonable size even for the MSB of a
stage. To support floating point data, we put the exponent
and fraction parts in different stages. NDCAM performs
any activation/pooling functions in a single-cycle using the
search operation. For example, to implement 4× 4 MAX
pooling, NDCAM requires 24µm2 area, 0.5ns search latency,

7

SL’SL

Resistance value and select lines voltage during the search

R1 R2

ML

NDCAM

Buffer

1X

Nearest Distance
Sense Amplifier

Row

Driver

1X

1X

2X

2X

2X

2
M
X

2
M
X

2
M
X

ML

ClK

EnL
i

1

EnL
i

2

EnL
i

N

EnL
i+1

1

EnL
i+1

2

EnL
i+1

N

D

ML

ML

Figure 8: NDCAM supporting nearest distance search.

MEM

Weight Intex

Counter

Activation

Encoder

MEM

MEM

MEM

MEM

MEM

Buffer
(Encoded)

Tile 1 Tile 2 Tile 3

R
N

A

Bit-serial
Data Transfer

Buffer
(Encoded)

Figure 9: RAPIDNN architecture overview.

and 920 f J energy. Running the same function on CMOS
requires 374µm2 area, 1.2ns latency, and 378 f J energy.

4.3 RAPIDNN Data Transfer & Controller
Figure 9 shows the overview of the RAPIDNN architecture

modeling multiple layers of neural networks. RAPIDNN
consists of several blocks working in parallel to model the
computation of different DNN layers. In RAPIDNN, each
block consists of 1k RNA blocks are working in parallel.
The outputs of these RNAs are written in parallel into a
single buffer. This buffer values are the encoded outputs of
a DNN layer which are used as input data for the neuron
of the next layer. All RNAs access to the buffer values in
parallel. The data transfer from the neurons to buffer happens
in a bit serial way. Since the values are encoded, this data
transfer can perform significantly faster than the original 32-
bits numbers. RAPIDNN works in a pipeline, meaning that
when a block is writing values into a buffer, the next block
(next layer) accessing the previous values stored in the buffer.
This pipeline structure maximizes RAPIDNN throughput.

The controller maps the computation of different DNN
layers into RNA blocks. This includes the required control
signals to perform weight accumulation in RNA blocks as
well as the synchronization of the activation and encoding
modules. The controller also manages data transfer between
different RNA blocks. It assigns a unique register for each tile
that allows each tile to be configured individually. Addition-
ally, the controller decides the number of required codebooks
and initializes RAPIDNN depending on the user accuracy
requirement. RAPIDNN supports multiple layer types, e.g.,
fully connected, convolution, residual, and recurrent. The
controller handle different data flows depending on the layer
type. For example, for the residual layers used in ResNet [48],
the input FIFO of RNA blocks kept the values came from
skipped connections.

Table 1: RAPIDNN Parameters
1-RNA Block 1-Tile

Blocks Size Area Power Blocks Size Area Power (w)

Crossbar 1K*1K 3136µm2 3.7mW RNAs 1k 3.84 mm2 4.8W
Counter 1k*12-bits 538.6µm2 0.7mW Buffer 1K-reg 37.6µm2 2.8mW

Activation 64-rows 83.2µm2 0.2mW Total Tile 3.88mm2 4.8W

Encoder 64-rows 83.2µm2 0.2mW Total Chip

Total RNA 3841µm2 4.8mW 32-Tiles 124.1mm2 153.6W

Table 2: DNN models and baseline error rates (IN: Input,
FC:Fully connected, CV:Convolution, PL:Pooling)

Dataset Network Topology Error
MNIST IN : 784, FC : 512, FC : 512, FC : 10 1.5%
ISOLET IN : 617, FC : 512, FC : 512, FC : 26 3.6%

HAR IN : 561, FC : 512, FC : 512, FC : 19 1.7%
CIFAR-10 IN : 32×32×3,CV : 32×3×3,PL : 2×2,

CV : 64×3×3,CV : 64×3×3,FC : 512, FC : 10 (100)
14.4%

CIFAR-100 42.3%

ImageNet

AlexNet [8] 43.0%
VGGNet (16) [55] 28.5%
GoogLeNet [56] 21.6%
ResNet (152) [48] 17.1%

5. EXPERIMENTAL RESULTS

5.1 Experimental Setup
The proposed RAPIDNN framework has been implemented

with the two co-designed modules, DNN composer for soft-
ware and accelerator for hardware. We designed the DNN
composer, which retrains DNN models for the accelerator
configuration, in C++ while exploiting two backends, Scikit-
learn library [49] for clustering and Tensorflow [50, 51] for
the model training and verification. For the accelerator de-
sign, we exploit HSPICE and performed post-layout sim-
ulation using the parasitic extraction under TSMC 45nm
technology. We calculate the energy consumption and per-
formance of all the RAPIDNN memory blocks including the
interconnects. The energy consumption and performance is
also cross-validated using NVSim [52] and the chips that
fabricated similar functionalities [44, 53]. The RAPIDNN
controller has been designed using System Verilog and syn-
thesized using Synopsys Design compiler in 45nm TSMC
technology.

One major advantage of RAPIDNN is that it can work with
any bipolar resistive technologies which are the most com-
monly used in existing NVMs. Here, we adopt a memristor
device with a large OFF/ON resistance [54] for the memory
devices. The robustness of all proposed circuits has been ver-
ified by considering 10% process variations on the size and
threshold voltage of transistors using 5000 Monte Carlo sim-
ulations. We compare the proposed RAPIDNN accelerator
with GPU-based DNN implementations, running on NVIDIA
GTX 1080 GPU. All DNN applications are realized using
Tensorflow [51] and the GPU time and power are measured
using the nvidia-smi tool.

Table 1 shows the details of RAPIDNN parameters con-
sisting of 32 Tiles. Each tile consists of 1k RNA blocks
and a single buffer storing intermediate input/output results.
Each RNA has crossbar memory, counter, activation, and
encoder blocks. RAPIDNN totally consumes 153.6W maxi-
mum power and takes 124.1mm2 area.

5.2 Benchmarks and DNN Models
We evaluate the efficiency of the proposed RAPIDNN over

six popular neural network applications: Handwriting clas-
sification (MNIST) [57], Voice Recognition (ISOLET) [58],
Activity Recognition (HAR) [59], Object Recognition (CI-
FAR) [60], and Image Classification (ImageNet) [61] The
Table 2 also presents the DNN topologies and baseline er-

8

MNIST ISOLET HAR CIFAR-10 CIFAR-100
Δ

e
 (

%
)

Δ
e
 (

%
)

Δ
e
 (

%
)

Δ
e
 (

%
)

Δ
e
 (

%
)

Δ
e
 (

%
)

ImageNet

Figure 10: Accuracy loss of the model reinterpretation for different sets of input and weight sizes.

Table 3: RAPIDNN composer overhead.
Others Epochs Time ImageNet Epochs Time

MNIST 5 51s AlexNet 1 11.2min
ISOLET 5 1.9min GoogLeNet 1 29.7min

HAR 5 2.3min VGGNet 1 24.3min
CIFAR-100 5 4.8min ResNet 1 37.1min

ror rates for the original models before reinterpretation. As
for well-known applications such as CIFAR, we have used
the architecture suggested by the Keras library. The pre-
trained baselines for ImageNet, including AlexNet [8], VGG-
16 [55], GoogLeNet [56], and ResNet [48] architectures, are
taken from the Keras library as well. For other applications,
we chose the network architecture that achieves fairly high
baseline accuracy (e.g., standard 98.4% for MNIST without
convolutions). The error rate is defined by the ratio of the
number of misclassified data to the total number of a testing
dataset. Each DNN model is trained using stochastic gradient
descent with momentum [62]. In order to avoid overfitting,
Dropout [63] is applied to fully-connected (FC) layers with
a drop rate of 0.5. In all the DNN topologies, the activation
functions are set to “Rectified Linear Unit” (ReLU) for hid-
den layers, and a “Softmax” function is applied to the output
layer.

As discussed in Section 3.2, the accuracy of the reinter-
preted model typically increases for a higher number of re-
training epochs. Table 3 shows the number of retraining
epochs and the execution time taken for the model reinter-
pretation. Note that this model reinterpretation require to
perform only once, thus the runtime overhead of model rein-
terpretation amortizes across all future executions in infer-
ence.

5.3 Accuracy of Reinterpreted DNN Models
As for the hardware accelerator, the accuracy of the reinter-

preted model is affected by three major configurable factors:
(i) the number of quantized values for an activation function
(q), (ii) the number of clustered weights (w), and (iii) the
number of clustered inputs (u). They also decide memory
sizes and consequent power/performance efficiency of the
accelerator. Since we use the same lookup table for the activa-
tion functions over all RNNs, we first show accuracy changes
for different q to select a proper configuration. To evaluate
the accuracy of our reinterpreted models, we exploit the ∆e
accuracy loss metric defined in Section 3.2, i.e., how much
the error is changed over the baseline error rate. Our evalua-
tion shows that for all benchmarks, using lookup table with
64 rows to modify activation function (Sigmoid) results in
the same accuracy level to the baseline models which exactly
compute the activation function results. Note that for ReLU
function, it is simpler and more efficient to design it using a
single CMOS comparator.

Figure 10 shows the impact of w and u (i.e., the number
of the representative weights and inputs obtained from the
clustering respectively) on the inference accuracy of the six

benchmarks. For each dataset we have shown the result for
a single network. For ImageNet, the results are shown for
VGG-16 network. We changed the numbers by selecting a
tree level for each codebook. The results show that exploit-
ing more clusters provides better accuracy in general. When
clustering with 16 and 64 for the weights and inputs, the
reinterpreted models achieve the same accuracy level, i.e.,
∆e ≈ 0%, for most applications. We observe that different
benchmarks require different cluster numbers to provide ac-
ceptable quality. For example, the DNN model for MNIST is
performed with ∆e = 0 when w = 64 and u = 16. In contrast,
the ImageNet, which are known as a more complex classifi-
cation task, requires 64 clustered weights and 64 clustered
inputs to provide similar quality to the baseline. Our eval-
uation shows that for AlexNet, VGGNet, and GoogLeNet,
RAPIDNN provides less than 0.1%, 0.3%, and 0.5% qual-
ity loss using 64 clustered inputs/weights. For ResNet, the
minimum quality loss of 0.5% can be achieved using 128
inputs/weights clusters (See Table 4)

5.4 Accuracy-Efficiency Trade-off
Figure 11 shows energy improvement and performance

speedup of the six applications running on the proposed
RAPIDNN and the GPU implementation. We consider the
efficiency for 9 combinations of different cluster sizes, where
either input or weight are encoded (clustered) with 4, 16 and
64 values. The results show that the RAPIDNN accelerator
improves the energy and performance efficiency significantly
compared to the GPU-based implementation. Comparing
with GPU, the speedup stems from the fact that RAPIDNN
offers much higher parallelism by (i)completely parallelizing
each neuron computation with RNAs,(ii) ensuring each RNA
to store the weights of the corresponding neuron. RAPIDNN
can perform 10 million operations in parallel, while for GPU
it is in order of thousands.

In RAPIDNN, the energy and performance efficiency is
mainly related to two factors: i) the size of the multiplication
crossbar memory affected by both the w and u, and ii) the size
of the encoding AM block affected by u. Since u affects the
two different memory blocks, the number of encoded inputs
has a higher impact on energy consumption than the number
of the encoded weights.

In addition, the number of the encoded weights has negligi-
ble impacts on performance as we can extract a multiplication
result by directly referring a row of the crossbar memory. We
report the speedup for different u values in Figure 11b. The
efficiency improvement depends on the combination, that is,
using smaller encoded input and weight sets results in more
energy-efficient and faster computation. For example, we
achieve 253.2× energy efficiency improvement and 422.5×
speedup for w = 4 and u = 4, whereas 161.9× and 386.25×
for energy and performance when w = 64 and u = 64.

The memory sizes also affect the model accuracy as well

9

4 16 64
of Inputs

MNIST CIFAR-10ISOLET HAR CIFAR-100

4 16 64
of Inputs

4 16 64
of Inputs

4 16 64
of Inputs

4 16 64
of Inputs

4 16 64

of Inputs

(a) Energy Improvement

E
n

e
rg

y
 E

ff
ic

ie
n

c
y

 I
m

p
ro

v
e

m
e

n
t

(N
o

rm
.

to
 G

P
U

)

S
p

e
e
d

u
p

(N

o
rm

.
to

 G
P

U
)

(b) Speedup

MNIST CIFAR-100ISOLET HAR ImageNetCIFAR-10

ImageNet

Figure 11: Energy efficiency and performance improvement of 6 models normalized to GPU-based executions.

0% 1% 4%

Δe

MNIST CIFAR-10ISOLET HAAR CIFAR-100

2% 0% 1% 4%

Δe
2% 0% 1% 4%

Δe
2% 0% 1% 4%

Δe
2% 0.1% 1% 4%

Δe
2% 0.3% 1% 4%

Δe
2%

5
1

7
K

B

1
2
9

K
B2
5
8

K
B

6
4
K

B

2
.0

M
B

5
2
5

K
B

2
6
2

K
B

1
3
1

K
B

1
.1

M
B

2
6
0

K
B

1
9
5

K
B

1
3
0

K
B

1
5

9
M

B

3
1

8
M

B

7
9
.8

M
B

5
9
.9

M
B

4
0
.3

M
B

2
3
9

M
B

8
0
.1

M
B

4
8
.7

M
B

N
o
rm

a
li

ze
d

 E
D

P
 &

M
e
m

o
r
y
 U

sa
g
e 8

7
3
M

B

4
2
6

M
B

3
2
4

.1
M

B

ImageNet

6
5

4
M

B

Normalized EDP Memory Usage

0

0.2

0.4

0.6

0.8

1

Figure 12: Normalized energy-delay product and memory usage of RAPIDNN for different accuracy levels.

as the accelerator efficiency. To evaluate the relationship, we
chose four accuracy loss values, i.e., ∆e, from minimum to
4%, and selected a combination whose energy-delay product
(EDP) is minimal for each accuracy loss over all applications.
Figure 12 summarizes the EDP normalized to the case with
minimum ∆e along with its memory usage for different accu-
racy levels. The results show that by allowing small accuracy
loss, we could achieve better EDP efficiency. For example,
for the ∆e = 2% and 4% cases, the RAPIDNN acceleration
can save EDP by 11% and 15% respectively, as compared
to minimum ∆e case. This also allows to use less memory
of the accelerator, e.g., 77% and 87% for ∆e = 2% and 4%
cases.

Note that our reinterpreted model effectively enables PIM-
based computing with a relatively small amount of memory
usage while completely removing the need for ADC and DAC
on the PIM-based DNN acceleration. The largest memory
usage is observed for ImageNet and CIFAR-100, by 873MB
and 318MB with minimal loss of the inference quality of
0.3% (VGG-16) and 0.1% respectively. In addition, since
each application requires different memory sizes for the best
configuration, a system designer may configure the acceler-
ator depending on the running application by choosing the
level of the codebook which decides the number of encoded
weights and inputs.

5.4.1 Energy/Performance Breakdown:

To further analyze how the proposed accelerator consumes
energy and performance, we classified the energy consump-
tion and execution time for the three major memory blocks,
i.e., weight accumulation, activation function, encoding/ pool-
ing, and other hardware blocks, when w = u = 64. According
to the model topology, we defined two groups for the six appli-
cations, (i) Type 1, whose models consist of fully connected
layers (MNIST, ISOLET, and HAR), and (ii) Type 2, whose
models consist of fully connected, pooling, and convolution
layers (CIFAR-10, CIFAR-100 and ImageNet). Figure 13
shows the breakdown for the two application groups. The
results show that the memory block for the weighted accu-

Energy

Energy

Execution

Execution

Type 1

Type 2

Figure 13: Breakdown of energy and execution time.

mulation consumes a dominant portion of the energy and
execution time for the two types, 77.1% and 81.4%, respec-
tively, as the multiplication and addition are the most frequent
operations in the neural networks. In contrast, the two mem-
ory blocks for the activation function and encoding takes less
portion since the AM blocks that support nearest distance
searches can efficiently identify the desired data. The pooling
neurons are used only in Type 2 models to process the out-
puts of convolution layers. This block consumes 3.2% of the
energy and 1.9% of the execution time. The other hardware
blocks, including a broadcast buffer and a memory controller,
MUXs, and address decoders, take about 11.2% and 14.8%
for the energy and execution time, respectively, while the
majority is consumed by the broadcast buffer (69% and 75%
within the sub-portion).

5.4.2 RAPIDNN Area Analysis:

RAPIDNN provides a significant improvement in area
efficiency as compared to prior accelerators because: (i)
RAPIDNN does not need to store all weights but just the
multiplication results of clustered inputs/weights in small
memory. (ii) RAPIDNN works in a digital domain using a
binary representation and does not require ADC/DAC blocks
which take the majority of the area in other in-memory accel-
erators such as ISAAC. Our evaluations show that RAPIDNN
with w = 16 and u = 32 consumes 34% less area as compared
to ISAAC. We have also analyzed how different blocks utilize
the area of the RAPIDNN accelerator. Figure 14 shows that

10

the RNA and memory blocks take 56.7% and 38.2% of the
total area, respectively. The rest of 5.1% area corresponds to
the buffer and controller block. The area of an RNA block is
divided into four parts, (i) a crossbar memory for storing mul-
tiplication results, (ii) an AM block for activation function,
(iii) another AM block for encoding, and (iv) other circuits,
e.g., MUX. This analysis shows that, since the area overhead
to implement the lookup table functionality in NDCAM is
negligible; thus the two AM blocks take a small portion, i.e.,
10.8%, over the entire area of the RNA.

5.5 Comparison with Existing Techniques
The idea of weight sharing was originally proposed by [64,

65], where the retraining phase directly trains the shared
weights by gradient averaging. Our proposal is different in
that it does not use gradient averaging during the retraining,
which allows us to maintain accuracy with fewer iterations
(e.g., 1 epoch for ImageNet). In addition, previous works do
not provide dynamically reconfigurable codebooks, for which
we propose the hierarchical tree structure in Section 3.1. Fi-
nally, existing compression methods only encode the weight
parameters which are stationary during the training. Our
proposal also addresses the dynamic encoding of activation
functions during execution. Note that, without encoding the
activation functions, the idea of computing with lookup ta-
bles cannot be implemented. Another significant advantage
of RAPIDNN over prior PIM-based accelerators is its easy
integration using reliable single-level memristor devices, e.g.,
Intel 3D Xpoint. RAPIDNN exploits crossbar memory ca-
pable of in-memory addition and CAM blocks, which have
been already fabricated by several works from the indus-
try/academia [44, 66].

Here, we compare the energy and performance efficiency
of RAPIDNN with the state-of-the-art DNN accelerators:
DaDianNao [18], ISAAC [30], and PipeLayer [34]. For these
accelerators, we select the best configuration reported in the
papers [18, 30, 34]. DaDianNao works at 600MHz, with
36MB eDRAM size (4 per tile), 16 neural functional units,
and 128-bit global bus. ISAAC design works at 1.2GHz and
uses 8-bits ADC, 1-bit DAC, 128×128 array size where each
memristor cell stores 2 bits. PipeLayer works with the same
configuration as ISAAC, but uses a spike-based approach for
the analog matrix multiplication (λ = 4). Here, we consider
RAPIDNN in two configurations: 1-chip configuration, and 8-
chips that provides the similar area as ISAAC and PipeLayer
accelerators. For each application, we set the lookup table
size to ensure RAPIDNN works with near-zero accuracy loss
(maximum ∆e = 0.5% for ImageNet).

Figure 15 shows the speedup and energy efficiency im-
provement of different accelerators normalized to the GPU-
based implementation. Our evaluation shows that at a similar
level of accuracy, RAPIDNN using 1-chip can achieve 24.3×,
5.6× and 1.5× speedup and 40.3×, 13.4× and 49.6× energy
efficiency improvement as compared to DaDianNao, ISAAC,
and PipeLayer accelerators respectively, by hiding the data
movement completely and significantly decreasing the NN
computation cost. RAPIDNN using 8-chips can further im-
prove the computation speedup by increasing the number of
RNA blocks. Our evaluation shows that 8-chips provides
48.1×, 10.9× speedup and 68.4×, 49.6× energy efficiency
improvement as compared to ISAAC and PipeLayer while
providing a similar chip area and classification accuracy.

In terms of computation efficiency, RAPIDNN can provide

Others: MUX,etc. 1.2%

0

Crossbar

Memory

87.8%
Encoding 5.4%

Activation Function 5.4%

RNA

20 40 60 80 100
RAPIDNN Area (%)

Figure 14: RAPIDNN area breakdown.

Figure 15: RAPIDNN Efficiency vs. PIM Accelerators.

1,904.6 GOP/s/mm2 which is higher then ISAAC (479.0
GOPS/s/mm2) and PipeLayer (1,485.1 GOPS/s/mm2). The
RAPIDNN efficiency comes from its higher density which
enables more number of computations happen in the same
memory area. For example, ISAAC uses large ADC and
DAC blocks which take a large portion of the memory area.
In addition, Pipelayer still requires to generate spike which
results in lower computation efficiency. RAPIDNN also can
provide 839.1 GOP/s/W power efficiency which is higher
than both ISAAC (380.7 GOPS/s/W) and PipeLayer (142.9
GOPS/s/W). RAPIDNN removes the necessity of the costly
internal data movement between the RAPIDNN blocks by us-
ing the same memory block for both storage and computing.

We also compare RAPIDNN efficiency with two state-
of-the-art digital ASIC accelerators, Eyeriss [67] and Sna-
PEA [68], based on the results provided in their original
papers. Figure 16 shows the performance speedup and en-
ergy efficiency improvement of differen designs. For Eyeriss
and SanPEA, we select default parameters that ensure maxi-
mum efficiency. The results are normalized to Eyeriss when
all designs are providing the same chip area. Our evalua-
tion shows that RAPIDNN provides on average 4.8× and
28.2× (2.3× and 14.3×) speedup and energy efficiency, as
compared to Eyeriss (SnaPEA), respectively. In terms of
efficiency, RAPIDNN significantly improves efficiency by
simplifying each single operation (e.g., multiplication mod-
eled with a single memory access) and eliminating internal
data movements. In addition, RAPIDNN provides higher
computation efficiency by enabling a larger amount of com-
putations with the same chip area.

5.6 RAPIDNN Scalability:
In our current approach, each neuron has its own hard-

ware RNA block. In a resource-constrained setting, however,
such extreme parallelism might not be feasible due to phys-
ical hardware limitations. We observe that RAPIDNN can
address this issue by sharing a single RNA block across multi-

11

AlexNet

VGGNet

GoogleNet

ResNet

S
p

e
e
d

u
p

10
0

10
1

AlexNet

VGGNet

GoogleNet

ResNet

E
n

e
rg

y
 E

ff
ic

ie
n

c
y

10
0

10
1

Figure 16: RAPIDNN Efficiency vs. ASIC accelerators.

Table 4: RAPIDNN quality loss and computation effi-
ciency using RNA sharing.

RNA Sharing Codebooks 0% 5% 10% 15% 20% 25% 30%

AlexNet 64 0.1% 0.1% 0.2% 0.4% 0.6% 0.9% 1.1%
VGGNet 64 0.3% 0.3% 0.3% 0.5% 0.7% 1.1% 1.5%

GoogLeNet 64 0.5% 0.5% 0.5% 0.7% 1.0% 1.5% 1.9%
ResNet 128 0.5% 0.5% 0.7% 0.8% 1.4% 1.8% 2.4%

GOPS/s/mm2 1,905 2,004 2,073 2,195 2,335 2,483 2,661

ple output neurons. Particularly, multiple output neurons of a
fully connected layer have lookup tables with the exact same
entries; therefore, less RNA blocks can be reused to compute
the output of all neurons of the same layer. In convolution
layers, multiple neurons of a single output channel have the
same lookup table. Table 4 lists the impact of the RNA block
sharing on the quality loss of different applications. The
loss is reported as compared to networks runnig on exact
GPU. The results are reported when 0% to 30% of each layer
neurons are sharing the same RNA block. Our evaluation
shows that RAPIDNN provides very minor quality loss even
when sharing up to 10% of neurons. Further increasing the
number of shared blocks has negative impact on the accuracy.
For example, sharing 20% and 30% of neurons, RAPIDNN
provides up to 1.4% and 2.4% quality loss over all tested
applications. Table 4 lists the computation efficiency during
different RNA sharing. In fact, weight sharing enables more
amount of computation to be performed in the same chip area.
For example, neuron sharing improves RAPIDNN computa-
tion efficiency by 1.14× and 1.29×, while ensuring less than
1% and 2% loss in classification accuracy.

6. RELATED WORK
Modern neural network algorithms are executed on diverse

types of processors such as GPU [69, 70], FPGAs [10–13]
and ASIC chips [15, 17, 70–72]. Prior works attempt to fully
utilize existing cores to accelerate neural networks. Several
prior works showed that hardware-based accelerations could
further improve the efficiency of neural networks [14, 17–
19, 73]. However, the main computation still relies on CMOS-
based cores, thus suffering from the data movement and lack
of parallelism [26, 74, 75].

To address data movement issue, prior works acceler-
ate neural network by enabling analog-based PIM opera-
tions [34, 76–78]. Work in[79, 80] designed NVM-based
Boltzmann machine capable of solving a broad class deep
learning and optimization problems. Work in [29, 30] used
ReRAM-based crossbar memory to perform matrix multi-
plication in memory and accordingly designed architecture
to design PIM-based accelerator for CNN inference. Work
in [81] extended the analog-based PIM to support floating
point operations. Work in [82] generalized the idea of analog-
PIM to accelerate general applications by offloading the PIM-
compatible operations. However, all these approaches have
potential design issues: first, their designs require to use
ADC/DAC blocks, which dominate the chip area/power [30].

Second, they use multi-level memristor devices that are not
sufficiently reliable for commercialization unlike commonly-
used single-level NVMs, e.g., Intel 3D Xpoint [32]. In con-
trast, in this paper, we design RAPIDNN, a fully digital
PIM-based DNN accelerator based on single-level memristor
devices. RAPIDNN removes the necessity of using costly
analog/mixed-signal blocks by performing all DNN computa-
tions in a digital way, thus providing higher throughput/area.

In digital domain, work in [83] proposed a neural cache
architecture which re-purposes caches for parallel in-memory
computing. Work in [84] modified DRAM architecture to ac-
celerate DNN inference by supporting matrix multiplication
in memory. In contrast, RAPIDNN works on a storage-class
memory that can fit the big data. In addition, RAPIDNN
neuron-to-memory transformation removes the majority of
the multiplications involve in DNN and performs non-destructive
bitwise operation inside non-volatile memory block without
using any sense amplifier.

RAPIDNN has inspired by memoization and computa-
tional reuse techniques which improve the efficiency of gen-
eral computing tasks [19, 85–89]. For example, work in [19]
utilized computational reuse for computations of convolution
windows. Work in [85] proposed a technique, called ‘trained
ternary quantization,’ which replaces multiplies with a table
lookup indexed by activation. However, the search opera-
tion of the lookup table takes high energy consumption. In
contrast, RAPIDNN does not use the search operation for
the lookup operations by using encoded values. In addition,
RAPIDNN composer significantly reduces the memory size
by exploiting the clustering algorithm to build codebooks,
enabling efficient and dense computation. Work in [90] used
lookup tables to model the DNN multiplications based on a
weight/input quantization method. The work has two major
drawbacks. First, the quantization method typically results
in high loss of the classification accuracy, e.g., 3.3% loss
in top-1 accuracy in their work as compared to using 32-bit
representation. Second, the architecture still requires to pay
the cost of input quantization at runtime that slows down
the network computation. In this work, we addressed both
issues: (i) RAPIDNN offers higher accuracy by utilizing the
clustering method to find representative input/weight values,
and (ii) the lookup table search operation identifies target
values written in the codebook without any explicit step for
the input quantization, resulting in the higher efficiency.

7. CONCLUSION
In this paper, we propose RAPIDNN, a fully digital and

scalable DNN accelerator. RAPIDNN framework approxi-
mately models all fundamental DNN operations using cross-
bar memory and associative memory capable of searching
nearest distance values. We show that the reinterpreted model
retains sufficient accuracy of inference quality, and enables
the digital-based memory-based computations. Our evalu-
ations show that RAPIDNN achieves 68.4×, 49.5× energy
efficiency and 48.1×, 10.9× speedup as compared to ISAAC
and PipeLayer while ensuring less than 0.5% quality loss.

Acknowledgement

This work was supported in part by CRISP, one of six centers
in JUMP, an SRC program sponsored by DARPA, in part
by SRC-Global Research Collaboration grant, and also NSF
grants #1527034, #1730158, #1826967, and #1911095.

12

References
[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”

Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.
[2] M. Imani, Y. Kim, S. Riazi, J. Messerly, P. Liu, F. Koushanfar, and

T. Rosing, “A framework for collaborative learning in secure high-
dimensional space,” in 2019 IEEE 12th International Conference on
Cloud Computing (CLOUD), pp. 435–446, IEEE, 2019.

[3] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and transferring
mid-level image representations using convolutional neural networks,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1717–1724, 2014.

[4] Y. LeCun, K. Kavukcuoglu, C. Farabet, et al., “Convolutional networks
and applications in vision.,” in ISCAS, pp. 253–256, 2010.

[5] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks
for human action recognition,” IEEE transactions on pattern analysis
and machine intelligence, vol. 35, no. 1, pp. 221–231, 2013.

[6] C. Clark and A. Storkey, “Teaching deep convolutional neural networks
to play go,” arXiv preprint arXiv:1412.3409, 2014.

[7] M. S. Razlighi, M. Imani, F. Koushanfar, and T. Rosing, “Looknn:
Neural network with no multiplication,” in 2017 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pp. 1775–1780,
IEEE, 2017.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in Advances in neural
information processing systems, pp. 1097–1105, 2012.

[9] M. Imani, J. Messerly, F. Wu, W. Pi, and T. Rosing, “A binary learning
framework for hyperdimensional computing,” in 2019 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), pp. 126–131,
IEEE, 2019.

[10] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in ICML, pp. 1737–1746,
2015.

[11] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao,
A. Mishra, and H. Esmaeilzadeh, “From high-level deep neural models
to fpgas,” in Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM
International Symposium on, pp. 1–12, IEEE, 2016.

[12] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pp. 161–170, ACM, 2015.

[13] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “Optimizing loop opera-
tion and dataflow in fpga acceleration of deep convolutional neural
networks,” in Proceedings of the 2017 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, pp. 45–54, ACM, 2017.

[14] M. Nazemi, G. Pasandi, and M. Pedram, “Nullanet: Training deep
neural networks for reduced-memory-access inference,” arXiv preprint
arXiv:1807.08716, 2018.

[15] T. Luo, S. Liu, L. Li, Y. Wang, S. Zhang, T. Chen, Z. Xu, O. Temam,
and Y. Chen, “Dadiannao: A neural network supercomputer,” IEEE
Transactions on Computers, vol. 66, no. 1, pp. 73–88, 2017.

[16] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee,
J. M. Hernández-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: En-
abling low-power, highly-accurate deep neural network accelerators,”
in Proceedings of the 43rd International Symposium on Computer
Architecture, pp. 267–278, IEEE Press, 2016.

[17] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in ACM Sigplan Notices, vol. 49, pp. 269–284,
ACM, 2014.

[18] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun, et al., “Dadiannao: A machine-learning supercomputer,” in
Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 609–622, IEEE Computer Society, 2014.

[19] K. Hegde, J. Yu, R. Agrawal, M. Yan, M. Pellauer, and C. W. Fletcher,
“Ucnn: Exploiting computational reuse in deep neural networks via
weight repetition,” arXiv preprint arXiv:1804.06508, 2018.

[20] M. R. Jokar et al., “Direct-modulated optical networks for interposer
systems,” in NOCS, p. 10, ACM, 2019.

[21] M. Gokhale, B. Holmes, and K. Iobst, “Processing in memory: The
terasys massively parallel pim array,” Computer, vol. 28, no. 4, pp. 23–
31, 1995.

[22] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “Pim-enabled instructions: A
low-overhead, locality-aware processing-in-memory architecture,” in
Computer Architecture (ISCA), 2015 ACM/IEEE 42nd Annual Interna-
tional Symposium on, pp. 336–348, IEEE, 2015.

[23] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” in Computer

Architecture (ISCA), 2015 ACM/IEEE 42nd Annual International Sym-
posium on, pp. 105–117, IEEE, 2015.

[24] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A
processing-in-memory architecture for bulk bitwise operations in
emerging non-volatile memories,” in Design Automation Conference
(DAC), 2016 53nd ACM/EDAC/IEEE, pp. 1–6, IEEE, 2016.

[25] A. Boroumand, S. Ghose, B. Lucia, K. Hsieh, K. Malladi, H. Zheng,
and O. Mutlu, “Lazypim: An efficient cache coherence mechanism for
processing-in-memory,” IEEE Computer Architecture Letters, 2017.

[26] M. Imani, A. Rahimi, D. Kong, T. Rosing, and J. M. Rabaey, “Explor-
ing hyperdimensional associative memory,” in 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA),
pp. 445–456, IEEE, 2017.

[27] M. Zhou et al., “Gram: graph processing in a reram-based compu-
tational memory,” in Proceedings of the 24th Asia and South Pacific
Design Automation Conference, pp. 591–596, ACM, 2019.

[28] M. Zhou et al., “Gas: A heterogeneous memory architecture for graph
processing,” in Proceedings of the International Symposium on Low
Power Electronics and Design, p. 27, ACM, 2018.

[29] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory,” in Proceedings of the 43rd
International Symposium on Computer Architecture, pp. 27–39, IEEE
Press, 2016.

[30] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stra-
chan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars,”
in Proceedings of the 43rd International Symposium on Computer
Architecture, pp. 14–26, IEEE Press, 2016.

[31] T. Serrano-Gotarredona, T. Masquelier, T. Prodromakis, G. Indiveri,
and B. Linares-Barranco, “Stdp and stdp variations with memristors
for spiking neuromorphic learning systems,” Frontiers in neuroscience,
vol. 7, p. 2, 2013.

[32] “Intel and micron produce breakthrough memory technol-
ogy..” http://newsroom.intel.com/community/intel_
newsroom/blog/2015/07/28/intel-and-micron-produce-
breakthrough-memory-technology.

[33] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low preci-
sion weights and activations,” arXiv preprint arXiv:1609.07061, 2016.

[34] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-
based accelerator for deep learning,” in High Performance Computer
Architecture (HPCA), 2017 IEEE International Symposium on, pp. 541–
552, IEEE, 2017.

[35] L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE
transactions on pattern analysis and machine intelligence, vol. 12,
no. 10, pp. 993–1001, 1990.

[36] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th international confer-
ence on machine learning (ICML-10), pp. 807–814, 2010.

[37] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks.,” in Aistats, vol. 9, pp. 249–256, 2010.

[38] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on
information theory, vol. 28, no. 2, pp. 129–137, 1982.

[39] M. Imani, S. Gupta, and T. Rosing, “Ultra-efficient processing in-
memory for data intensive applications,” in Proceedings of the 54th
Annual Design Automation Conference 2017, p. 6, ACM, 2017.

[40] S. Gupta et al., “Felix: Fast and energy-efficient logic in memory,” in
2018 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp. 1–7, IEEE, 2018.

[41] N. Talati, S. Gupta, P. Mane, and S. Kvatinsky, “Logic design within
memristive memories using memristor-aided logic (magic),” IEEE
Transactions on Nanotechnology, vol. 15, no. 4, pp. 635–650, 2016.

[42] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Fried-
man, A. Kolodny, and U. C. Weiser, “MagicâĂŤmemristor-aided logic,”
IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61,
no. 11, pp. 895–899, 2014.

[43] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C.
Weiser, “Memristor-based material implication (IMPLY) logic: design
principles and methodologies,” TVLSI, vol. 22, no. 10.

[44] B. C. Jang, Y. Nam, B. J. Koo, J. Choi, S. G. Im, S.-H. K. Park,
and S.-Y. Choi, “Memristive logic-in-memory integrated circuits for
energy-efficient flexible electronics,” Advanced Functional Materials,
vol. 28, no. 2, 2018.

[45] S. Kvatinsky, M. Ramadan, E. G. Friedman, and A. Kolodny, “Vteam:
A general model for voltage-controlled memristors,” IEEE Transac-
tions on Circuits and Systems II: Express Briefs, vol. 62, no. 8, pp. 786–

13

790, 2015.
[46] Q. Guo, X. Guo, Y. Bai, R. Patel, E. Ipek, and E. G. Friedman, “Re-

sistive ternary content addressable memory systems for data-intensive
computing,” IEEE Micro, vol. 35, no. 5, pp. 62–71, 2015.

[47] M. Imani, Y. Kim, A. Rahimi, and T. Rosing, “Acam: Approximate
computing based on adaptive associative memory with online learning,”
in Proceedings of the 2016 International Symposium on Low Power
Electronics and Design, pp. 162–167, ACM, 2016.

[48] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 770–778, 2016.

[49] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al.,
“Scikit-learn: Machine learning in python,” Journal of Machine Learn-
ing Research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[50] F. Chollet, “keras.” https://github.com/fchollet/keras, 2015.
[51] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, et al., “Tensorflow: Large-
scale machine learning on heterogeneous distributed systems,” arXiv
preprint arXiv:1603.04467, 2016.

[52] X. Dong, C. Xu, N. Jouppi, and Y. Xie, “Nvsim: A circuit-level perfor-
mance, energy, and area model for emerging non-volatile memory,” in
Emerging Memory Technologies, pp. 15–50, Springer, 2014.

[53] J. Li, R. Montoye, M. Ishii, K. Stawiasz, T. Nishida, K. Maloney,
G. Ditlow, S. Lewis, T. Maffitt, R. Jordan, et al., “1mb 0.41 µm 2 2t-2r
cell nonvolatile tcam with two-bit encoding and clocked self-referenced
sensing,” in 2013 Symposium on VLSI Technology, pp. C104–C105,
IEEE, 2013.

[54] S. Kvatinsky, M. Ramadan, E. G. Friedman, and A. Kolodny, “Vteam:
A general model for voltage-controlled memristors,” IEEE Transac-
tions on Circuits and Systems II: Express Briefs, vol. 62, no. 8, pp. 786–
790, 2015.

[55] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

[56] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-
han, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolu-
tions,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1–9, 2015.

[57] Y. LeCun, C. Cortes, and C. J. Burges, “The mnist database of hand-
written digits,” 1998.

[58] “Uci machine learning repository.” http://archive.ics.uci.
edu/ml/datasets/ISOLET.

[59] “Uci machine learning repository.” https://archive.ics.uci.
edu/ml/datasets/Daily+and+Sports+Activities.

[60] “The cifar dataset.” https://www.cs.toronto.edu/~kriz/
cifar.html.

[61] “Uci machine learning repository.” http://image-net.org/
challenges/LSVRC/2012/.

[62] I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton, “On the im-
portance of initialization and momentum in deep learning.,” ICML (3),
vol. 28, pp. 1139–1147, 2013.

[63] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural networks
from overfitting.,” Journal of Machine Learning Research, vol. 15,
no. 1, pp. 1929–1958, 2014.

[64] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[65] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen, “Com-
pressing neural networks with the hashing trick,” in International
Conference on Machine Learning, pp. 2285–2294, 2015.

[66] J. Li, R. K. Montoye, M. Ishii, and L. Chang, “1 mb 0.41 µm2 2t-2r cell
nonvolatile tcam with two-bit encoding and clocked self-referenced
sensing,” IEEE Journal of Solid-State Circuits, vol. 49, no. 4, pp. 896–
907, 2014.

[67] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127–
138, 2016.

[68] V. Akhlaghi, A. Yazdanbakhsh, K. Samadi, R. K. Gupta, and H. Es-
maeilzadeh, “Snapea: Predictive early activation for reducing computa-
tion in deep convolutional neural networks,” in 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture (ISCA),
pp. 662–673, IEEE, 2018.

[69] M. A. Bhuiyan, V. K. Pallipuram, M. C. Smith, T. Taha, and R. Jalasu-
tram, “Acceleration of spiking neural networks in emerging multi-core

and gpu architectures,” in Parallel & Distributed Processing, Work-
shops and Phd Forum (IPDPSW), 2010 IEEE International Symposium
on, pp. 1–8, IEEE, 2010.

[70] D. C. Ciresan, U. Meier, J. Masci, L. Maria Gambardella, and
J. Schmidhuber, “Flexible, high performance convolutional neural
networks for image classification,” in IJCAI Proceedings-International
Joint Conference on Artificial Intelligence, vol. 22, p. 1237, Barcelona,
Spain, 2011.

[71] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J.
Dally, “Eie: efficient inference engine on compressed deep neural
network,” in Computer Architecture (ISCA), 2016 ACM/IEEE 43rd
Annual International Symposium on, pp. 243–254, IEEE, 2016.

[72] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127–
138, 2017.

[73] V. Aklaghi, A. Yazdanbakhsh, K. Samadi, H. Esmaeilzadeh, and
R. Gupta, “Snapea: Predictive early activation for reducing computa-
tion in deep convolutional neural networks,” ISCA, 2018.

[74] M. R. Jokar et al., “Cooperative nv-numa: prolonging non-volatile
memory lifetime through bandwidth sharing,” in Proceedings of the
International Symposium on Memory Systems, pp. 67–78, ACM, 2018.

[75] S. Gupta et al., “Nnpim: A processing in-memory architecture for
neural network acceleration,” IEEE Transactions on Computers, 2019.

[76] M. Cheng, L. Xia, Z. Zhu, Y. Cai, Y. Xie, Y. Wang, and H. Yang, “Time:
A training-in-memory architecture for memristor-based deep neural
networks,” in Proceedings of the 54th Annual Design Automation
Conference 2017, p. 26, ACM, 2017.

[77] Y. Cai, T. Tang, L. Xia, M. Cheng, Z. Zhu, Y. Wang, and H. Yang,
“Training low bitwidth convolutional neural network on rram,” in Pro-
ceedings of the 23rd Asia and South Pacific Design Automation Con-
ference, pp. 117–122, IEEE Press, 2018.

[78] Y. Cai, Y. Lin, L. Xia, X. Chen, S. Han, Y. Wang, and H. Yang,
“Long live time: improving lifetime for training-in-memory engines by
structured gradient sparsification,” in Proceedings of the 55th Annual
Design Automation Conference, p. 107, ACM, 2018.

[79] M. N. Bojnordi and E. Ipek, “Memristive boltzmann machine: A
hardware accelerator for combinatorial optimization and deep learning,”
in High Performance Computer Architecture (HPCA), 2016 IEEE
International Symposium on, pp. 1–13, IEEE, 2016.

[80] M. N. Bojnordi and E. Ipek, “The memristive boltzmann machines,”
IEEE Micro, vol. 37, no. 3, pp. 22–29, 2017.

[81] B. Feinberg, U. K. R. Vengalam, N. Whitehair, S. Wang, and E. Ipek,
“Enabling scientific computing on memristive accelerators,” in 2018
ACM/IEEE 45th Annual International Symposium on Computer Archi-
tecture (ISCA), pp. 367–382, IEEE, 2018.

[82] D. Fujiki, S. Mahlke, and R. Das, “In-memory data parallel processor,”
in Proceedings of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pp. 1–14, ACM, 2018.

[83] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester,
D. Blaauw, and R. Das, “Neural cache: Bit-serial in-cache acceleration
of deep neural networks,” arXiv preprint arXiv:1805.03718, 2018.

[84] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “Drisa:
A dram-based reconfigurable in-situ accelerator,” in Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitec-
ture, pp. 288–301, ACM, 2017.

[85] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization,”
arXiv preprint arXiv:1612.01064, 2016.

[86] C. Alvarez, J. Corbal, and M. Valero, “Fuzzy memoization for floating-
point multimedia applications,” IEEE Transactions on Computers,
vol. 54, no. 7, pp. 922–927, 2005.

[87] A. T. Da Costa, F. M. França, et al., “The dynamic trace memoization
reuse technique,” in Proceedings 2000 International Conference on Par-
allel Architectures and Compilation Techniques (Cat. No. PR00622),
pp. 92–99, IEEE, 2000.

[88] M. Imani, S. Patil, and T. Š. Rosing, “Approximate computing using
multiple-access single-charge associative memory,” IEEE Transactions
on Emerging Topics in Computing, vol. 6, no. 3, pp. 305–316, 2016.

[89] W. Shi, H.-H. S. Lee, M. Ghosh, C. Lu, and A. Boldyreva, “High
efficiency counter mode security architecture via prediction and pre-
computation,” in ACM SIGARCH Computer Architecture News, vol. 33,
pp. 14–24, IEEE Computer Society, 2005.

[90] D. Shin, J. Lee, J. Lee, and H.-J. Yoo, “14.2 dnpu: An 8.1 tops/w recon-
figurable cnn-rnn processor for general-purpose deep neural networks,”
in 2017 IEEE International Solid-State Circuits Conference (ISSCC),
pp. 240–241, IEEE, 2017.

14

View publication statsView publication stats

