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Deep learning analysis of defect and phase evolution during

electron beam-induced transformations in WS2
Artem Maksov 1,2,3, Ondrej Dyck1,2, Kai Wang 1, Kai Xiao1, David B. Geohegan1, Bobby G. Sumpter 1,4, Rama K. Vasudevan1,2,

Stephen Jesse1,2, Sergei V. Kalinin1,2 and Maxim Ziatdinov1,2,4

Recent advances in scanning transmission electron microscopy (STEM) allow the real-time visualization of solid-state
transformations in materials, including those induced by an electron beam and temperature, with atomic resolution. However,
despite the ever-expanding capabilities for high-resolution data acquisition, the inferred information about kinetics and
thermodynamics of the process, and single defect dynamics and interactions is minimal. This is due to the inherent limitations of
manual ex situ analysis of the collected volumes of data. To circumvent this problem, we developed a deep-learning framework for
dynamic STEM imaging that is trained to find the lattice defects and apply it for mapping solid state reactions and transformations
in layered WS2. The trained deep-learning model allows extracting thousands of lattice defects from raw STEM data in a matter of
seconds, which are then classified into different categories using unsupervised clustering methods. We further expanded our
framework to extract parameters of diffusion for sulfur vacancies and analyzed transition probabilities associated with switching
between different configurations of defect complexes consisting of Mo dopant and sulfur vacancy, providing insight into point-
defect dynamics and reactions. This approach is universal and its application to beam-induced reactions allows mapping chemical
transformation pathways in solids at the atomic level.
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INTRODUCTION

Chemical reactions and phase transformations underpin phenom-
ena ranging from cosmological processes, to the emergence of life
on Earth, to modern technologies and are therefore of tremen-
dous interest for both basic and applied sciences. Simple gas
phase reactions of small molecules can be readily studied using
well-established spectroscopy methods (infrared,1,2 mass,3 nuclear
magnetic resonance4), utilizing the spatial homogeneity of
reaction volumes when the same process occurs multiple times.
In conjunction with first-principles-based modeling,5,6 a reliable
picture of molecular reactivity can be built. For studies of more
complex organic and biochemical reactions, time-resolved cryo-
genic microscopy7 and femtosecond X-ray pump–probes8 provide
a reliable investigative framework, again relying on the statistical
similarity between multiple orientations of the same molecule.
The situation is far more complicated for solid state reactions

involving continuous solids. Traditionally, solid-state phase trans-
formations and reactions were explored by bulk measurements
and X-ray techniques. However, such techniques may not be able
to provide sufficient spatial resolution for understanding elemen-
tary mechanisms behind the observed transformations. This
problem can be partially solved by direct ex situ visualization of
reaction zones,9,10 providing information on the geometry and, in
certain cases, atomic configurations at the reaction fronts.
Similarly, utilization of colloid models11 allows for the develop-
ment of model systems, even though the nature of local

interactions is significantly different from those found in atomic
systems.
In recent years, advances in scanning transmission electron

microscopy ((S)TEM) have enabled the direct visualization of
dynamic phenomena at the atomic level.12–20 The physical/
chemical phenomena studied by in situ STEM are wide ranging
and now include e-beam induced defect evolution,21–30 disloca-
tion migration,31–33 observation of e-beam induced production of
single layer Fe and ZnO membranes in graphene nanopores,34,35

e-beam induced chemical etching and growth from nanoparticle
and single atom catalysts,36–41 sub-10 nm scale lithography,42

graphene healing,43 conductive nanowire formation,44 crystal-
lization and amorphization at 2D interfaces,45,46 formation of
fullerenes,47 and graphene edge dynamics.48,49 This list can hardly
be considered comprehensive, but it serves to illustrate the vast
array of dynamic changes that are being observed and rapidly
explored via in situ (S)TEM techniques. A tantalizing development,
which was published just last year (2017), is the introduction of a
single dopant atom into a graphene lattice, the controlled
movement of the atom through the lattice, and the assembly of
a few primitive structures atom-by-atom.50–53 Such efforts harken
back to the work of Don Eigler who first demonstrated controlled
atomic motion via scanning probe techniques.54 However, given
the colorful array of other atomic, chemical processes observed in
(S)TEM, and the continuously growing portfolio of commercially
available in situ equipment (heating, electrical biasing, gas and
liquid cells, etc.), it seems likely that many more processes can be
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brought under direct control, turning the (S)TEM into an atomic-
scale fabrication platform.55

Successes in e-beam atom-by-atom fabrication and atom-by-
atom mapping of solid-state reactions will require more than
explorational research and instrumental improvements. A key
piece of the puzzle will involve successfully grappling with the
enormous amount of data which can be generated by these
instruments to infer material-specific information describing
kinetics and thermodynamics of point and extended defects,
reaction paths, and mechanisms for extended defect and second
phase nucleation and growth. The “by hand” analysis of years past
is no longer a tractable solution considering the dimensionality
and number of datasets which are now routinely obtained. This
necessitates the creation of methods which allow for automated
analysis of dynamic transformations to extract relevant materials
descriptors and reconstruct reaction pathways from various
sources of detector readouts, such as the variety of imaging and
spectroscopic modes. In this article, we attempt to forge an inroad
in one aspect of this challenge, namely automated image analysis
for the detection and tracking of defects in STEM of 2D materials
and further proceed to extract microscopic point-defect reaction
mechanisms from these observations.
Here, we analyze the phase evolution of Mo-doped WS2 during

electron beam irradiation. In this process, the electron irradiation
results in removal of sulfur atoms, rendering the system over-
saturated with respect to low-valence tungsten–sulfur moieties.
We develop a deep-learning network for rapid analysis of this
dynamic data, analyze transformation pathways, create a library of
defects, and explore minute distortions in local atomic environ-
ment around the defects of interest, ultimately building a
complete framework for exploring point-defect dynamics and
reactions.

RESULTS AND DISCUSSION

Figure 1 shows several selected frames from a STEM “movie” of
lattice transformations in the Mo-doped WS2 monolayer under
100 kV electron beam irradiation. The full movie is available in the
Supplementary Material. This movie was previously analyzed by
some of the authors in the context of mesoscale phase
transformations.56 It can be seen that the system evolves with
time, evolving numerous point defects. On accumulation of
nonstoichiometry, the latter start to segregate, forming extended
defects, nucleating secondary phases, and resulting in the
segmentation and rearrangement of the 2D layer. The key task
is to obtain information of interest about the atomic-scale defects.
Unfortunately, most of the methods for localizing and identifying/
classifying defects available to date are slow, inefficient and
require frequent manual inputs.

To overcome the limitations of the available approaches, we
developed a physics-based machine learning method for localiz-
ing and identifying defects. We exploit the fact that each defect is
associated with violation of ideal periodicity of the lattice.
Therefore, we train a convolutional neural network (cNN) using a
single image at the early stage of the beam-induced transforma-
tion, when macroscopic periodicity is still maintained, and each
defect can be readily discovered providing the “ground truth” for
network training. Thus, a trained network relies only on the local
characteristics of the image, and hence can identify defects on the
later stages of system evolution when the long range periodicity
of the lattice is broken due to a second phase evolution and
displacement and rotation of unreacted WS2 fragments. Further-
more, we find that the network can discover via “extrapolation”
other defects which may not necessarily be a part of the initial
training set. Such “extrapolation” is possible due to generalization
abilities of deep-learning models. Indeed, we have recently
demonstrated57 that a deep cNN trained on the simulated images
of an idealistic lattice vacancy structure can in principle generalize
well enough to detect larger and more complex lattice vacancy
structures in the system (e.g., double and triple vacancies, as well
as reconstructed vacancies). The extracted defect structures can
be identified/classified using unsupervised clustering and unmix-
ing techniques. Finally, the selected defects can be studied further
using local crystallography techniques,58 such as a combination of
atom finding and principal component analysis for analyzing
minute atomic distortions in their vicinity in the “movies”, as well
as with a Markov analysis for identifying transition probabilities
between different defect configurations.
As a first step of analysis, we defined the topology of a neural

network to target specific physics of beam-induced transforma-
tions. The network must be able (i) to separate atomic-scale lattice
disorder from the rest of the lattice, (ii) to return the precise
location of the detected defects, and (iii) to be able to generalize
to previously unseen defect structures. One possible candidate is
the class activation maps-based deep-learning analysis, in which a
model trained on image-level labels is capable in principle of
discriminating the image regions used to identify the specific
class59 (defect). The disadvantage of such an approach is that one
must start with manually selecting the isolated single defect
structures to create a training set. In addition, we found that while
this approach allows certain atomic defect structures to be located
with sufficient accuracy, it has shown relatively poor general-
ization ability. The alternative approach is to use a fully cNN
model,60 which can be trained to output a pixel-wise classification
map, with the same size/resolution as the original input image,
that shows a probability of each pixel belonging to certain type of
object (defect). This type of model has been recently successfully

Fig. 1 Defects evolution under e-beam irradiation in Mo-doped WS2. a Ball-and-stick representations of WS2 structure. b–e Four selected
frames from the STEM movie of Mo-doped WS2 obtained at 100 kV illustrating formation of defects and lattice transformations as a function of
time. The full movie can be found in the Supplementary material
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applied to finding lattice atoms in raw STEM data57 and we
therefore chose it for the current problem.
The next task is to create a training set that will be used to

“teach” a model to find lattice defects in STEM movies, allowing
for sufficient flexibility to discover all the defects but at the same
time avoiding over-classification for classes that physically cannot
be present in the data. We found that it is possible to train a
network using only the first frame of such a movie or a single
image obtained before recording a movie, and then let the trained
network analyze the remaining part of the movie. This approach
utilizes the fact that macroscopically (i.e., on the length scale of
the image) the defects can be trivially discovered via the Fourier
method,61 providing the ground truth for network training.
However, when trained, the network relies solely on local edge
properties for identification and is thus stable toward formation of
extended defects, rotations, and fragmentations of the lattice.
To identify the defects, we select a single image (frame) at the

beginning of transformations (Fig. 2a). Once the image is selected,
we performed a global Fast Fourier Transform (FFT) on the
selected experimental image and applied a high-pass filter in
reciprocal space in order to remove nonperiodic components of

the lattice (Fig. 2b). We then performed an inverse FFT to obtain
the periodic image and subtracted the original image from it (and
vice versa) such that only the deviations from the ideal periodic
lattice remained.61 In this image difference, vacancies show up as
bright spots. Next, the image difference is thresholded to find
locations of the single defects (Fig. 2c). Note that the thresholded
image represents the “ground truth” which will be used to train
the cNN. The training set is created by performing data
augmentation of the selected experimental image and the
corresponding ground truth image. This augmented dataset can
be used to train a neural network to return positions of atomic
lattice disorder from raw experimental data (Fig. 2d). Once trained,
not only is this cNN-based method for finding defects faster and
more efficient than the method based on FFT subtraction, but it
also allows, unlike the FFT method, to find the position of defects
in the images of fragmented atomic lattices where multiple (joint
and/or disjoint) lattice domains can be rotated by different angles
with respect to each other. Because our model allows finding
defects that break lattice periodicity irrespective of the exact type
of the defect, we consider it to be a “universal” defect finder for a
given material.

Fig. 2 Training a deep convolutional neural network to recognize defects that break lattice periodicity. a The first frame from STEM movie on
Mo-doped WS2. b Global FFT and global FFT with high-pass filter applied. c Binary masks for image differences between the original data in a
and inverse of filtered FFT in b. The image in a is a training image and the data in c serves as ‘ground truth’ (pixel-wise labeling). d Schematics
of convolutional neural network with an encoder–decoder type of structure
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We now use the cNN model trained according to the method
described above (accuracy on the test set ∼99%) to locate atomic
defects in dynamic STEM data on Mo-doped WS2. Interestingly,
although our model was trained using only the first frame (out of
100) of the movie, it was able to accurately identify the positions
of atomic defects in the remaining 99 frames (see Supplementary
Figure 1; full movie of the defects found can be downloaded from
Supplementary Material). Once a sufficient number of defects
(~104 in this case) is extracted via the cNN model it becomes
possible to categorize them into different classes. To perform such
a defect classification in an unsupervised fashion, we adapted a
Gaussian mixture model (GMM).62 The GMM was applied to a
stack of defect “windows” (images of the identical size, usually
32px*32px cropped around the center of each defect) extracted
using the pixel-wise classification maps in the cNN output. Here,
we chose the number of GMM components to be five as this
appears to be the optimal number of components for under-
standing the type of defect structures present in the data. Indeed,
an increase in the number of components resulted in fine (sub-)
structures of the detected defects, while decreasing the number of
components produced some physically meaningless structures
(see Supplementary Figure 2). We also note that the number of
components past the purely exploratory stage can be adjusted
based on known defect chemistry of the material (either from
common physics principles, density functional theory calculations,
or combinatorial analysis)
The defect structures associated with the unmixed components

of GMM are shown in Fig. 3a–e. The class 1 and class 3 (Fig. 3a, c)
were found to correspond to a substitutional atom in W sublattice
with a lower Z number, which we interpret as Mo dopant (Mow).
Note that Mo atom does not occupy a symmetric central spot in
these structures as one would expect for a lone Mo dopant. This
suggests that there are additional distortions present in the

defects that form classes 1 and 3, likely associated with a disorder
in the S sublattice. Interestingly, presence of a coupling between
distinct defect species has been recently observed in static STEM
images from Mo-doped WS2 system and attributed to merging of
defects during growth and postgrowth procedures.63 This
comparison illustrates that as in other cases, systematic applica-
tion of statistical and machine learning methods allows us both to
recover earlier observations and, as we show next, derive new
information about underlying physical and chemical processes.
The classes 4 and 5 (Fig. 3d, e) are associated with a vacancy in the
W sublattice (Vw) and in the S sublattice (Vs), respectively. The
presence of adatoms/“contaminations” created during the e-beam
surface transformations (e.g., chemical species from initial WS2
material deposited back on to the surface in combination with
carbon atoms) can explain the defect structure in class 2 (Fig. 3b).
Figure 3f shows spatiotemporal trajectories (“brush diagram”

64)
for the identified defects. Based on the analysis of the diagram, we
identify three characteristic statistical behaviors: weakly moving
trajectories, stronger diffusion, and “uncorrelated events”/“flicker-
ing”. Presence of more than one characteristic behavior of the
atomic defects may be potentially connected to the complex
spatial character of strain fields during the material transforma-
tion, which may impact diffusion properties as well as create
certain “localization regions”, in which the motion of defects is
restrained.65,66 In the following, we will focus on the analysis of the
continuous and quasi-continuous trajectories only. The most well-
defined trajectories are associated with Mo dopants (class 1 and
class 3). These Mo defects show different diffusion behaviors
depending on their location in the lattice and are characterized by
reversible switching between two configurations (class 1 and class
3) along their trajectories. The defects associated with S and W
vacancies typically form shorter (compared to Mo defects)
trajectories. One possible explanation is that these vacancies are

Fig. 3 Unsupervised classification of defects located by the deep convolutional neural network. a–e Results of GMM unmixing into five
components (classes). f Spatiotemporal trajectories of the detected defects. Color scheme is the same as in (a–e)
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becoming filled by the W and S species from the extended clusters
of the deposited WS2 material (although we did not find any
associated correlations with point defects of class 2).
We now demonstrate that, based on the results produced by a

combination of cNN and GMM, it becomes possible to estimate
diffusion characteristics of the selected defect species. Particularly,
we studied diffusion properties of S vacancies. We first collapse
the 3-d spatiotemporal diagram for a chosen class of defect into a
2-d representation. For this purpose, we project the “windows” of
specific classes of defect, which allows separating defects that are
continuous in time from the randomly occurring ones (see
Supplementary Figure 3). This analysis is complemented by a
density-based clustering algorithm,67 which yields similar results.
After extracting defect coordinates for each selected defect “flow”
(Fig. 4), we can obtain variance of each distribution and estimate a
diffusion coefficient within a framework of a random walk model
in two dimensions. This yields values of diffusion coefficient
between 3 × 10−4 nm2/s and 6 × 10−4 nm2/s.
We further proceed to the analysis of another type of defect,

namely, the defect associated with a Mo dopant (classes 1 and 3).
Here, it is worth noting that while the GMM-based decomposition
into five components provides us with a good understanding of
the major types of defects present in the system, it does not allow
studying the fine details (variations) of the detected structures.
Performing such an analysis is especially important for classes 1
and 3 that show peculiar switching behavior in Fig. 3f. We
therefore investigated the “internal” structures of classes 1 and 3

using the so-called local crystallography analysis.58 Specifically, we
studied statistically significant deformation of the nearest
neighborhood for each defect structure using principal compo-
nent analysis (PCA). We first employ a deep-learning-based “atom
finder”68 that allows extracting positions of atoms from thousands
of noisy images of defects in a matter of seconds (note that S
atoms cannot be reliably identified at the current experimental
resolution and hence we omit them). The first two PCA
components associated with displacements from the averaged
structure of the central Mo atom and six W neighbor atoms for
each defect class are plotted in Fig. 5a, b. Since the Mo dopant
does not considerably distort the WS2 lattice,63 the structural
variations in PCA analysis must be associated with a disorder in
the S sublattice. In general, one must exercise caution in assigning
a specific physical meaning to the PCA components. However, the
results shown in Fig. 5 strongly suggest a presence of strong
variations in a relative position of central Mo atom with respect to
neighbor W atoms, thus it is possible that these variations
originate from the presence of S vacancies next to Mo dopant.
Based on the PCA analysis of the atomic displacements in Fig.

5a, b and general lattice symmetry considerations we use GMM to
split the defect structures from classes 1 and 3 into four subclasses
(Fig. 6b) associated with undistorted Mow defect (no coupling to S
vacancy) and three (Mow+ Vs) complexes (it is worth noting that
the similar result can be achieved by splitting the entire stack of all
the defect images into >12 classes, see Supplementary Figure 2).
Our next goal is to analyze the switching behavior between
different states. Using the same approach as described for the
analysis of diffusion parameters we first identified continuous-in-
time defect trajectories for all the four subclasses from Fig. 6b,
isolated them, and then converted them into the r(t) 1-d
representation (Fig. 6a). In this case, each “flow” represents a
sequence (in time) of defect structures undergoing switching
between four different states. This observation suggests that the
switching between different states can be analyzed as a Markov
process, defining corresponding reaction constants on a single
defect level.
The corresponding Markov transition matrix is depicted in Fig.

6d (see also the schematics of transitions in Fig. 6c). This analysis
suggests the Mow defect may couple to a S vacancy in the
dynamic STEM experiment. To explain transitions between Mow
and (Mow+ Vs) we argue that, due to a lower diffusion barrier of a
S vacancy, as well as higher probability of S sublattice atoms being
knocked-out during the e-beam irradiation, it is likely that the S
vacancy created in the vicinity of Mo dopant can get captured by
it. Interestingly, we also found transitions between different (Mow
+ Vs) structures. While the detailed explanation of such a behavior
would require rigorous first-principles calculations and additional
experiments, one can argue that the (Mow+ Vs+ Vs) structures are

Fig. 4 Analysis of diffusion behavior for selected defect structure. a 2-d projections (X–Y coordinates) of the 3-d defect “flow” of the S
vacancies (inset) with 95% prediction ellipses overlaid. b 1-d r(t) representation of the same data

Fig. 5 Local crystallography analysis for the selected defect classes.
a, b The principal component analysis-derived first two eigenmodes
of atomic displacements for defects associated with a Mo dopant
(class 1 and class 3 in Fig. 3a, c, respectively) presented as vectors of
deformation from atom positions in the averaged defect structure.
The length of the arrows is magnified by a factor of 5
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not stable and/or have a very short lifetime compared to the
experimental time resolution (to the best of our knowledge such
structures have not been observed even when (Mow+ Vs) defects
are abundant) and therefore attachment of the second S vacancy
leads to pushing one of the two S vacancies out of the structure.
The noticeably different values of transition probabilities for the
(Mow+ Vs) − I structure can be explained by a different rate of
supply of S vacancies from different lattice directions, for example
due to nontrivial distribution of strain fields during the e-beam
induced transformation and their effect on diffusion character-
istics in different lattice directions.
In summary, we have presented a deep-learning-based

approach for analysis of dynamic transformation of the lattice
structure in STEM “movies” from Mo-doped WS2. We started by
teaching a deep neural network how the defects that break lattice

periodicity appear in STEM data using a single experimental image
(frame 0) and then used the generalization abilities of the network
to find various types of atomic defects in the rest of the
experimental data. We then performed unsupervised classification
of the detected defect structures using a Gaussian mixture model
and showed that the classification results can be linked to specific
physical structures. We were then able to (i) identify dominant
point defects and their characteristic statistical behaviors in
spatiotemporal diagrams, (ii) analyze diffusion for the selected
defect species (S vacancy), and (iii) study transformation pathways
for Mo–S complexes, including detailed transition probabilities. In
this manner, point-defect dynamics and solid state reactions in the
material are studied on the atomic level, and corresponding
reaction constants are determined for just one point defect.

Fig. 6 Analysis of transition probabilities between different defect states. a 1-d representation of defect “flows” for the four subclasses of
defect associated with Mo dopant in b. Color scheme is the same as in a and b. c Illustration of Markov transition processes between four
states. d Markov transition matrix for the four subclasses (lone Mo dopant and three complexes of Mo dopant with S vacancy) based on the
analysis of trajectories in a
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As far as the future studies are concerned, we believe that one
particularly promising direction is incorporating specific physics-
based constraints into machine learning based analysis of STEM
videos. Indeed, the current approaches treat observed lattice
defects as collections of pixels, without “understanding” the
physics behind the observations. One possible way of overcoming
such physics-agnostic classification is by integrating a Markov
model into the initial search and identification/classification
scheme. The Markov model can be guided by the theoretical
calculations of interaction potentials on the atomic level,
enforcing physical constraints to transition probabilities of atoms
and molecules, effects of electron beam irradiation, and operating
both in space (hidden Markov random field) and time (hidden
Markov model) domains. For example, one may incorporate
transition probabilities between certain types of defects (e.g.,
reconstructed vs. nonreconstructed defect), as well as a maximum
diffusion length of a defect for a given time scale calculated from
first principles, and with a Markov model use it to refine the results
of the initial classification. This would be an important step
towards creating a fully autonomous, AI microscope that could
make decisions based on the knowledge of physics that it was
“taught”.

METHODS

Sample preparation
The Mo-doped WS2 monolayers were grown on SiO2/Si substrate at 800oC
by a low-pressure chemical vapor deposition.43 To prepare STEM samples,
poly(methyl methacylate), PMMA (A4), was first spun onto the SiO2/Si
substrate with monolayer crystals at 3500 rpm for 60 s. After being cured at
100 °C for 15min, the PMMA/W1−xMoxS2 sample was detached from the
substrate with a 30% KOH solution (100 °C and 0.5−1.0 h). The sample was
then transferred to deionised water to remove the KOH residue. The
washed film was scooped onto a QUANTIFOIL TEM grid. The PMMA was
then removed with acetone, and the samples were soaked in methanol for
12 h to achieve a clean surface with flakes. To remove the polymer, the TEM
grids were then annealed in an Ar flow (90 sccm, 10 torr) at 350 °C for 3 h.

STEM experiment
STEM imaging was performed using a Nion UltraSTEM U100 STEM
operated at 100 kV. The images were acquired in high angle annular dark
field imaging mode and were introduced to the deep cNN without any
post processing.

Data analysis
The deep cNN was implemented using Keras 2.0 (https://keras.io) Python
deep-learning library, with the TensorFlow backend. The cNN had an
encoder–decoder type of structure. The encoder part had alternating
convolutional layers for feature extraction with filters of the size 3 × 3 and
stride 1 activated by a rectified linear unit function and max-pooling layers
of the size 2 × 2 and stride 2 to account for translational invariance as well
as for reducing the size of processed data. The decoder part of the
network, whose role was to map the encoded low-resolution feature maps
to full input-resolution feature maps, consisted of the same filters (in
reverse order) and upsampling layers. The feature maps from the final
convolutional layer of the network were fed into a softmax classifier for
pixel-wise classification, providing us with information on the probability
of each pixel being a defect. The Adam optimizer69 was used for training.
The Gaussian mixture model was implemented with scikit-learn machine
learning library (http://scikit-learn.org).

DATA AVAILABILITY

The complete workflow for studying defects in dynamic STEM data, which includes

creation and training/testing of DL model, unsupervised defect classification, analysis of

diffusion characteristics, local crystallography analysis and Markov transition matrix

analysis, is available in a form of Jupyter notebooks in the Supplemental Material and at

https://github.com/artemmaksov/ORNL-DeepLearningForAtomicScaleDefectTracking.
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