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ABSTRACT Device simulation has been explored and industrialized for over 40 years; however, it still 

requires huge computational cost. Therefore, it can be further advanced using deep learning (DL) algorithms. 

We for the first time report an efficient and accurate DL approach with device simulation for gate-all-around 

silicon nanowire metal-oxide-semiconductor field-effect transistors (MOSFETs) to predict electrical 

characteristics of device induced by work function fluctuation. By using three different DL models: artificial 

neural network (ANN), convolutional neural network (CNN), and long short term memory (LSTM), the 

variability of threshold voltage, on-current and off-current is predicted with respect to different metal-grain 

number and location of the low and high values of work function. The comparison is established among the 

ANN, CNN and the LSTM models and results depict that the CNN model outperforms in terms of the root 

mean squared error and the percentage error rate. The integration of device simulation with DL models 

exhibits the characteristic estimation of the explored device efficiently; and, the accurate prediction from the 

DL models can accelerate the process of device simulation. Notably, the DL approach is able to extract crucial 

electrical characteristics of a complicated device accurately with 2% error in a cost-effective manner 

computationally. 

INDEX TERMS Work function fluctuation, Nanosized metal grain, Gate-all-around, Nanowire, MOSFET, 

Statistical device simulation, Deep learning, Convolutional neural network, Artificial neural network, Long short 

term memory, Root mean squared error.

I. INTRODUCTION 

Owing to the low-power consumption and straightforward 

fabrication procedure with high flexibility, silicon-based 

transistors are acknowledging as the most favorable 

technology [1-4]. Silicon (Si) transistors offer distinguished 

functionalities, such as high scalability, high integrity and 

low-power consumption, etc. [5]. Besides these capabilities, 

Si transistors have suffered due to various limitations serious 

issues, such as high leakage current, significant fluctuation 

of threshold voltage and poor subthreshold slope (SS), etc. 

[2]. To keep up the continuous downscaling of Si transistors 

for high-performance applications, gate-all-around (GAA) 
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Si nanowire (NW) metal-oxide-semiconductor field-effect 

transistor (MOSFETs) are considered as an arising aspirant 

among the nanodevices due to predominant electrical 

characteristics [6]. The fluctuation of electrical characteristic 

plays a significant role in the field of nanoelectronics. There 

are various variability sources such as the random dopant 

fluctuation (RDF), work function fluctuation (WKF), 

random interface trap (RIT) and the process variation effect 

(PVE) [7-14]. Moreover, the variability source, the model 

ambiguity, and the manufacturing tolerance are playing vital 

roles in chip production and yield optimization [15]. From 

the prior work [16], three-dimensional (3D) statistical device 

simulation depicted that the RDF in GAA Si NW MOSFETs 

greatly affects the device variability. In [17], characteristic 

fluctuation induced by the WKF on GAA Si NW MOSFETs 

was studied; and, the results have shown that the reduction 

of variation of the threshold voltage (VTH) affects the 

reduction of variation of the frequency. Similarly, in [18], the 

timings and the power fluctuations were determined by 

considering the various random discrete dopants (RDDs) on 

GAA Si NW complementary metal-oxide-semiconductor 

(CMOS); and, it concluded that the timing fluctuation and 

the power consumption in CMOS are directly dependent on 

the variation of the VTH. The variability of the VTH induced 

by titanium nitride (TiN) metal-gate WKF on GAA Si NW 

device was examined in [19]; and, comparison of the induced 

VTH between WKF and RDF indicated that the variability of 

VTH dominated by WKF has more impact than that of RDF. 

According to these points of views, electrical characteristics 

of GAA Si NW MOSFET induced by WKF can be further 

investigated by using deep learning (DL) algorithms 

integrated with device simulation.  

Recently, machine learning (ML) has been growing 

prominently in every field due to its scalability and wide 

range of algorithms and applications [20-23]. ML/DL 

algorithms are implementing to forecast the unknown future 

based on known experimental data. For example, in [24], the 

effect of climate change on urban buildings was studied with 

the help of ML algorithms. Similarly, in [25], the integration 

of ML with metabolic engineering was discussed. Likewise, 

ML was utilized in [26] for the optimization of signal 

processing algorithms. Moreover, semiconductor and 

integrated circuit manufacturing industry is highly suitable 

to be integrated with DL techniques because the 

semiconductor manufacturing process encounters a large 

number of parameters and a various number of procedures 

that are inevitable to be performed manually by engineers. 

There is some prior research based on the integration of ML 

with semiconductor manufacturing [27-30]. In [31], a ML 

algorithm was reported for defect detection. Similarly, a ML 

algorithm was explored in [32] to yield improvement in 

semiconductor manufacturing. Nowadays, the integration of 

ML with the study on GAA Si NW MOSFETs is considered 

to be significantly feasible and broadly applicable [33-38]. 

The purpose of applying ML is to predict the characteristics 

of semiconductor devices. Due to rapid prediction, while 

maintaining the performance accuracy, ML is being applied 

in many research areas [39-48]. Moreover, in the variability 

of the VTH of the GAA Si NW MOSFETs induced by WKF, 

the random metal grain (MG) and the positional sequence of 

MG are the complicated factors that motivate the utilization 

of ML models in MOSFETs. Furthermore, the estimation of 

the total number of MG in a GAA Si NW, the estimation of 

an appropriate width of the MG, and the adjustable position 

of the MG with respect to the different value of WK are 

intricate processes and vary a lot in determining their 

parameters. There is some prior work related to the PV 

integrated with ML. In [49], ML algorithm (artificial neural 

network; ANN) was applied to predict the VTH of Si 

junctionless NW transistor by feeding the neural-network 

model with three input parameters including the off-current 

(IOFF), the on-current (ION), and the subthreshold slope (SS). 

Similarly, in [50], Ko et al. proposed ANN to predict the 

characteristics of ultra-scaled GAA vertical FET device by 

using PV. The model was trained by using five variables, 

four obtained from the PV and one was from the dimension 

of the device. Then, these input variables were coupled with 

the target variable which represents the characteristics of 

VFET device. In [51], Kyul et al. proposed the ANN ML 

algorithm for 3D NAND flash memories. Due to a simple 

mathematical model, neural-network was implemented in all 

these prior work.  

 
FIGURE 1o. (a) An illustration of the nominal GAA Si NW MOSFET 
and ID-VG curve which depicts the crucial parameters. (b) Various 
random sources and fluctuated ID-VG curves. Device parameters 
can be extracted from these curves. (c) A general DL model that 
takes device fluctuations and electrical characteristics as input 
and target values, respectively. It also demonstrates the possible 
application of concatenation of device simulation technology with 
DL algorithms. 
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FIGURE 2o. A TEM of TiN which cannot be formulated ideally. Using cuboid grain method, 3D device simulation is performed. (b) The cuboid 
grain method segregates 3 different grain sizes: MGN = 16, 80 and 320. Corresponding to the cases of MGN = 16, 80 and 320, more than 3000, 
5000 and 10000 fluctuated devices are generated and simulated, respectively, and these simulated ID-VG curves are illustrated. (d) The extracted 
device parameters (VTH, ION and IOFF) and WKF patterns, are feed into three different DL algorithms, i.e., ANN, CNN and LSTM. 
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To examine the effect of the variability of the WKF on 

emerging MOSFETs, the cuboid grain method and the 

averaged WKF method, etc., [52] have been proposed and 

proven remarkable. In [17], the cuboid grain method was 

adopted to study the effect of the metal-grain number (MGN) 

and metal-grain location (MGL) with the low and high work 

functions on the variability of the VTH. However, with the 

increase of MGN, the requirement for a large number of 

samples of WK also increases. Therefore, the highly 

computational cost is obligatory for accurate prediction. 

Each 3D device simulation with a given grain pattern takes 

1-2 hours and more than 3,000 3D device simulations should 

be conducted to explore the WKF-induced variability. To 

overcome these computational resource intensive issues, we 

advance our recent work on the studies of the WKF by 

applying three different supervised ML models to study 

characteristic fluctuation induced by the WKFs. 

To understand the concatenation between two emerging 

technologies, the overview of the integration of the 3D 

device simulation with DL technology is shown in Fig. 1. 

Notably, in Fig. 1(a), the nominal GAA Si NW MOSFET 

and its electrical characteristics for the sub-5-nm technology 

node is shown. Similarly, in Fig. 1(b), four major variability 

sources are illustrated such as RDF, PVE, RITs and WKF. 

By using any of these variability sources, many fluctuated 

devices can be generated and crucial electrical characteristics 

can be extracted from a bundle of ID-VG curves. Prominently, 

the WKF is considered one of the most significant variability 

sources in semiconductor devices. Besides, the variability 

source and the extracted parameters are taken as input into 

the DL algorithm, as shown in Fig. 1(c) and it also exhibits 

the possible applications that arise due to the conjunction of 

device simulation and DL technology.  

In this work, three different DL algorithms including 

ANN, convolutional neural network (CNN) and long short 

term memory (LSTM) are proposed to predict characteristic 

fluctuation of VTH, ION and IOFF affected by various MGNs, 

i.e., MGN = 16, 80 and 320. They are induced by low and 

high work functions and between the source (S) and the drain 

(D) at different locations. The results of this work conclude 

that the device simulation based DL algorithms can largely 

accelerate the prediction process of device simulation data 

by minimizing the computational cost and can easily 

enhance the prediction accuracy. 

This paper is structured as follows. Section II presents the 

statistical device simulation and deep learning methodology. 

Section III demonstrates the comparison of different DL 

models. Section IV reports the different techniques to 

evaluate the DL algorithms. Section V illustrates the results 

and the detail discussion for different MGNs. Section VI 

presents the emerging applications of DL with WKF for 

GAA Si NW MOSFET and finally in the section VII, the 

conclusion is drawn and the direction for future research is 

given. In Appendices, the mathematical formulations of the 

applied DL models are mentioned. 

II. STATISTICAL DEVICE SIMULATION AND DEEP 
LEARNING METHODOLOGY  

The WK fluctuated devices are simulated by 3D device 

simulation. As shown in Fig. 2(a), a transmission electron 

microscope (TEM) of TiN gate from a realistic fabrication is 

irregular shape generally which is difficult to formulated 

ideally in device simulation. Therefore, the cuboid grain 

algorithm is implemented to position the MG with an acute 

angle. Moreover, the simulated structure consists of a 10-nm 

diameter (d) of horizontal cylindrical Si channel with a 10-nm 

gate stack of HfO2 having a 0.6-nm effective oxide thickness 

(EOT) with TiN gate having WK of 4.552 eV, as shown in Fig. 

2(a). Moreover, simulating through higher threshold voltage 

for low-power devices, TiN gate yields 0.2 eV offset between 

the low and high WKs. Therefore, low and high WKs are 

defined as TiN<111> having 0.4 probability of occurrence on 

MG with WK = 4.432 eV and TiN<200> having 0.6 

probability of occurrence on MG with WK = 4.632 eV, 

respectively. Fig. 2(b) illustrates that three different sizes of 

MGs deposited on the TiN gate. The number of MGs is 

FIGURE 4o. An illustration of the basic architecture of ANN by 
considering MGN = 16, 80 and 320. It consists of 4 layers including 

one input layer, 2 hidden layers and one output layer. 
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Figure 3o. A comprehensive flow chart of the proposed methodology 
including data generation, data labeling, noise reduction, splitting the 
dataset into 90% training and 10% testing, data preprocessing and 
training and testing the DL models on the basis of optimization 
algorithm and loss function. 
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proportional to the grain size. The number of MGs are 16, 80 

and 320 for grain size = 5 nm x 4 nm, (2 nm)2 and (1 nm)2, 

respectively. For each MG, random patterns are generated by 

the Monte Carlo (MC) method and the simulated ID-VG curves 

are obtained by using 3,000 to 10,000 fluctuated devices. 

From these ID-VG curves, the device parameters are extracted. 

These WK fluctuated patterns for different MGNs with their 

corresponding extracted parameters are preprocessed and fed 

into different DL algorithms, as shown in Fig. 2(c). Three 

different DL algorithms: ANN, CNN and LSTM, are 

implemented. The brief demonstration of simulated device 

parameters is listed in Table I. In this section, we introduce the 

dataset and its preprocessing. The basic knowledge of ANN, 

CNN and LSTM is stated to master the relation between the 

sequence of high and low WKs and the effect of the random 

WK on the magnitudes of variability of the VTH, ION and IOFF.  

A. DATASET AND PREPROCESSING 

The dataset is consisting of random patterns of high and low 

WKs that are being mapped into 0 and 1 values, respectively. 

Consequently, the studied DL algorithms can be fed using 

discrete input data, where any divergent value is eliminated; 

and, VTH = 10 V is set. The divergent data is insignificant and 

is considered to be noise. Then, the normalization of all 

features is performed to scale down the difference between 

the minimum and the maximum values in the dataset. The 

most common method to normalize the dataset is 

MinMaxScaler from Scikit-Learn Python’s Library [53]. The 

final output from all these preprocessing steps is taken as 

input to the DL models. The flow chart of data collection, 

noise reduction, data preprocessing, splitting the dataset into 

training and testing set and feeding the DL model with input 

and target dataset, all are illustrated in Fig. 3. 

B. ARTIFICIAL NEURAL NETWORK 

ANN is the most common and widely used algorithm in 

science and engineering [54-58] which has been of great 

interest due to the multilayered network having the capability 

to extract features [59, 60]. The dataset enters through the 

input layer, passes by the hidden layer for the extraction of the 

useful features. Then, the output from the previous hidden 

layer is considered as the input to the next hidden layer (the 

mathematical insight of ANN is further explained in 

Appendix) and afterward, the output is predicted from the 

output layer. The activation function in the hidden layer 

performs the non-linear complexity. Generally, there are many 

different architectures as well as various optimization 

algorithms of the ANN model; however, we merely focus on 

one neural-network architecture, as shown in Fig. 4. The 

implementation of the ANN model is consisting of four layers: 

one input layer, two hidden layers, and one output layer. The 

input layer consists a number of neurons equal to the number 

of features utilize in one batch. Similarly, the number of 

neurons in the hidden layers are adjustable in the range of 

32~100, depending upon many factors such as the length of 

the input sequence, the nature of the output (digit or numerical 

value), etc. Here, the type of target data is numeric continuous 

values. As shown in Fig. 4, consider the regression ANN 

model for 16-dimensional input sequence, i.e., {x1, x2, …, x16}, 

the weight corresponding to the first layer, the second layer 

and the third layer is represented as a matrix W16x100, W100x100 

and W100x1, respectively. Moreover, rectified linear unit 

(ReLU) activation function is explored because it converges 

faster as compared to other activation functions, such as 

sigmoid, leaky ReLU and hyperbolic tangent [53]. The 

mathematical notation of ReLU activation function is given as: 𝑅𝑒𝐿𝑈 𝑥 = 𝑚𝑎𝑥   𝑥   (1) 

where x is considered as the input to the neuron and ReLU is 

the activation function depend on the maximum value of 0 and 

x. In the feedforward direction, the output from any arbitrary 

neuron Sr is given as: 𝑆𝑟=𝑅𝑒𝐿𝑈 ∑  𝑖𝑥𝑖 + 𝑏𝑖  𝑖=  (2) 

where x, b and w represent the input, the corresponding bias 

and the weight of a given neuron, respectively. Bias and 

weight are considered as the hyperparameters which are 

tunable variables and through backpropagation, these 

hyperparameters can be optimized. The output obtains from 

the last layer is contaminated due to the randomness of weights 

and biases in each layer. To minimize the error between the 

target and the predicted values, the optimization function is 

utilized. The following loss function is taken into account to  

 
FIGURE 5o. An illustration of the basic architecture of CNN for MGN = 
16, 80 and 320, consisting of input layer, one convolutional layer with 
ReLU activation layer, one pooling layer, two fully connected layers 
and one output layer. 
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TABLE I.  

LIST OF DEVICE SIMULATION PARAMETERS FOR GAA SI NW 

MOSFETS 

Parameters Value 

LG (nm) 10 

EOT (nm) 0.6 

d (nm) 10 

Ls and Ld (nm) 5 

S/D Depth (nm) 14 

Channel doping (cm-3) 5x1017 

S/D Doping (cm-3) 1x1020 

S/D Extension Doping (cm-3) 5x1018 

Nominal EWK 4.552 

VTH (mV) 272.0 

ION (A) 6.71x10-6 

IOFF (A) 6.65x10-12 
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calculate the error between the predicted and the target values. 𝐿𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =   𝑁∑  𝑦𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑦𝑝𝑟𝑒𝑑  𝑁𝑖=   (3) 

where ytarget and ypred represent the exact and the predicted 

values obtained from the trained ANN model; N represents the 

total number of samples in the train dataset. Notably, the ANN 

has some imperfections while dealing with optimization 

algorithms. Because it takes a longer time to converge and to 

find the global minima [60]. Moreover, the number of 

features are 16, 80 and 320 which is infeasible for ANN to 

deal with the longer input sequences efficiently without facing 

the curse of dimensionality. 

C. CONVOLUTIONAL NEURAL NETWORK 

Primarily, the CNN model is considered a useful algorithm 

in various applications such as object detection, computer 

vision and pattern recognition due to its ability to extract 

features from the input data very efficiently [61-64]. Fig. 5 

shows the basic architecture of CNN as a regression model 

and the mathematical perception is given in Appendix. 

Consider the input for MGN = 16 such that {x1, x2, …, x16}, 

the input feed into CNN model is converted into a 2D matrix 

so that it can be manipulated by using a convolutional layer 

which is based on the processing of 2D input matrix and 

kernel. The kernel allows us to extract the useful information 

from the input matrix; for example, some specific kernels can 

extract the information around the boundary of the input 

matrix [65-69]. Traditionally, the stack of convolutional 

layers can be increased as many times as to extract a large 

number of input features. The mathematical notation of 2D 

convolution S(i,j) between the input matrix and kernel is 

expressed as: 

           𝑆 𝑖 𝑗 =  𝐼 ×  𝐾  𝑖 𝑗 =                            ∑ ∑ 𝐼 𝑚 𝑛 𝐾 𝑖 − 𝑚 𝑗 − 𝑛   𝑚  (4) 

where K and I are the kernel and filter that represent the 

square matrix of any size and the 2D input data consisting of 

a matrix with m-by-n dimensions, respectively. Similarly, i 

and j represent the number of rows and number of columns 

of the kernel. Notably, the number of training samples 

propagates into the DL model in one forward and backward 

pass is known as batch size. The output of the convolutional 

layer then undergoes through pooling layer to reduce the 

input size, therefore, this layer can prevent the various DL 

dilemmas including (i) the curse of dimensionality, (ii) 

overfitting during the DL model training and (iii) cost 

reduction computationally. Lastly, a fully-connected layer is 

implemented (also known as the Dense layer) that works 

similar to the feedforward ANN (see Appendix). Besides, the 

number of epochs handle the number of times the 

backpropagations process is performed in DL model. In 

short, the CNN model focuses on each small feature of the 

input data by sharing parameters using the same kernel (may 

use different kernels for same input data) and develop a 

systematic process to predict the output by considering those 

explored features. Similar to ANN, CNN model is applied to 

three continuous numerical outputs, i.e., ION, IOFF and VTH.  

D. LONG SHORT TERM MEMORY 

It is known that LSTM is popular for forecasting data that 

depends on the time intervals. Therefore, it is implemented 

for predicting recurrent input. e.g., time-series data, natural 

language processing and weather forecasting, etc. LSTM is 

a special type of neural-network that gains attention due to 

the memory blocks. These memory blocks have self-

connection which memorizes the flow of information [70-

74]. Consider LSTM as a regression model and the input 

given to a LSTM cell is for MGN = 16, i.e., {x1, x2, …, x16}. 

Before feeding into the LSTM model, the input array is 

reshaped into batch size, the number of samples passes in 

one-time step and the number of input features, e.g., (20, 1, 

16). The number of features varies with different MGNs. The 

LSTM cell contains three gates: the input, forget, and output 

gates, respectively. The architecture of the LSTM cell is 

shown in Fig. 6 and its comprehensive pseudo-code is listed 

 
Figure 6o An illustration of the internal structure of LSTM cell consisting of input gate, forget gate, cell state and output gate. Sigmoid activation 
function is used in input, forget and output gate. In addition, tangent hyperbolic activation function is implemented in cell state.  
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in Appendix. The mathematical notation of forget gate fi
(t) by 

considering the t time step of the ith cell, is given as: 𝑓𝑖𝑡 = 𝜎 𝑏𝑖𝑓 + ∑ 𝑈𝑖 𝑗𝑓 𝑥𝑗 𝑡 +∑ 𝑊𝑖 𝑗𝑓ℎ𝑗 𝑡−   𝑗𝑗   (5) 

where x(t) is the input vector at time t and h(t) is the hidden 

vector at time t. bf, Uf, and Wf are the bias, input weight and 

the recurrent weight for the forget gate, respectively. The 

LSTM cell internal state c is updated with the self-loop 

weight and by considering hyperbolic tangent (tanh) as an 

activation function, the mathematical expression of the cell 

state is given by:    𝑐𝑖𝑡 = 𝑓𝑖𝑡𝑐𝑖 𝑡−  𝑡𝑎𝑛ℎ 𝑏𝑖𝑐 + ∑ 𝑈𝑖 𝑗𝑐 𝑥𝑗 𝑡 +∑ 𝑊𝑖 𝑗𝑐 ℎ𝑗 𝑡−  𝑗𝑗    (6) 

where b, U and W, respectively, represent the bias, input 

weight and the recurrent weight of the LSTM cell state. The 

input gate unit g is computed similarly to the forget gate. The 

mathematical notation of the input gate g is: 𝑔𝑖𝑡 = 𝜎 𝑏𝑖𝑔 +∑ 𝑈𝑖 𝑗𝑔 𝑥𝑗 𝑡 +∑ 𝑊𝑖 𝑗𝑔ℎ𝑗 𝑡−    𝑗𝑗  (7) 

where b, U and W represent the bias, the input weight and the 

recurrent weight of the input gate, respectively. Similarly, x 

and h are the input matrix and the hidden unit, respectively. 

The output h of the LSTM is obtained via the output gate q: ℎ𝑖𝑡 = 𝑡𝑎𝑛ℎ 𝑐𝑖𝑡 𝑞𝑖𝑡  (8) 

and 𝑞𝑖𝑡 = 𝜎 𝑏𝑖𝑞 + ∑ 𝑈𝑖 𝑗𝑞 𝑥𝑗 𝑡 + ∑ 𝑊𝑖 𝑗𝑞ℎ𝑗 𝑡−   𝑗𝑗  (9) 

where c and q represent the cell state and the output gate, 

respectively. Similarly, b, U and W represent the bias, the 

input weight and the recurrent weight of the output gate, 

respectively. These weights and biases are considered as the 

hyperparameters of the LSTM cell and these 

hyperparameters can be updated by taking the gradient with 

respect to the weights and the biases of the input gate, the 

output gate and the forget gate. The main advantage of the 

LSTM model is that it can regulate the gradient by 

overwhelming the most common crisis of DL model, i.e., the 

vanishing gradient and the exploding gradient. The output 

obtains from each LSTM cell consists of two arrays, i.e., the 

cell state c and hidden layer output h. It is not mandatory to 

forward both arrays into the next LSTM cell. Notably, to 

limit the size of the output array (three variables), only 

hidden layer output is considered as the final output from 

each LSTM cell and cell state is omitted.   

III. COMPARISON OF MODELS 

Each algorithm has some limitations such as ANN requires a 

huge amount of dataset as well as its ability to compute the 

gradient is also computationally expensive. Typically, for the 

ANN model, there is no criterion for the minimum number of 

samples. However, the smaller number of training samples as 

compared to the larger input features is not an adequate 

approach. Moreover, the LSTM model is more suitable for 

predicting the data having a larger input sequence and it has 

effective regularization over the vanishing gradient and the 

exploding gradient. Nonetheless, the LSTM model requires a 

comparatively larger amount of training samples. The 

mathematical notation for the minimum number of training 

samples required for the LSTM model is given as: 4 𝑛 ×  𝑚 + 𝑛      (10) 

where n and m correspond to the size of the input features and 

the output features, respectively. In the cases of MGN = 16, 

80 and 320, the minimum number of training samples required 

for a well-trained LSTM model is 1,088, 25,920 and 410,880, 

respectively. Therefore, for MGN = 80 and 320 above-

mentioned number of training samples are implausible to 

achieve through device simulation of GAA Si NW MOSFETs. 

As we know, the CNN model is prominently used in the field 

of computer vision and object detection. Besides, it has a 

powerful endowment to deal with more complex problems. 

Due to this reason, the CNN model is more suitable for dealing 

with a large number of input features. Moreover, the minimum 

number of training samples is dependent on the depth of the 

CNN model and its mathematical formula is shown below.  𝑁𝑖 +    × 𝑁ℎ +  𝑁ℎ +    × 𝑁𝑜𝑢𝑡 < 𝑁𝑠  (11) 

where Nin, Nh and Nout are the number of input features, 

number of hidden units and number of output features, 

respectively. Ns represents the minimum number of training 

samples. Therefore, by comparing the model architecture 

among ANN, CNN and LSTM, the CNN model is considered 

to be more efficient for the dataset obtain from the device 

simulation of GAA Si NW MOSFETs.  

The main challenge in developing an optimal DL algorithm 

is to set the hyperparameters of the model to minimize the 

aforementioned loss function and acquire the convergence 

rapidly. Majorly, three experiments, for MGN = 16, 80 and 

320, are carried out for each DL model (ANN, CNN and 

LSTM). In the conducted experiments, three datasets are 

utilized to predict the three crucial electrical characteristics 

(i.e., VTH, ION and IOFF), the hyperparameter configurations are 

illustrated in Table II. It is proven that DL algorithms have 

been performing well as compared to ML algorithms due to 

the dense number of layers and their ability to deal with the 

curse of dimensionality. 

IV. EVALUATION OF DEEP LEARNING MODELS 

While dealing with GAA Si NW MOSFETs, there are two 

major challenges: (i) highly computational cost and (ii) 

precision of electrical characteristics. The DL models are 

evaluated by using the root mean squared error (RMSE) value 

as well as the error rate. Generally, the RMSE values are 

calculated for the regression and the numerical problems. The 

RMSE value is the difference between the true and predicted 

values from the DL models. The mathematical expressions of 

the RMSE values for the train and the test dataset are given by 

the following two equations, respectively: 
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𝑅𝑀𝑆𝐸𝑡𝑟𝑎𝑖 = √∑  𝑦𝑡𝑟𝑎𝑖𝑛−𝑦𝑡𝑟𝑎𝑖𝑛 𝑝𝑟𝑒𝑑 2𝑁𝑡𝑟𝑎𝑖𝑛𝑖=1 𝑁𝑡𝑟𝑎𝑖𝑛   (12) 

and 𝑅𝑀𝑆𝐸𝑡𝑒𝑠𝑡 = √∑  𝑦𝑡𝑒𝑠𝑡−𝑦𝑡𝑒𝑠𝑡 𝑝𝑟𝑒𝑑 2𝑁𝑡𝑒𝑠𝑡𝑖=1 𝑁𝑡𝑒𝑠𝑡    (13) 

where Ntrain and Ntest is the total number of the train and the test 

data samples, respectively. Similarly, ytrain and ytest represent 

the exact values from the train and the test data samples, 

respectively. Likewise, ytrain_pred and ytest_pred depict the 

predicted values by using its corresponding train and the test 

dataset, respectively. 

Similarly, the performance of the explored DL models can 

be determined by calculating the error rate in terms of the 

variance of the actual dataset and the predicted output. The 

mathematical formula of error rate is shown below: 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒  =  𝜎𝑡𝑒𝑠𝑡−𝜎𝑝𝑟𝑒𝑑𝜎𝑡𝑒𝑠𝑡 ×    ,  (14) 

where σtest and σpred represent the standard deviation of the test 

dataset and the predicted values collected from the trained DL 

model, respectively. 

V. RESULTS AND DISCUSSION 

In our prior work [17], it has been observed that the high-

κ/metal-gate (HKMG) technology with GAA Si NW 

MOSFETs is considered to be a more effective technology and 

the magnitude of electrical characteristics induced by the 

WKF depend on two factors: the random number of MGs and 

the random position of MGs. The most crucial electrical 

characteristics induced by low and high WKs is the variability 

of the threshold voltage (VTH) defined by: 𝜎𝑉𝑇𝐻 = √∑ 𝑆𝐷𝑀𝑖𝑛𝑖=1 −                            (15) 

and  𝑆𝐷𝑀𝑖 =  𝑉𝑇𝐻𝑖 − 𝑉𝑇𝐻 𝑚𝑒𝑎                     (16) 

where i and n are the index number of the fluctuated devices 

and the total number of the fluctuated device, respectively; 

SDM is the square of deviation from the mean value and 

VTH_mean is the mean of VTH. From (15), it is clarified that VTH 

is directly proportional to the sum of SDM and inversely 

proportional to the total number of fluctuation devices.  

The integration of HKMG technology with the emerging 

DL methodology demonstrates the accurate prediction of 

electrical characteristics of GAA Si NW MOSFETs and to 

determine the relationship of induced electrical characteristics 

with the randomly generated fluctuated devices. The 

prediction of continuous numeric values, i.e., VTH, ION and 

IOFF, appears in the domain of regression problems. The output 

from the explored DL models is considered as the predicted 

value estimated through the target values obtain from HKMG 

WK’s effective electrical characteristics including VTH, ION 

and IOFF. While developing the DL models, the various 

fluctuated devices are considered as the number of input data. 

For example, for MGN = 16, 80 and 320, the total number of 

fluctuated devices is 3000, 5000 and 10000, respectively, 

which is equivalent to the total number of samples for MGN = 

16, 80 and 320.  

The term ‘train’ in the DL model is referred to as feeding 

the model to estimate its hidden hyperparameters and optimize 

them using various algorithms, such as the stochastic gradient 

descent and the adaptive moment estimation, etc. Whereas, the 

term ‘test’ refers to predicting the trained DL model with the 

new dataset. Usually, in the DL algorithms, the split between 

train and test datasets is 90% and 10%, respectively. Initially, 

the DL models are trained after randomly shuffling the dataset, 

so that, in each epoch, every data point enlightens the trainable 

parameters of the adapted DL model; otherwise the RMSE 

value will be too high. Moreover, it can be observed in Table 

III that the RMSE values obtain through all explored DL 

models (ANN, CNN and LSTM) during training and testing. 

It is observed that the RMSE value during the training of all 

DL models is outperformed, whereas the reduction of RMSE 

value for testing dataset obtained through CNN among all the 

DL models is persistent. Moreover, due to sizeable variation 

in IOFF dataset, the RMSE value for both train and test datasets 

is comparatively higher than VTH and ION. Likewise, from 

Tables IV and V, it can be seen that for MGN = 80 and 320, 

the RMSE values for the test dataset are decreased by the CNN 

TABLE II 

LIST OF THE HYPERPARAMETERS CONFIGURATION FOR ANN, CNN 

AND LSTM MODEL USING MGN = 16, 80 AND 320 

MGN 
DL 

Model 

Hidden (H), Activation (Act), Dense (D), Batch Size 

(BS), Epochs (E), Filter (F), Kernel (K) 

 LSTM H = 64, Act= ReLU, D = No, BS = 20, E = 100 

16 CNN Act= ReLU, D = 32, BS = 20, E = 100, F = 64, K = 2 

 ANN H = 20, Act= ReLU, D = 10, D = 1 BS = 20, E = 100 

 LSTM H = 64, Act= ReLU, D = 1, BS = 20, E = 100 

80 CNN F = 32, Act= ReLU, D = 1, BS = 20, E = 100, K = 3 

 ANN H = 20, Act= ReLU, D = 10,D = 1, BS = 1, E = 100 

 LSTM H = 64, Act= ReLU, D = 1, BS = 20, E = 100 

320 CNN H = 64, Act= ReLU, D = 1, BS = 20, E = 100, K = 3 

 ANN H = 64, Act= ReLU, D = 10, D = 1, BS = 20, E = 100 

 TABLE III. 

THE CALCULATED RMSE VALUES FOR TRAIN AND TEST OF THE ANN, 

CNN AND LSTM MODELS USING MGN = 16 

DL Model 
RMSE Value for 

Train 

RMSE Value for 

Test 

LSTM for VTH 0.00632 0.03694 

CNN for VTH 0.00474 0.0350 

ANN for VTH 0.00638 0.04058 

LSTM for ION 0.00441 0.02291 

CNN for ION 0.00340 0.01417 

ANN for ION 0.00550 0.02382 

LSTM for IOFF 0.00717 0.06562 

CNN for IOFF 0.00689 0.06472 

ANN for IOFF 0.00741 0.07194 
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model. The reason behind the reduction of RMSE value via 

the CNN model is that it can handle properly a large number 

of input features, i.e., 80 and 320. The DL model having a 

large number of input features demand two major properties: 

(i) the number of training data points should be at least four 

times larger than the number of input features and (ii) the 

optimized deep model architecture having a large number of 

parameters. In the case of LSTM and ANN, it is architecturally 

impossible to fulfill the above two criteria for such long input 

sequences, i.e., 80 and 320. Nonetheless, in GAA Si NW 

MOSFETs with HKMG technology, it takes highly 

computational cost to collect a large number of simulated 

samples, which is a critical issue in the field of GAA Si 

devices. 

  In the DL algorithms, it is a commonly practice to evaluate 

the regression model using the RMSE value. Even the smallest 

difference between the attained RMSE values are considered 

to be significantly important. While pondering towards the 

RMSE values for train data, all the DL models outperform. 

The prevailing goal is to accomplish a nominal RMSE value 

for the test dataset. In Tables III, IV and V, the minimum 

RMSE value, for both train and test datasets, is obtained by the 

CNN model due to its capacity to deal with higher dimensional 

data. Specifically, by comparing Table V with Tables III and 

IV, the increment of the RMSE value for the test dataset 

obtained through the ANN, CNN and LSTM models using the 

MGN = 320 are due to various reasons such as (i) the larger 

input length, i.e., 320, (ii) the curse of dimensionality 

encountered by the DL models, (iii) the exploding and the 

vanishing gradient during the backpropagation of the explored 

DL models. From our earlier work [13], it is clear that 

electrical characteristics are induced by the WKF, which 

majorly depends on the random position of the MG. By 

conquering the issue of the random position, the CNN model 

performs better as compared to the ANN and the LSTM 

model. The comparison among three DL models in terms of 

the RMSE values depicts that for the MGN =16, all the DL 

models outperform. However, the CNN model surmounts the 

result due to its sparse property. The training and the testing of 

the ANN, the CNN and the LSTM model through the 

electrical characteristics, i.e., VTH, induced by the WK having 

the MGN = 16 is illustrated in Figs. 7(a) and (b), respectively; 

whereas, for the MGN = 16, the training and the testing of all 

DL models using ION is illustrated in Figs. 7(c) and (d), 

respectively and in Figs. 7(e) and (f), the training and testing 

of all DL models using IOFF is shown, respectively. From these 

given plots, it is difficult to distinguish the most significant DL 

model performance. So, the error rate is calculated. As listed 

in Table VI, for the MGN = 16, the test error rate for the ANN, 

the CNN and the LSTM models, by considering VTH is 0.9%, 

0.5% and 0.8%, respectively. Similarly, the error rate for the 

ANN, the CNN and the LSTM model by using ION is 1.9%, 

ANN, the CNN and the LSTM models using the explored 

electrical characteristics, i.e., VTH, ION and IOFF. Likewise, Figs. 

9(a)-(f) illustrate the training and the testing for MGN = 320 

by implementing the all explored DL models using VTH, ION 

and IOFF. Apart from the MGN = 16 and 80, the MGN = 320 is 

considered as a different case due to its excessive feature size, 

i.e., 320. As it has been already discussed, the larger input 

length may affect the training and testing of the DL models 

because (i) it may produce the curse of dimensionality, (ii) it 

requires more training dataset which is an inevitable problem 

in the field of device manufacturing and the simulation, and 

(iii) it can explode or vanish the gradient of the DL models 

during their backpropagation. Along with these issues, our 

explored DL models predict better than the anticipation. 

TABLE IV 

THE CALCULATED RMSE VALUES FOR TRAIN AND TEST OF THE 

ANN, CNN AND LSTM MODELS USING MGN = 80 

DL Model 
RMSE Value for 

Train 

RMSE Value for 

Test 

LSTM for VTH 0.00934 0.03297 

CNN for VTH 0.00529 0.0298 

ANN for VTH 0.01318 0.05087 

LSTM for ION 0.00219 0.01207 

CNN for ION 0.00522 0.01060 

ANN for ION 0.00798 0.01694 

LSTM for IOFF 0.01355 0.05285 

CNN for IOFF 0.00664 0.03518 

ANN for IOFF 0.01569 0.03735 

 
TABLE V 

LIST OF COMPUTED RMSE VALUES FOR TRAIN AND TEST OF THE 

ANN, CNN AND LSTM MODELS USING MGN = 320 

DL Model 
RMSE Value for 

Train 

RMSE Value for 

Test 

LSTM for VTH 0.09421 0.08707 

CNN for VTH 0.00733 0.0513 

ANN for VTH 0.0840 0.0535 

LSTM for ION 0.00903 0.0717 

CNN for ION 0.00579 0.05612 

ANN for ION 0.01410 0.07475 

LSTM for IOFF 0.01249 0.06739 

CNN for IOFF 0.01475 0.05764 

ANN for IOFF 0.01003 0.06400 

 
TABLE VI 

LIST OF CALCULATED ERROR RATE FOR TEST DATASET OF THE ANN, 

CNN AND LSTM MODELS USING MGN 16, 80 AND 320 

MGN 
Electrical 

Characteristics 
ANN CNN LSTM 

 VTH 0.9% 0.5% 0.8% 

16 ION 1.9% 0.95% 1.3% 

 IOFF 1.7% 1.5% 1.6% 

 VTH 1.3% 0.5% 1.5% 

80 ION 0.9% 0.8% 1.3% 

 IOFF 1.1% 0.8% 1.3% 

 VTH 1.6% 1.1% 1.8% 

320 ION 1.5% 1.3% 1.9% 

 IOFF 1.8% 1.3% 1.7% 
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Figure 7o Comparison among the ANN, CNN and LSTM models by predicting electrical characteristics induced by WKF using MGN = 16 having 
grain size = 5 nm x 4 nm on GAA Si NW MOSFETs. (a) and (b) illustrate the train and test of the explored DL models, respectively. All these adapted 
DL algorithms predict the VTH induced by WKF. (c) and (d) depict the train and test procedure of the DL models, respectively. These adapted DL 
algorithms predict the ION induced by WKF. (e) and (f) represent the train and test of all the DL models, respectively. These adapted DL algorithms 
predict the IOFF induced by WKF. 

 

Figure 8o Comparison among the ANN, CNN and LSTM models by predicting electrical characteristics induced by WKF using MGN = 80 having 
grain size = (2 nm)2 on GAA Si NW MOSFETs. (a) and (b) illustrate the train and test of the explored DL models, respectively. These adapted DL 
algorithms predict the VTH induced by WKF. (c) and (d) depict the train and test procedure of the DL models, respectively. These adapted DL 
algorithms predict the ION induced by WKF. (e) and (f) represent the train and test of the DL models, respectively. These adapted DL algorithms 
predict the IOFF induced by WKF. 

 
Figure 9o Comparison among the ANN, CNN and LSTM models by predicting electrical characteristics induced by WKF using MGN = 320 having 
grain size = (1 nm)2 on GAA Si NW MOSFET. (a) and (b) illustrate the train and test of the explored DL models, respectively. These adapted DL 
algorithms predict the VTH induced by WKF. (c) and (d) depict the train and test procedure of the DL models, respectively. These adapted DL 
algorithms predict the ION induced by WKF. (e) and (f) represent the train and test of the DL models, respectively. These adapted DL algorithms 
predict the IOFF induced by WKF. 
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In the DL algorithms, the curse of dimensionality can be 

overcome by implementing the different strategies for feature 

extraction and feature selection. However, each input feature 

holds equal significance as other features. Thus, it is worthless 

to use different algorithms to reduce the size of input features 

for the explored DL models. It is important for us to discuss 

more about the effectiveness of the explored DL models for 

predicting the VTH, ION and IOFF. By analyzing the effect of 

different MGNs (i.e., 16, 80 and 320), it is demonstrated that 

by increasing MGN, the RMSE value increases which depicts 

that it greatly affects the DL model performance. For the MGN 

= 16 and 80, all explored DL models such as ANN, CNN and 

LSTM, outperform but in the case of MGN = 320, even its 

noticeable concern with a long sequence of patterns, the 

performance of all explored DL models is acceptable.  

In short, the well-trained DL models are generic, i.e., a 

single model architecture can be applied to different MGNs, if 

the dataset for any value of MGN is exhibiting similar 

variability characteristics (for example, the ratio of ION/IOFF 

and the VTH lie in the range of MGN with which DL model has 

been already trained), then the same trained DL model is 

enough for any MGN value. Otherwise, to obtain the 

converged and optimized DL model for prediction, it is 

necessary to repeat the training process every time with 

datasets having different MGNs. 

VI.  POTENTIAL APPLICATIONS OF DEEP LEARNING 
MODELS WITH WKF FOR GAA Si NW MOSFET 

Nowadays, in the semiconductor industry, due to the excellent 

electrical characteristics of GAA Si NW MOSFETs with 

HKMG technology, various innovations have been launching 

simultaneously. In these innovations, various factors are 

affecting nodes below 10 nm. However, both MGL and MGN 

are the two most important factors that are influenced by 

WKF. Moreover, due to the laborious process of generating 

different grain sizes having different MGN and MGL, device 

simulation is considered the most powerful tool in 

semiconductor manufacturing industries. For 40 years, 

researchers have been investing efforts to accomplish a simple 

and accessible method for model designing. Technology 

computer-aided design (TCAD) is an authorized computer 

simulation tool for semiconductor manufacturing technologies 

and devices. Despite TCAD simulation tool success, device 

simulation has some limitations while dealing with WKF for 

GAA Si NW MOSFETs, i.e., high computational cost and the 

optimized solution, etc. 

There are various methodologies to examine the effect of 

different MGNs and MGLs on the variability of GAA Si NW 

MOSFET. Analytical model, averaged WKF, cuboid grain 

method and Voronoi method [75], all are popular 

technologies. Therefore, it is necessary to explore the most 

optimized and converge methodology for MG to study the 

effect of the WKF. Furthermore, studying the relationship 

between various sizes of MG and electrical characteristics 

induced by WKF has significant importance in nano-device 

technology.  

 
FIGURE 10o. An illustration of the pseudo-code of ANN focuses more 
on training procedure because the testing procedure is 
straightforward. 

Pseudo Code: Artificial Neural Network
1. Procedure train
2. X ← Training dataset of size mxn

3. y ← Labels for training data X
4. w ← Weights for respective layers
5. L ← The number of layers in model
6. E ← The error for all L
7. for i = 1 to m

8. aL ← forward(x(i),w)
9. EL ← aL – y(i)

10. D ← min (dE/dw)
11. w(i) ← w(i-1) + η*D
12. end for

 
FIGURE 11o. An illustration of the convolutional layer by multiplying 
the input matrix with appropriate kernel and the feature map that 
represents the output of the convolutional layer. 

x1 x2 x3 x4

x5 x6 x7 X8

x9 x10 x11 x12

x13 x14 x15 x16

Input

x
a b

c d
=

Kernel Feature 

Map

S[0,0] S[0,1] S[0,2]

S[1,0] S[1,1] S[1,2]

S[2,0] S[2,1] S[2,2]

𝑆    = 𝑥 × 𝑎 + 𝑥 × 𝑏 + 𝑥 × 𝑐 + 𝑥 ×  

 
FIGURE 12o. An illustration of the max-pooling layer by padding the 
convolutional layer’s output with zeros. Padding can be utilized at any 
layer to get the desired output dimensions. Stride represents the step 
size which moves the filter at a time.  

S[0,0] S[0,1] S[0,2]

S[1,0] S[1,1] S[1,2]

S[2,0] S[2,1] S[2,2]

Pad the matrix with zero to 

apply the pooling layer over 

all the matrix features.

S[0,0] S[0,1] S[0,2] 0

S[1,0] S[1,1] S[1,2] 0

S[2,0] S[2,1] S[2,2] 0

0 0 0 0

Maxpooling with 

2x2 with Stride 2

w x

y z

w=max(S[0,0],S[0,1],S[1,0],S[1,1])

x=max(S[0,2],S[1,2],0,0)

TABLE VII 

THE DIFFERENCE BETWEEN VARIOUS ACTIVATION FUNCTIONS IN 

TERMS OF THEIR INPUT AND OUTPUT RANGE AND DOMAIN 

 Sigmoid Tanh ReLU 

Range 0 and 1 -1 and 1 Max(0,x) 

Outcome 

A small change 

in input would 

result large 

change in output. 

Output is 

centered 

around zero. 

Computationally 

inexpensive as 

compared to 

sigmoid and 

tanh. 
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To study the challenges that appear in WKF for GAA Si 

NW MOSFETs, different DL algorithms conquer all the 

limitations. Moreover, the integration of DL with WKF for 

GAA Si NW MOSFETs imply various advantages, such as (1) 

DL can estimate the model specification induced by WKF for 

GAA Si NW MOSFETs very accurately which can accelerate 

the device simulation with less computational cost; (2) DL can 

extract crucial electrical characteristics induced by WKF for 

GAA Si NW MOSFETs that can be extended to model the 

complicated device; and (3) by studying the effect of different 

MGNs and MGLs on the variability of GAA Si NW 

MOSFETs through the DL algorithm, the device simulation 

can be conducted easily. Based on these points of view, the 

integration of DL with physically-sound device simulation can 

be considered an auxiliary technique in design, simulation and 

optimization of emerging device technologies.  

VII.  CONCLUSIONS 

In this paper, for the first time, three DL algorithms have been 

implemented, i.e., ANN, CNN and LSTM, which have shown 

sufficiently efficient and accurate performance. For the effect 

of MGN = 16, all the explored DL models outperform due to 

an optimal number of features. However, for the cases of 

MGN = 80 and 320, the CNN performs better than ANN and 

LSTM in terms of testing error rate and the RMSE value. The 

improvement in the predicted values using the CNN model 

attribute to the fact that the CNN model has the property of 

sparse interaction which can extract features using the 

minimum number of parameters. In the evidence of the testing 

error rate as summarized in Table V, it is concluded that the 

CNN model is a more optimal approach to estimating the 

electrical characteristics of GAA Si NW MOSFETs. 

Furthermore, it is accomplished that by the integration of 

the DL algorithms with 3D device simulation, various 

achievements have been observed. such as the more 

complicated device simulation can be modeled and the device 

simulation process can be accelerated. Therefore, more 

complex data structures obtain through the device 

simulations, e.g., for MGN = 480, the electrical characteristics 

can be accurately predicted by using the well-trained DL 

models. 

APPENDIX 

Artificial Neural Network 

Traditionally, a single artificial neuron having an input layer, 

activation function and output layer is known as the 

perceptron. A stack of these neurons having multiple layers is 

known as a multi-layer perceptron (MLP). Furthermore, the 

activation function is utilized to introduce non-linearity in the 

model. There are various types of activation functions, the 

difference between them is depicted in Table VII. However, 

there is one constraint regarding the selection of appropriate 

activation function, i.e., it should be differentiable so that 

while estimating the loss function it does not get vanished 

during the backpropagation. Conventionally, MLP/ANN 

consists of two main working strategies, i.e., (i) the forward 

propagation and (ii) the backward propagation. In the forward 

propagation, all the features are multiplied with their 

corresponding weights and biases and pass through the 

activation function after the summation of weight and bias, 

which is expressed as: 𝑦 = 𝜎   ×  𝑥 + 𝑏                                 (17) 

where x and y represent the input and the output of single 

perceptron, respectively;  represents the appropriate 

activation function and w and b depict the hyperparameters, 

i.e., weight and bias, respectively. 

Moreover, in the backward propagation, the error is 

minimized and weights are updated by using the chain rule 

method as given below: 𝑑𝐸𝑑𝑤 = 𝑑𝐸𝑑𝐴 × 𝑑𝐴𝑑𝑦 × 𝑑𝑦𝑑𝑤                                    (18) 

where dE/dw represents the derivative of the error function 

with respect to the weight. Similarly, dE/dA, dA/dy and dy/dw 

represent the derivation of the error function with respect to 

the activation function, the derivative of the activation 

function with respect to the forward propagation, and the 

derivative of the forward propagation function with respect to 

the weight, respectively. Once all derivatives are calculated, 

then the weights are updated with respect to the corresponding 

 
FIGURE 13o. An illustration of the pseudo-code of CNN including three 
main layers, i.e., the convolutional layer, the pooling layer and the fully-
connected layer.  

Pseudo Code: Convolutional Neural Network

1. Procedure train

2. X ← Train dataset of size mxn

3. y ← Labels for training data X
4. w ← Weights for respective layers
5. Call Convolutional_layer

6. Call Pooling_layer

7. Call Fully_connected_layer

8. end

9. Define Convolutional_layer
10. for i = 1 to m

11. for j = 1 to n

12. temp = 0

13. for ii=1 to K

14. for jj = 1 to K
15. temp = temp + K[ii][jj] * X[i-ii,i-jj]

16. end for

17. end for

18. end for

19. end for
20. Define Pooling_layer

21. for i = 1 to m

22. for j = 1 to m

23. matrix= max(temp[i,j],… temp[m,m])

24. end for
25. end for 

26. Define Fully_connected_layer

27. for i = 1 to m

28. temp = 0

29. for j = 1 to n
30. temp = temp + W[i][j] x X[j] 

31. end for

32. y[i] = temp

33. end for
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to these derivatives and the small factor known as a learning 

rate is given by:   𝑒𝑤 =  𝑜𝑙𝑑 − 𝜂 𝑑𝐸𝑑𝑤                              (19) 

where wnew and wold are the updated and the previous weights, 

respectively.  is the learning rate that corresponds to the step 

size for each iteration towards the minimization of the loss 

function. Also, the comparatively smaller learning rate 

corresponds to the slow convergence with the optimal solution 

and vice versa. An estimated value of the optimum learning 

rate in a neural-network is 0.001. A list of the pseudo-code of 

ANN is illustrated in Fig. 10. 

Convolutional Neural Network 

Conventionally, CNN consists of a stack of three basic layers, 

i.e., the convolutional layer, the pooling layer, and the fully-

connected layer. CNN also works similar to ANN in terms of 

the forward and backward propagation strategies. Here, CNN 

is explained in terms of mathematical equations and also 

depicted in Fig. 11. The convolutional layer corresponding to 

the convolution between filter/kernel and input matrix/image 

is given by:           𝑆 𝑖 𝑗 =  𝐼 × 𝐾  𝑖 𝑗 =          ∑ ∑ 𝐼 𝑚 𝑛 𝐾 𝑖 − 𝑚 𝑗 − 𝑛   𝑚                            (20) 

where K is the kernel/filter and I is the 2D input data consisting 

of a matrix with i-by-j dimensions. The second step in CNN is 

the pooling layer which extracts the important features or 

eliminates the noise from the input matrix, as shown in Fig. 

12. After the pooling layer, the fully-connected layer is 

implemented which is nothing but the traditional neural 

network. In the backward propagation, the same process is 

established such that the model’s parameters are updated by 
minimizing the loss function. The pseudo-code of CNN is 

illustrated in Fig. 13. 

Long Short Term Memory 

LSTM is a DL model and it is an extended version of the 

recurrent neural network (RNN). RNN is a special type of 

neural network that can deal with datasets having the 

characteristics of time dependency, periodicity and sequence, 

etc. However, there are some limitations of RNN including (i) 

it cannot deal with long term dependencies means that it is not 

able to memorize and make a correlation between long 

sequence of data and (ii) due to the absence of long term 

dependencies, during the backpropagation, mostly it faces the 

problem of vanishing gradient and sometimes exploding 

gradient. Therefore, LSTM is established to overcome these 

problems by introducing the concept of forget gate and cell 

state. The pseudo-code of LSTM is illustrated in Fig. 14.  
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Pseudo Code: Long Short Term Memory
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