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Deep Learning-Aided Multicarrier Systems
Thien Van Luong, Youngwook Ko, Senior Member, IEEE, Michail Matthaiou, Senior Member, IEEE,

Ngo Anh Vien, Minh-Tuan Le and Vu-Duc Ngo, Member, IEEE

Abstract—This paper proposes a deep learning (DL)-aided
multicarrier (MC) system operating on fading channels, where
both modulation and demodulation blocks are modeled by deep
neural networks (DNNs), regarded as the encoder and decoder
of an autoencoder (AE) architecture, respectively. Unlike existing
AE-based systems, which incorporate domain knowledge of a
channel equalizer to suppress the effects of wireless channels, the
proposed scheme, termed as MC-AE, directly feeds the decoder
with the channel state information and received signal, which are
then processed in a fully data-driven manner. This new approach
enables MC-AE to jointly learn the encoder and decoder to
optimize the diversity and coding gains over fading channels. In
particular, the block error rate of MC-AE is analyzed to show its
higher performance gains than existing hand-crafted baselines,
such as various recent index modulation-based MC schemes. We
then extend MC-AE to multiuser scenarios, wherein the resultant
system is termed as MU-MC-AE. Accordingly, two novel DNN
structures for uplink and downlink MU-MC-AE transmissions
are proposed, along with a novel cost function that ensures
a fast training convergence and fairness among users. Finally,
simulation results are provided to show the superiority of the
proposed DL-based schemes over current baselines, in terms of
both the error performance and receiver complexity.

Index Terms—Autoencoder, deep learning, deep neural net-
work, DNN, fading channels, MC-AE, multicarrier systems.

I. INTRODUCTION

Multicarrier modulation (MCM) has been widely adopted

in various wireless systems, in which orthogonal frequency

division multiplexing (OFDM) [1] is the most common MC

scheme that has been included in a wide range of wireless

standards, such as IEEE 802.11, IEEE 802.16, 3GPP-LTE

and LTE-Advanced. Particularly, MC systems divide the trans-

mitted data stream into many substreams which are sent via
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multiple parallel narrowband subchannels in order to make

them experience relatively flat fading. Hence, the adverse

effects of multipath fading, such as intersymbol interference

(ISI) and delay spreading, can be effectively combated with

simple receivers, which makes OFDM-based MCM a key

technique for current and next-generation wireless networks.

In recent years, a range of advanced MC schemes based on

OFDM have been explored, aiming to enhance the reliability

and spectral or energy efficiency. For example, in [2], OFDM

with index modulation (OFDM-IM) was proposed, which

activates only a subset of sub-carriers to convey data bits via

active indices in addition to the M -ary symbols, leading to

higher reliability and energy efficiency than classical OFDM.

The error performance of OFDM-IM was investigated in [3],

to show that its diversity order is limited to one as in classical

OFDM. Various IM-based schemes with enhanced transmit

diversity have also been proposed, such as the coordinate

interleaved OFDM-IM (CI-OFDM-IM) [4] and a repetition

code [5]. Especially, in [6], a spreading code was applied

to OFDM-IM to maximize the diversity gain, wherein the

resulting scheme is termed as spread OFDM-IM (S-OFDM-

IM). Prior to this, the spread OFDM (S-OFDM) which uses

the rotated Walsh-Hadamard spreading matrix was introduced

in [7]. It is shown in [6] that S-OFDM-IM yields better

performance than S-OFDM when low-complexity detection

schemes are employed, such as minimum mean squared error

(MMSE)-based detectors. On a similar note, to improve the

spectral efficiency (SE), the dual model OFDM (DM-OFDM)

that employs multiple distinguishable signal constellations was

proposed in [8]. It is worth noting that the performance

improvements of the above mentioned schemes come at the

cost of increased receiver complexity. Moreover, they are

all based on hand-crafted designs, thus not guaranteed to

achieve an optimal performance for each specific channel.

These fundamental issues will be addressed by deep learning

(DL) in this work.

A multiuser version of OFDM is known as orthogonal

frequency-division multiple access (OFDMA) [1], in which

each user is assigned different orthogonal sub-carriers. Unlike

OFDMA, multicarrier code-division multiple access (MC-

CDMA) [9] that combines MCM and CDMA to spread

data symbols of multiple users over the same set of sub-

carriers, provides improved diversity compared to OFDMA.

For practical implementations, a wide range of linear detection

schemes are designed for MC-CDMA, such as MMSE, zero-

forcing (ZF) and maximum-ratio combining (MRC). Recently,

MC-CDMA was combined with IM [10] to result in the IM-

MC-CDMA scheme, which exploits the indices of spreading

codes to carry data bits. Yet, due to the limits of orthogonal

resources, it is hard for these orthogonal schemes to support
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massive connectivity in future wireless networks. For these

scenarios, various non-orthogonal multiple access (NOMA)

techniques have been explored, in which sparse code multiple

access (SCMA) [11] appears to be the most promising, par-

ticularly in overloaded transmissions. In SCMA, data bits of

multiple users are mapped to sparse multi-dimensional code-

words, enabling an iterative multiuser detection (MUD) based

on message passing algorithm (MPA) to achieve a near-optimal

performance. Note that these schemes require sophisticated

receivers, which involve either the maximum likelihood (ML)

or iterative MUD to ensure a good performance, otherwise

their low-complexity detectors would severely degrade perfor-

mance. This issue will also be taken into account in our work.

DL [12] has recently been applied to numerous aspects

in the field of communications, in particular the physical

layer issues. For example, deep neural networks (DNNs) were

employed for efficient signal detection of OFDM [13] and

OFDM-IM [14], especially under channel impairments. In

[15], a deep autoencoder (AE) architecture was adopted to

reduce the peak-to-average power ratio (PAPR) of OFDM.

Specifically, a novel concept of an end-to-end AE-based sys-

tem over an additive white Gaussian noise (AWGN) channel

was proposed in [16], where both the transmitter and receiver

are represented by DNNs based on an AE architecture. For fad-

ing channels, this work proposed a radio transformer network

(RTN), based on domain knowledge, to suppress the effects

of fading on the received signal. However, such a model-

driven method that acts as an equalizer does not exploit the

inherent multipath diversity gain of fading channels. In [17],

the AE concept was applied to each independent sub-carrier of

OFDM, hence, the obtained scheme is also unable to provide

any diversity advantage. In [18], the SCMA codewords were

optimized over the AWGN channel, using a DNN-based AE.

To the best of our knowledge, none of existing works has

explored the potential of DL in optimizing the diversity and

coding gains of MC systems over fading channels.

This paper presents the first attempt of applying DL in MC

systems, aiming to address all the issues raised above. Our

main contributions are summarized as follows:

• We propose a single-user MC AE-based (MC-AE) system

operating on fading channels, whose modulation and

demodulation blocks are performed by DNNs based on an

AE architecture. Unlike current AE-based systems [16]–

[18]1, MC-AE directly feeds the decoder with the CSI

and received signal, without any domain knowledge of a

channel equalizer. Such a novel fully data-driven system

can effectively learn the encoder and decoder to maximize

the diversity and coding gains in fading channels.

• The block error rate (BLER) of MC-AE is then analyzed,

which reveals that our DL-based scheme achieves better

performance gains than the existing hand-crafted base-

lines, such as various IM-based MC schemes.

• We then extend MC-AE to multiuser scenarios, coined

as MU-MC-AE, where two novel DNN structures of

1These schemes neither rely on the CSI at the receiver, nor provide
frequency diversity gain in the presence of independent fading channels across
different sub-carriers. A detailed discussion on the novelty of the proposed
MC-AE against the state-of-the-art is provided in Section II.A.
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Fig. 1. Block diagram of the classical MC system.
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Fig. 2. Network structure of MC-AE.

MU-MC-AE are proposed for both uplink and downlink

transmissions. To efficiently train MU-MC-AE, we design

a new loss function which ensures not only a fairness

among users but also fast training convergence.

• Finally, extensive simulations are provided to show

that the proposed DL-based schemes outperform various

hand-crafted baselines, at even lower receiver complexity.

The rest of the paper is organized as follows. Section II

presents the MC-AE system, while its BLER performance is

analyzed in Section III. Uplink and downlink MU-MC-AE

are presented in Section IV. Simulation results are provided in

Section V. Finally, the paper is concluded in Section VI.

Notation: Upper-case bold and lower-case bold letters

present matrices and vectors, respectively; (.)T and ‖.‖ stand

for the transpose operation and the Frobenius norm, respec-

tively. CN
(

0, σ2
)

denotes the complex Gaussian distribution

with zero mean and variance σ2. The element-wise product is

presented by ⊙, while the Little-O and Big-O notations are

denoted by o(.) and O (.), respectively.

II. PROPOSED SINGLE-USER MC-AE SYSTEM

A. MC-AE Structure

The classical MC system is briefly illustrated in Fig. 1.

In particular, an incoming message s is passed through a

modulation block to obtain a transmit data vector x̄ =
[x1, x2, ..., xNc

]
T

, where Nc is the number of sub-carriers.

This vector is then fed to a time-domain OFDM (t-OFDM)

operation, where an inverse fast Fourier transform (IFFT) and

a cyclic prefix are performed and added respectively prior

to being sent to the receiver, through a fading channel and

additive noise. At the receiver, an inverse t-OFDM operation

is first applied to recover the received signal in the frequency

domain y, which is then fed into a demodulation block to

output the estimate ŝ. The modulation schemes can be the M -

ary QAM/PSK modulation or a number of recently emerged

IM techniques [19]. Note that modulation and demodulation

blocks of existing MCM schemes are separately designed and

optimized, and, thus are unable to provide an optimal perfor-

mance with a reasonably low complexity. For this reason, we

intend to exploit DL in order to break the limits of current MC

systems in terms of both reliability and receiver complexity.



3

In particular, the traditional modulation and demodulation

blocks are replaced with DNNs, while the t-OFDM block

remains unchanged. The resulting scheme can be considered as

a multicarrier autoencoder-based (MC-AE) system, where the

transmitter and receiver act as the encoder and decoder of an

AE structure, respectively. The MC-AE structure is detailed in

Fig. 2, where the t-OFDM block is removed for simplicity as

the signal processing performed by DNNs is in the frequency

domain only. Note that similar to the IM-based schemes [3],

we divide Nc sub-carriers into G blocks of N sub-carriers, i.e.,

Nc = NG, and then independently apply the AE structure to

these blocks. Fig. 2 demonstrates the network structure of only

one MC-AE block for simplicity.

As for the encoder of MC-AE, one out of M = 2m possible

incoming messages s ∈ S = {s1, ..., sM} , which can be a

bitstream of m bits, is mapped to an one-hot vector s of the

size M×1, whose entries are all zeros except for a single entry

being one. Next, a linear fully-connected (FC) layer with a

weight matrix W and bias vector b is applied to obtain an 2N -

dimensional vector z = Ws+b. A normalization layer is then

used to constrain the average transmit power per sub-carrier

to be a given constant Es, as follows: v =
√
NEsz/ ‖z‖ ,

where v is the output of this layer. Finally, v is reshaped into

an N × 1 complex-valued vector x. The proposed encoder

can be represented through the function x = fθenc
(s), where

θenc = {W,b} is its parameters.

After being processed by the t-OFDM block, x is sent to the

receiver, first passing through the fading channel h and then

is being impaired by additive noise n. The received signal in

frequency domain is given by

y = h⊙ x+ n, (1)

where h = [h1, ..., hN ]
T

represents the flat Rayleigh fading

channel vector across N sub-carriers with hi ∼ CN (0, 1) and

n denotes the AWGN vector with its entries ni ∼ CN
(

0, σ2
)

,

i = 1, ..., N .2 Thus, the average received signal-to-noise ratio

(SNR) is expressed by γ̄ = Es/σ
2.

For the signal decoding, we assume that the CSI h is

perfectly known at the receiver and considered as the input

of the decoder, along with the received signal y. Particularly,

the complex vectors y and h are transformed into an 4N -

dimensional real vector u = [yR,yI ,hR,hI ]
T

as shown in

Fig. 2, where yR, yI and hR,hI are real and imaginary parts

of y and h, respectively. As seen in Fig. 2, the proposed

decoder has two nonlinear FC layers, in which a hidden

layer with Q nodes uses the rectifier linear unit (Relu) as the

activation function, whilst an output layer of M nodes employs

the softmax activation function [12]. By using the softmax

layer as the output layer, the decoder outputs a probability

vector ŝ = [ŝ1, ..., ŝM ]
T

whose i-th entry is the probability

that the message si was be transmitted. Finally, the estimated

message ŝ is determined according to the largest entry of

2In practice, since OFDM often experiences frequency selective fading with
correlated sub-carriers, we can interleave sub-carriers over G MC-AE blocks
to make the sub-carriers within each block nearly independent in order to
enhance transmit diversity [1].

ŝ. More specifically, denote by θdec = {Wi,bi}i=1,2 the

parameters of the decoder whose output is expressed by

ŝ = fθdec
(y,h) = fθdec

(h⊙ fθenc
(s) + n,h)

= σSoftmax (W2σRelu (W1u+ b1) + b2) , (2)

where σSoftmax and σRelu denote the element-wise softmax

and Relu functions, respectively. Then, the transmitted data is

recovered as follows ŝ = sî, î = argmax ŝi for i = 1, ...,M .3

The proposed MC-AE is very different from the traditional

AE-based schemes, which are based on the RTN [16], [17].4 In

particular, RTN is designed under block fading channels [17],

where the sub-carrier channels remain constant over several

channel uses. Such channel condition ensures RTN to be

constructed based on domain knowledge of a channel equalizer

(e.g., zero forcing), without any knowledge of CSI. Hence,

RTN can be considered as a model-driven and noncoherent

approach. By contrast, the proposed MC-AE is designed for a

time-varying channel condition, where the channel coefficients

change randomly in every channel use. This means that our

approach is not limited to block fading channels as in RTN.

In this context, the proposed scheme processes CSI together

with the received signal in a fully data-driven manner, where

perfect CSI at the receiver is used to harness the frequency

diversity across different sub-carriers, instead of relying on

domain knowledge of a channel equalizer as in RTN.5

When M is very large, i.e., higher data rates, the one-hot

encoding makes the MC-AE model too complicated, hence

unstable and time-consuming in training. To address this

issue, we can use an embedding layer as the input of the

encoder, where the resulting system is termed as Emb-MC-

AE. Particularly, the incoming message s is mapped to a real-

valued embedding vector s of length L, whose entries are

trainable parameters, which are updated during the training.

The remaining layers of the encoder, as well as, the entire

decoder are retained as those in the previous MC-AE.6

B. Training procedure of MC-AE

The MC-AE model is trained offline by a set of random

incoming messages s or its corresponding one-hot vectors s,

while the channel h and noise n are randomly generated and

added to the output of the encoder while training, based on

their statistical models, as described in (1). We adopt the mean-

squared error (MSE) loss function for training MC-AE as

L (θ) =
1

T

T
∑

i=1

‖si − ŝi‖2 , (3)

3The numbers of hidden layers needed for the encoder and decoder of
MC-AE have been minimized to reduce the complexity as we observed via
experiments that further increasing this number does not improve performance.

4RTN was proposed for time-domain systems in [16]. It was then extended
to frequency-domain systems in [17], which is more relevant to our work.

5The use of CSI in MC-AE is reasonable as the recent multicarrier schemes
[2]–[8] also require knowledge of CSI at the receiver for reliable signal
detection. Note that this is a very common consideration in the context of
coherent communications. Nevertheless, an explicit CSI estimation is deemed
as a penalty for diversity enhancement of MC-AE compared to the existing
AE schemes with RTN [17].

6For example, in Fig. 7(b) in Section V, where M = 1024, N = 4, and
Q = 256, using one-hot encoding, the encoder of MC-AE has MQ+Q =
262400 trainable parameters, while that of Emb-MC-AE with L = 16 in the
embedding layer is much lower with LQ+Q = 4352 trainable parameters.
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TABLE I
BLER COMPARISON BETWEEN MSE AND CE LOSSES

SNR
(N,M) = (4, 32) (N,M) = (4, 64)
MSE CE MSE CE

0 dB 0.36104 0.36344 0.43242 0.43241

5 dB 0.07756 0.07615 0.10052 0.10076

10 dB 0.00569 0.00568 0.0083 0.0083

15 dB 0.00024 0.00032 0.0005 0.00052

20 dB 2e-05 3e-05 8.75e-05 0.0001

where θ = {θdec, θenc} denotes the overall MC-AE model

parameters, ŝi is the prediction of si and T is the training

batch size. Based on (3), θ is updated for each batch of training

data, using the stochastic gradient descent (SGD) method as

follows:

θ := θ − η∇L (θ) , (4)

where η stands for the learning rate. For improved training,

the adaptive moment estimation (Adam) optimizer [20] (an

advanced SGD-based method) and the Xavier initialization

[21] are employed as they are are widely available in a number

of off-the-shelf DL libraries such as Tensorflow [22].7

It is worth noting that we also considered the cross-entropy

(CE) loss in our experiments and found that it yields slightly

worse performance than MSE at high SNRs, while at low and

medium SNRs, both losses have similar performance. This

is shown in Table I, where we compare the block error rate

(BLER) of MC-AE achieved by the two losses. The MSE loss

is also a reasonable choice for minimizing the BLER of our

scheme as will be analyzed in Section III. Interestingly, if an

outer channel code and bit-metric decoder are used, we can

use the total binary cross-entropy as the loss function for the

bit-level optimization to further improve the bit error rate [23].

As for Emb-MC-AE, the MSE loss is not applicable since

s and ŝ have different lengths. Instead, the sparse categorical

cross-entropy will be used [22], which takes the true label as

a single integer that is the index of the incoming message as

follows: L (θ) = − 1
T

∑T
i=1 log (ŝi) , where i is the true label.

Since the system may operate at different noise levels that

are represented by the average SNR γ̄, it is not efficient to

train the model multiple times with different SNRs. Instead,

we deliberately choose an appropriate training SNR γ̄tr such

that the model trained by this SNR still works well at any

other SNR levels of interest. Note that γ̄tr has a huge impact on

the training performance and is selected based on experiments

for certain system parameters (N,M) and channel model. For

this, details of selecting γ̄tr as well as other training parameters,

such as batch size, learning rate, epoch and training/testing

data size will be provided for each experiment in Section V.

III. PERFORMANCE ANALYSIS OF MC-AE

The block error rate of MC-AE is analyzed by investigating

the transmit diversity and coding gains and comparing them

with that of baseline schemes. Herein, a block error occurs

7The Xavier initialization [21] is used to achieve better local optimum,
while the Adam optimizer [20] is used for faster convergence than SGD [20].
Here, except for the learning rate, the Adam optimizer with default parameters
on Tensorflow is used, such as β1 = 0.9 and β2 = 0.999.

when a message s transmitted by a block of N sub-carriers

is incorrectly decoded at the receiver. Accordingly, the BLER

can be approximated, in terms of the diversity gain Gd and

coding gain Gc, at high SNRs, as follows [24]:

Pe = (Gcγ̄)
−Gd + o

(

γ̄−Gd
)

, (5)

where Pe denotes the BLER and γ̄ is the average SNR.

We first estimate the pairwise error probability (PEP) that

the transmitted message s is erroneously detected into another

message ŝ 6= s for given channel h as follows:

P (s → ŝ|h) = Q





√

‖h⊙ (x− x̂)‖2
2σ2



 , (6)

where x = [x1, ..., xN ]
T

and x̂ = [x̂1, ..., x̂N ]
T

are the outputs

of the encoder corresponding to inputs s and ŝ, and Q (.)
is the Gaussian Q-function [24]. Using βi = |xi − x̂i|2 for

i = 1, ..., N , the PEP in (6) can be rewritten as

P (s → ŝ|h) = Q





√

∑N
i=1 βi |hi|2
2σ2



 . (7)

Following some derivation steps borrowed from [6], the un-

conditional PEP of MC-AE is obtained from (7) as

P (s → ŝ) =
1

π

∫ π/2

0

N
∏

i=1

(

sin2 φ

sin2 φ+ βiγ̄
4

)

dφ, (8)

and its approximation is given by

P (s → ŝ) ≈ (γ̄/4)
−|Ks,ŝ|

2
∏

i∈Ks,ŝ
βi

, (9)

where Ks,ŝ = {i|βi 6= 0} and |Ks,ŝ| is its cardinality. Herein,

without loss of generality, we assume that Es = 1, i.e., unit

average transmit power per sub-carrier to attain γ̄ = 1/σ2.

Using (9), the BLER of MC-AE is approximated based on

the total probability theory as follows [6]:

Pe ≈
1

2M

∑

s∈S

∑

ŝ 6=s

(γ̄/4)
−|Ks,ŝ|

∏

i∈Ks,ŝ
βi

, (10)

where S = {s1, ..., sM} is the set of all M possible messages.

As a result, the diversity gain achieved by MC-AE is given by

Gd = min
ŝ 6=s∈S

|Ks,ŝ| . (11)

Hence, we can represent Pe in (10) according to (5) as follows:

Pe ≈
1

22Gd+1M

∑

s∈S

∑

ŝ 6=s, |Ks,ŝ|=Gd

γ̄−Gd

∏

i∈Ks,ŝ
βi

+ o
(

γ̄−Gd
)

,

(12)

in order to obtain the coding gain given by

Gc =





1

22Gd+1M

∑

s∈S

∑

ŝ 6=s,|Ks,ŝ|=Gd

1
∏

i∈Ks,ŝ
βi





− 1

Gd

.

(13)

Note that the formula of Gc in (13) differs from that in [6,

Eq. (12)] in the sense that we take into account all PEPs with

|Ks,ŝ| = Gd, while the former is based only on a maximum
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TABLE II
DIVERSITY AND CODING GAINS OF MC-AE AND BASELINES

(N,M)
(2, 4) (4, 16) (4, 64)

Gd Gc Gd Gc Gd Gc

OFDM [1] 1 16 1 8 - -

OFDM-IM [2] 1 64 1 25.6 1 6.4

DM-OFDM [8] - - - - 1 8

CI-OFDM-IM [4] - - 2 7.07 2 2.36

S-OFDM [7] 2 7.54 4 3.09 - -

S-OFDM-IM [6] 2 7.54 4 2.50 4 1.19

Proposed MC-AE 2 8.14 4 3.34 4 1.48

PEP. Hence, our formula is more accurate than that in [6],

which is very important for a fair comparison in the following.

Table II compares the diversity and coding gains achieved

by MC-AE and the state-of-the-art baselines.8 Herein, several

gain values are left empty since the relative schemes do

not work at corresponding (N,M). It is shown that MC-AE

can attain a maximum diversity gain which is N similar to

two spreading MC schemes, i.e., S-OFDM and S-OFDM-IM,

and much higher than that of classical OFDM and IM-based

schemes. In addition, our learning-based scheme achieves

better coding gains than both spreading schemes. These obser-

vations confirm the powerful capability of DL in learning and

optimizing the performance gains of MC systems over fading

channels. By contrast, current hand-crafted schemes are unable

to produce such high performance gains.

In order to gain a deeper insight into where these gains

come from, we demonstrate the learned constellation of MC-

AE with (N,M) = (2, 8) compared with the constellations

of OFDM-IM and S-OFDM-IM in Fig. 3. It is shown that

the constellation points of the benchmarks are overlapped

and this limits their diversity gain, while that of MC-AE are

well-separated to achieve a higher gain. The reason is that

the diversity gain of a PEP in (9) is the number of non-

zeros elements of x − x̂, which intuitively has more zeros

when the constellation is more overlapped. In particular, in

Fig. 3, MC-AE and S-OFDM-IM achieve the same diversity

gain of two, while that of OFDM-IM is only one. More

importantly, the coding gain of MC-AE is 3.68, while that

of S-OFDM-IM is lower with 3.53. More learned constella-

tions of MC-AE and their gain calculation can be found at

https://github.com/ThienVanLuong/multicarrier_autoencoder.

IV. PROPOSED MULTIUSER MC-AE SYSTEM

We extend the proposed MC-AE to multiuser systems for

both uplink and downlink transmissions, termed as MU-MC-

AE. Particularly, two novel DNN structures of uplink and

downlink MU-MC-AE are designed in the presence of fading

8Denote by X = {x1, ...,xM} the set of all M possible transmitted
vectors of MC-AE with xk = fθenc

(sk), where sk is the one-hot vector
corresponding to sk ∈ S for k = 1, ...,M. Note that X can be referred to
as a codebook, where different schemes (including baselines) have different
codebooks which produce different coding and diversity gains. Hence, as long
as the codebook of each scheme is known, it is straightforward to calculate its
performance gains according to (11) and (13). The codebooks of the baselines
can be found in the references listed in Table II, while that of MC-AE with
(M,N) as in Table II are obtained after trained with the training parameters
similar to those given at column “Fig. 8” of Table IV in Section V.

Fig. 3. The constellations of MC-AE with (N,M) = (2, 8) learned over the
Rayleigh channel and the benchmarks, where each marker corresponds to the
complex constellation points of a sub-carrier.
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channels and a new loss function is proposed, aiming at

fairness among users and fast convergence speed of training.

A. Uplink MU-MC-AE

The uplink MU-MC-AE structure is illustrated in Fig. 4,

where J users simultaneously transmit their data to the base

station (BS), using the same N sub-carriers. The encoder

structures of all users are the same as designed in Section

II. Accordingly, the transmitted signal vector in the frequency

domain of user j can be represented by xj = fθj
enc
(sj), where

θjenc is its encoder parameters for j = 1, ..., J. It is assumed

that the transmit powers across N sub-carriers are the same

among users. At the BS, the received signal is given by

y =
J
∑

j=1

hj ⊙ xj + n, (14)

where hj is the channel vector from user j to the BS and n is

the noise vector, whose statistical models are assumed to be

the same as in Section II. We also assume that hj are perfectly

known at the BS, and used as an input to the BS decoder.

Specifically, the real and imaginary parts of complex vectors

y and hj are transformed into a real 2 (J + 1)N -dimensional

vector (denoted by u), which is then fed to the DNN decoder.

This transformation can be represented by the C2R layer as in

Fig. 4. The decoder structure of uplink MU-MC-AE consists of

several FC hidden layers which use the Relu as the activation

function, while the last layer is split into J independent FC

sub-layers, each employing the softmax function to output

the decoded signal of the corresponding user. More precisely,

let Wu and bu denote the weight and bias, respectively, of

the u-th hidden layer of the decoder and let Qu denote the
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corresponding number of hidden nodes, for u = 1, ..., U ,

where U is the number of hidden layers. The output vector at

the u-th hidden layer of the proposed decoder is given by

uu = σRelu (Wuuu−1 + bu) , (15)

where u0 = u and u = 1, ..., U . Denote by W
(j)
U+1 and b

(j)
U+1

the weight and bias of the last sub-layer of user j, then we

can obtain the output at each sub-layer as follows:

ŝj = σSoftmax

(

W
(j)
U+1uU + b

(j)
U+1

)

,

where the dimension of ŝj is M as the previous MC-AE.

Finally, we can easily estimate the transmitted message of user

j based on the largest entry of ŝj .

It is worth noting that the decoder structure parameters, such

as U and Qu are selected based on the MU-MC-AE system

parameters, such as J , N and M in the sense that when these

system parameters get larger, U and Qu also need to be larger

to provide a sufficient model capacity for training.

B. Downlink MU-MC-AE

The proposed downlink MU-MC-AE structure is depicted

in Fig. 5, where the BS simultaneously transmits J different

signals to J users, using the same N sub-carriers. In particular,

the encoder structure at the BS consists of J independent sub-

networks, each of which is similar to the encoder network

of MC-AE in Fig. 2. The encoder at the BS would produce

the frequency-domain vector, which is the summation of the

outputs of J sub-networks, i.e., x =
∑J

j=1 xj , where xj =

fθj
enc
(sj) with θjenc being the model parameters of sub-network

j and sj being the corresponding one-hot encoded vector of

user j. It can be seen from the design of the downlink encoder

that the BS allocates evenly the transmit power for every user.

The received signal of user j is given by

yj = gj ⊙ x+ nj , (16)

where gj and nj are the downlink channel and noise vectors

of user j, respectively, which are assumed to have the same

statistical models as the previous section.

At the receiver side, the decoder structure of each user is

the same as that of MC-AE. Particularly, the complex channel

and received signal vectors gj , yj are first converted into a

real 4N -dimensional input vector of the decoder of user j,

which is denoted by uj . Denote by W
(j)
i and b

(j)
i the weight

and bias of the i-th layer of user j’s decoder for i = 1, 2.

Based on (2), the output of the decoder of user j is given by

ŝj = σSoftmax

(

W
(j)
2 σRelu

(

W
(j)
1 uj + b

(j)
1

)

+ b
(j)
2

)

, (17)

and the transmitted message of user j will be obtained

according to the largest element of ŝj .

It is worth noting from the proposed downlink MU-MC-AE

scheme that although the decoder of each user employs only

one hidden layer as the single-user MC-AE, it still effectively

decodes the desired signal in the presence of the interference

caused by other users. This is achieved by properly training

the model as shown in the following.

C. Training procedure of MU-MC-AE

In order to efficiently deploy MU-MC-AE at both the

uplink and downlink, we need to train the models offline with

data samples including {sj ,hj ,n} and {sj ,gj ,nj} for uplink

and downlink schemes, respectively. Particularly, the one-hot

vectors sj are generated first to create J sets of one-hot labels

for J users, while the channel and noise vectors are randomly

generated and added to the channel layer while training.

Regarding the design of the loss function of MU-MC-AE,

we can simply adopt a generalized MSE function for multiple

users, which is expressed for a single data point as follows:

L1 =

J
∑

j=1

‖sj − ŝj‖2 . (18)

This loss is intuitively able to minimize the difference between

the transmitted sj and its prediction ŝj for every j = 1, ..., J .

Yet, we found that the traditional approach makes the MSE

of each user (denoted by Ej = ‖sj − ŝj‖2) vary substantially

across them. This means that some users may exhibit small

MSE, whilst others exhibit much larger even after training for

a long time. As a result, the objective in (18) is not stable and,

more importantly, often gets stuck to a bad local optimum,

leading to not only a poor overall performance but also a

seriously unfair performance among users. Based on these

observations, we now introduce a novel loss function for MU-

MC-AE, which can address the drawbacks of the traditional

approach.

Let us denote E = 1
J

∑J
j=1 Ej . The proposed loss function

for MU-MC-AE is expressed, per single data point, by

L2 = L1 + λ

J
∑

j=1

(

Ej − E
)2

, (19)

where λ is a loss scaling factor. Note that the second term in

(19) is a constraint which aims to make the MU-MC-AE model

converge faster to a better local optimum than the MSE loss

in (18).9 Furthermore, by minimizing this term, our proposed

loss can ensure fairness among users better than the MSE.

To illustrate these benefits, Fig. 6 compares the convergence

behavior between the two losses. It is interesting that although

9In fact, the additional term in (19) has been found experimentally by trial
and error, and it happens to have a positive effect on the convergence rate and
fairness. Note that the reason for this is not yet clear to us, and therefore, it
is an open question that requires further investigation.



7

0 50 100 150 200 250 300
Epoch

0.0

0.1

0.2

0.3

0.4

Lo
ss

Traditional MSE loss (18)
Proposed loss (19), = 1
Proposed loss (19), = 2

Fig. 6. The proposed loss (19) versus the traditional MSE loss (18) in training
uplink MU-MC-AE with (J,N,M) = (3, 2, 4) under the AWGN channel.

TABLE III
BLER COMPARISON BETWEEN THE PROPOSED AND TRADITIONAL LOSSES

Loss User 1 User 2 User 3 Overall

Traditional loss 0.0111 0.0197 0.0084 0.013

Proposed loss 0.0088 0.0079 0.0043 0.007

L1 is bounded by L2, the proposed loss is still much lower

than the MSE loss after a few epochs. As a result, our loss can

achieve better error performance than the MSE loss, as shown

via Table III, where MU-MC-AE has the same setup as in

Fig. 6 and the testing SNR is 8 dB. Moreover, the proposed

loss achieves better fairness since the BLER difference among

users trained with the traditional loss is bigger than that trained

with our proposed loss.

Finally, similar to training MC-AE, we employ the Adam

optimizer and Xavier initialization method [21] for updating

the model parameters of MU-MC-AE. The training SNR γ̄tr

also needs to be properly chosen for certain system parameters,

such as J , N and M as well as the channel model, in order

to result in the best performance. Further details of selecting

the training parameters of uplink and downlink MU-MC-AE

are provided for each specific experiment in the next section.

V. SIMULATION RESULTS

We conduct various simulations to compare the proposed

schemes with the state-of-the-art baselines in terms of the

BLER performance and computational complexity. In par-

ticular, the BLER of MC-AE is first presented, followed

by the MU-MC-AE performance and then the complexity

comparison. Apart from the Rayleigh fading channel, we

also consider the AWGN channel for a more comprehensive

comparison. Note that under the AWGN channel, we feed

the decoder of our schemes with the received signals only.

The BLER versus the SNR per bit Eb/σ
2 is evaluated for all

schemes, where Eb = mEs/N is the average energy per bit.

We also note that all figures in this section are with perfect

CSI at the receiver except for Fig. 10 with imperfect CSI.

TABLE IV
(EMB-)MC-AE TRAINING PARAMETERS

Parameter Fig. 7(a) Fig. 7(b) Fig. 8 Fig. 9

Epoch 103 2× 103 2× 103 5× 103

Batch size 512 512 512 512

Train size 5× 104 5× 104 105 105

η 0.0001 0.0002 0.0002 0.0002

Q 128 256 256 256

γ̄tr 5 dB 10 dB 7 dB 10 dB

L - 16 - 16
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Fig. 7. BLER comparison between (a) MC-AE, (b) Emb-MC-AE and
baselines, such as OFDM, OFDM-IM and DM-OFDM in a AWGN channel.

A. BLER Performance of MC-AE

We consider a range of the state-of-the-art MC schemes

presented in Table II in Section III as baseline schemes of

MC-AE. Particularly, the configuration of OFDM [1] and S-

OFDM [7] are denoted by (N,M), while that of IM-based

schemes, such as OFDM-IM [2], DM-OFDM [8], CI-OFDM-

IM [4] and S-OFDM-IM [6] are denoted by (N,K,M), where

N is the number of sub-carriers per block, in which K out

of them are active, and M is the size of the conventional M -

ary modulation. Meanwhile, the configuration of MC-AE and

Emb-MC-AE are represented by (N,M), wherein note that

M in our scheme differs from that in the baseline schemes

as it refers to the size of the transmitted message per block

of N sub-carriers, i.e., M = 2m, where m is the number of

data bits per message. The detailed training parameters of our

proposed schemes associated with Figs. 7-9 are illustrated in

Table IV, where we use 106 testing samples for all cases.10

Fig. 7 demonstrates the BLER performance of (a) MC-AE

of (2, 4), (b) Emb-MC-AE of (4, 1024), in comparison with

OFDM, OFDM-IM and DM-OFDM under AWGN channels.

Herein, we do not include CI-OFDM-IM, S-OFDM and S-

OFDM-IM as the benchmarks in this figure since they are

designed to provide transmit diversity under fading channels

and are, therefore, not suitable for AWGN channels. Also,

DM-OFDM and OFDM do not work at the SEs of 1 and 2.5

bps/Hz, thus, are not included in Fig 7(a) and (b), respectively.

It is clearly shown in Fig. 7 that our schemes considerably

outperform all baselines at every SNR. For instance, in Fig.

7(b), our scheme achieves an SNR gain of 1 dB and 2 dB over

10As shown in Table IV, a large batch size of 512 is selected for all cases
since it was found via our experiments that smaller batch sizes, such as 64,
128 and 256, require longer training time, but do not perform better.
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Fig. 8. BLER comparison between MC-AE and baseline schemes, such
as OFDM, OFDM-IM, CI-OFDM-IM, S-OFDM and S-OFDM-IM, under
Rayleigh fading channels, at the SE of 1 bps/Hz.

DM-OFDM and OFDM-IM, respectively. By investigating the

minimum Euclidean distance (MED) of the learned multi-

dimensional codewords x in comparison with the baselines,

we found that MC-AE can provide larger MED and, thus,

better BLER than the baselines as shown via Fig. 7.11

Fig. 8 compares the proposed MC-AE of (4, 16) with var-

ious baselines using the ML detector under Rayleigh fading,

at a SE of 1 bps/Hz. We also include the BLER of S-OFDM

and S-OFDM-IM with the MMSE-based detector as the ML

detector is not practically appropriate for these two spreading

schemes due to its high complexity [6]. As observed from

Fig. 8, in fading channels, MC-AE performs better than all

baselines since it can learn to optimize the diversity and coding

gains as analyzed in Section III. Interestingly, this superior

performance is achieved when the decoder of MC-AE is very

simple with only one hidden layer of Q = 256 nodes.12

In Fig. 9, we present the BLER of Emb-MC-AE of (4, 256)
under Rayleigh fading, in comparison with the baseline

schemes at a higher SE, i.e., 2 bps/Hz. At higher SEs, the

ML detector of S-OFDM and S-OFDM-IM which has an

extremely high complexity is not realistic in practice and,

thus, not included in Fig. 9. Instead, we present the BLERs of

their MMSE-based low complexity detectors for comparison.

It is observed from Fig. 9 that the BLER of Emb-MC-AE

is much better than that of baselines as it harnesses the joint

optimization of both the transmitter and receiver, which results

in higher diversity and coding gains as presented in Section

III. Specifically, at a BLER of 10−2, there are significant SNR

gains of about 5 dB, 6dB and 12 dB achieved by our scheme

over S-OFDM-IM, CI-OFDM-IM and OFDM, respectively.

11In AWGN channels, the proposed scheme becomes the conventional AE-
based scheme in [16], [17], so we have not included them in Fig. 7 for
comparison. Particularly, note that unlike [16], [17], we intend to show via
Fig. 7 that the AE-based scheme outperforms the state-of-the-art IM schemes,
which has been overlooked in the literature.

12Note that the conventional AE scheme [17] for OFDM performs similar
to classical OFDM as it applies AE with RTN per single sub-carrier, and
is, thus, unable to achieve any diversity gain in fading channels (see Section
II.A). Therefore, we do not include [17] in our comparative evaluation.
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Fig. 9. BLER comparison between Emb-MC-AE and baseline schemes, such
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Rayleigh fading channels, at the SE of 2 bps/Hz.
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Fig. 10. The BLER comparison between the proposed MC-AE with
(N,M) = (4, 16) and the benchmarks under imperfect CSI. The config-
urations of the benchmark schemes are the same as in Fig. 8.

Fig. 10 illustrates the BLER comparison between MC-AE

with (N,M) = (4, 16) and the benchmarks under imperfect

CSI. In particular, considering the MMSE channel estimation

(see Appendix B in [3]), the actual channel h ∼ CN (0, 1)
is represented by h = ĥ + e, where ĥ ∼ CN

(

0, 1− ǫ2
)

is the estimated channel, e ∼ CN
(

0, ǫ2
)

is the channel

estimation error independent of ĥ, in which ǫ2 ∈ (0, 1)
varies as a function of the average SNR per sub-carrier, i.e.,

ǫ2 = (1 + γ̄)
−1

. Note that the proposed scheme is trained with

perfect CSI and then tested with MMSE imperfect CSI.13 It is

shown via Fig. 10 that similar to the perfect CSI scenario, the

proposed MC-AE still performs well under imperfect CSI and

13In practice, the channel dataset should be collected with sufficiently high
power of pilot transmission, and the obtained channel can be regarded as
nearly perfect. In fact, we found via experiments that when the pilot has a
power larger than 30 dB (i.e., γ̄ > 30 dB), the performance of MC-AE trained
with imperfect CSI is almost identical to that trained with perfect CSI.
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(N,M) = (4, 256) and Emb-MC-AE using ZF and MMSE equalizers. Here,
all schemes employ perfect CSI at the receiver.

TABLE V
UPLINK AND DOWNLINK MU-MC-AE TRAINING PARAMETERS

Figure Epoch η γ̄tr Q/Qu λ

Fig. 12(a) 103 0.001 5 dB 128 1

Fig. 12(b) 103 0.002 7 dB 256 0.01

Fig. 13(a) 5× 103 0.0002 17 dB 256 1

Fig. 13(b) 5× 103 0.0002 20 dB 256-128 5

Fig. 14(a) 2× 103 0.0005 7 dB 128 1

Fig. 14(b) 2× 103 0.0005 13 dB 256 2

outperforms the benchmarks. In addition, compared with the

perfect CSI case, MC-AE under imperfect CSI suffers from

about a 3 dB performance loss.

Fig. 11 shows the BLER of the proposed Emb-MC-AE

in comparison with the Emb-MC-AE schemes using ZF and

MMSE equalizers to process the received signal before feeding

the DNN decoder. It is shown via Fig. 11 that our proposed

fully data-driven scheme outperforms the baselines, which

confirms the benefit of directly feeding the decoder with the

CSI instead of relying on channel equalization. Moreover, un-

like MC-AE with the MMSE equalizer, the proposed method

does not require an estimation of the noise variance.

B. BLER Performance of MU-MC-AE

A number of current MU-MC schemes, such as MC-CDMA

[9], IM-MC-CDMA [10] and SCMA [11] are considered as

baselines of MU-MC-AE. Since SCMA outperforms other

code domain NOMA schemes [25], we select it as the only

NOMA baseline for simplicity. The configuration of all of

these schemes is represented by (J,N,M), where J , N are

the numbers of users and sub-carriers, respectively, and M
is the M -ary modulation size in the baselines, while it is

the size of the message sent in MC-MC-AE. The loading

factor of a MU-MC system is defined as ξ = J/N . Herein,

MC-CDMA and IM-MC-CDMA employ MMSE and MRC

detectors, respectively, while SCMA uses the MPA with 4

iterations. A range of key training parameters of MU-MC-

AE that were fine-tuned in different experiment settings are

detailed for Fig. 12-14 in Table V. Besides, the proposed
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schemes are trained and tested by 105 and 106 data samples,

respectively, with a batch size of 512, for all relative figures.

Fig. 12 depicts the BLER comparison between the proposed

uplink MU-MC-AE and baselines under the AWGN channel

at two different SEs and loading factors. In particular, Fig.

12(a) shows the performance of systems with 75% loading

and the SE of 1.5 bps/Hz when (J,N,M) = (3, 4, 4) for

all schemes, except for IM-MC-CDMA of (2, 4, 2) with only

50% loading as it is unable to support over 50% loading

transmission [10]. Meanwhile, the performance of higher SE

and loading systems, i.e., 3 bps/Hz - 150%, is illustrated in

Fig 12(b), where both MC-CDMA and IM-MC-CDMA do not

work at such overloading with J > N , while our scheme can

work even at the two overloading configurations of (6, 4, 4)
and (3, 2, 4). It is shown in both figures that the proposed

scheme exhibits higher reliability than baselines. For example,

at a BLER of 10−3 in Fig. 12(b), our scheme with (3, 2, 4)
provides an SNR gain of 2 dB over SCMA. Interestingly,

also in Fig. 12(b), the BLER of the proposed scheme with

(3, 2, 4) is slightly better than that with (6, 4, 4), while SCMA

is not capable of working at such small N , i.e., N = 2. It is

noteworthy that such the superior performance of our scheme

is attained with a very simple decoder structure which has one

hidden layer of Q = 128 or 256 nodes as shown in Table V.

Fig. 13 shows the BLER of the uplink MU-MC-AE in

comparison with that of baselines under Rayleigh fading at

the SE of 2 bps/Hz and (a) ξ = 50% and (b) ξ = 100%. Note
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Fig. 14. BLER comparison between downlink MU-MC-AE and baselines
including OFDMA, MC-CDMA, IM-MC-CDMA, under Rayleigh fading, at
(a) 1 bps/Hz - 50% loading, and (b) 2 bps/Hz - 100% loading.

that we ignore the performance of uplink IM-MC-CDMA in

this figure since it is very poor when the MRC detector is

used [10]. Instead, the BLER of OFDMA with the single-

carrier detection is included for comparison. Since SCMA is

designed mainly to support transmissions with high loading

factors of over 100%, we do not include this scheme in Fig.

13(a), while we illustrate the BLER of MC-CDMA with both

16-QAM and 16-PSK modulations. It is shown from Fig. 13(a)

that the proposed scheme which employs only one hidden

layer of 256 nodes at the receiver still outperforms baselines,

especially at low-to-medium SNRs. Meanwhile, in Fig. 13(b)

with 100% loading, the proposed scheme needs two hidden

layers at the decoder with Q1 = 256 and Q2 = 128, as shown

in Table V, to efficiently decode the desired signals under

higher inter-user interference than the case in Fig. 13(a). As

seen from Fig. 13(b), the BLER of MU-MC-AE of (4, 4, 4)
is similar to that of OFDMA and better than that of MC-

CDMA. However, the proposed scheme of (2, 2, 4) achieves

a promising performance which is relatively close to SCMA

and much better than OFDMA and MC-OFDMA with over

10 dB SNR gains at the BLER of 10−3. This is because our

scheme of (2, 2, 4) with fewer users experiences less inter-user

interference than the case of (4, 4, 4).

Fig. 14 illustrates the BLER comparison between the pro-

posed downlink MU-MC-AE and baselines under Rayleigh

fading, at two different SEs and loading factors. Particularly,

we include the BLER of MC-CDMA and IM-MC-CDMA with

the ML detector in Fig. 14(a) in addition to the performance

of their low-complexity detectors. It is worth pointing out

from Fig. 14(a) that MU-MC-AE significantly outperforms all

baseline schemes, even when they use the ML detector, while

our scheme only requires a simple decoder structure similar

to the single-user MC-AE. This indicates that by training with

lots of data samples, the proposed scheme is able to achieve a

better mapping at the transmitter, i.e., xj = fθj
enc
(sj) , than

current hand-crafted schemes that are based on orthogonal

codes. Moreover, for a higher SE and loading factor in Fig.

14(b), MU-MC-AE has the BLER relatively close to SCMA,

while still performing much better all remaining baselines.

Finally, it should be noted that MU-MC-AE tends to perform

worse at high SNRs as it is trained with only γ̄tr, thus, does

not always guarantee to perform best at every SNR.

TABLE VI
RUNTIMES OF (EMB-)MC-AE AND BASELINES IN MILLISECOND

Scheme Fig. 7(a) Fig. 7(b) Fig. 8 Fig. 9

OFDM [1] 0.019 - 0.032 0.039

OFDM-IM [2] 0.046 13.7 0.107 1.7

DM-OFDM [8] - 20.7 - -

CI-OFDM-IM [4] - - 0.185 2.04

S-OFDM [7] - - 0.036/0.121 0.037

S-OFDM-IM [6] - - 0.055/0.145 0.075

(Emb-)MC-AE 0.027 0.413 0.028 0.14

TABLE VII
RUNTIMES OF MU-MC-AE AND BASELINES IN MILLISECOND

Scheme Fig. 12(b) Fig. 13(b) Fig. 14(a) Fig. 14(a)

OFDMA - 0.045 0.034 0.045

MC-CDMA - 0.11 0.055/0.253 0.058

IM-MC-CDMA - - 0.071/0.123 0.071

SCMA 6.3 1.9 - 1.8

MU-MC-AE 0.103 0.311 0.067 0.071

C. Complexity Comparison

One major issue of current advanced MC systems is the

heavy computational burden of decoding data, which is con-

sidered as the penalty for their performance improvement. For

this, we investigate the decoding complexity of the proposed

DL-based MC schemes in terms of the decoding runtime per

sample and compare with baselines. We convert the trained

model of the proposed schemes from Tensorflow to MATLAB

in order to compute its runtime. The runtimes of baselines are

also evaluated on MATLAB of the same computer to ensure

a fair comparison. Note that the transmitter complexity of our

schemes is negligible compared with that of the receiver since

the proposed encoders require only one linear FC layer.

Table VI compares the decoding complexity between the

proposed (Emb-)MC-AE and baselines corresponding to four

figures in Section V.A, where the runtime is measured in

millisecond (ms). We recall that OFDM [1], OFDM-IM [2],

DM-OFDM [8] employ the ML detector in all considered

figures, while S-OFDM [7] and S-OFDM-IM [6] use both the

ML and MMSE-based detectors in Fig. 8 and MMSE-based

detector only in Fig. 9. Accordingly, the first and second values

of the cells that have two values correspond to the runtimes of

low-complexity and ML detectors, respectively. As observed

from Table VI, our scheme requires much less runtime than

almost all baselines. For example, in Fig. 8, the runtime of

MC-AE is 0.029 ms which is even lower than that of S-OFDM

and S-OFDM-IM with MMSE-based detectors with 0.036 and

0.055 ms, respectively. Moreover, in contrast to MMSE-based

counterparts, the decoder of MC-AE does not require the

noise level in the detection process. Such observations clearly

show that our proposed scheme benefits from not only higher

reliability but also lower complexity than current schemes.

We also demonstrate the receiver complexity of MU-MC-

AE and baseline schemes in Table VII, which is associated

with the four figures in Section V.B. As seen from Table VII,

the proposed scheme has much lower runtime than SCMA

with the MPA detector [11] or MC-CDMA [9] and IM-MC-

CDMA [10] with the ML detector. For instance, in Fig. 12(b),
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MU-MC-AE has a runtime of 0.103 ms which is 60 times less

than SCMA with 6.3 ms. Interestingly, despite requiring less

runtime, MU-MC-AE still achieves a better BLER than SCMA

as shown in Fig. 12(b). Besides, the runtime of MU-MC-AE

is comparable to that of baselines with their low-complexity

detectors, such as MC-CDMA and IM-MC-CDMA.

Finally, to get a better insight into the decoding complexity

of the proposed schemes compared with that of the base-

lines, we analyze the number of floating point operations

(flops) for each decoder. In particular, the number of flops

required by the MC-AE decoder in Fig. 2 is approximated by

O (4NQ+QM) ∼ O (QM), since M and Q are generally

much larger than N , while that of the ML and MMSE

decoders as the baselines are O (11NM) and O
(

8N2 + 5M
)

,

respectively [6]. Hence, it can be seen that when Q is large, the

decoder in MC-AE may require more flops than the ML and

MMSE-based decoders. However, the runtime of our scheme is

still less than that of the baselines, as shown via Table IV. This

is because the DNN decoder does not involve any iterations

such as “for” or “while” loops as in the baseline decoders.

The same observation can be seen for multiuser scenarios.

VI. CONCLUSION

We proposed a novel DL-based MC-AE system, which is

capable of learning both the encoder and decoder to optimize

the diversity and coding gains over fading channels in a fully

data-driven manner. The BLER analysis clearly showed higher

performance gains achieved by MC-AE over hand-crafted

baselines including various recent IM-based schemes. We then

proposed two novel DNN structures for uplink and downlink

MU-MC-AE, along with a new loss function that ensures both

the user fairness and the fast training convergence. Simulation

results showed that our schemes outperform a wide range of

current hand-crafted schemes under both AWGN and Rayleigh

fading channels, while still yielding comparable or lower

decoding complexity. However, under fading channels, the

performance of MU-MC-AE degrades when transmissions are

highly overloaded, especially during the uplink transmission.

This issue will be left for our future research.
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