
Citation: Tegene, A.; Liu, Q.; Gan, Y.;

Dai, T.; Leka, H.; Ayenew, M. Deep

Learning and Embedding Based

Latent Factor Model for Collaborative

Recommender Systems. Appl. Sci.

2023, 13, 726. https://doi.org/

10.3390/app13020726

Academic Editor: Yu-Dong Zhang

Received: 23 November 2022

Revised: 27 December 2022

Accepted: 27 December 2022

Published: 4 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Deep Learning and Embedding Based Latent Factor Model for
Collaborative Recommender Systems
Abebe Tegene 1,2 , Qiao Liu 1,*, Yanglei Gan 1 , Tingting Dai 1, Habte Leka 3 and Melak Ayenew 3

1 School of Computer Science and Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China

2 CoE of Big Data Analytics and HPC, Addis Ababa Science and Technology University,
Addis Ababa P.O. Box 16417, Ethiopia

3 School of Information and Software Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China

* Correspondence: qliu@uestc.edu.cn

Abstract: A collaborative recommender system based on a latent factor model has achieved significant
success in the field of personalized recommender systems. However, the latent factor model suffers
from sparsity problems. It is also limited in its ability to extract non-linear data features, resulting in
poor recommendation performance. Inspired by the success of deep learning in different application
areas, we incorporate deep learning into our proposed method to overcome the above problems. In
this paper, we propose a dual deep learning and embedding-based latent factor model that considers
dense user and item feature vectors. The model combines the existing deep learning and latent
factor models to extract deep abstractions and non-linear feature representations of the data for
rating prediction. The core idea is to map the dense user and item vectors generated by embedding
techniques into dual, fully connected deep neural network architectures. In these two separate
architectures, it learns the non-linear representation of the input data. The method then predicts
the rating score by integrating the factors obtained from the two independent structures using the
inner product. From the experimental result, we observe that the proposed model outperformed
state-of-the-art existing models in real-world datasets (MovieLens ML-100K and ML-1M).

Keywords: deep learning; latent factors; collaborative filtering; recommender systems

1. Introduction

Nowadays, consumers have a large variety of possibilities, such as books, restaurants,
movies, and other entertainment options, thanks to the rapid growth of internet services,
which has resulted in a problem of information overload [1]. Recommender Systems (RSs)
are algorithms that contribute to the resolution of the problem of information explosion.
They are smart algorithms that use the past preferences of a user to suggest a similar
product to other users [2]. Therefore, using efficient and accurate RSs is not questionable.

In a personalized recommendation system, recommendations are based on past in-
teractions between the user and the item, either explicit or implicit feedback interactions
called collaborative filtering (CF). This type of recommendation is often used since it ef-
fectively captures users’ preferences. However, the collaborative filtering technique has
data sparsity problems [3]. Additionally, due to their inability to use the item content, CF
algorithms have a limited scope for producing explanations for the recommendations [4].
To overcome these, researchers have incorporated additional attributes into collaborative
filtering. Ref. [5], for example, integrates user and item attributes, whereas [6] used contexts
as additional information to improve performance. According to collaborative filtering
methods, users may be curious about items selected by people with comparable interaction
habits to them. To implement CF-based methods, we need interaction data from various
sources, such as users and items, and then we form a user–item interaction matrix.

Appl. Sci. 2023, 13, 726. https://doi.org/10.3390/app13020726 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13020726
https://doi.org/10.3390/app13020726
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9318-9065
https://orcid.org/0000-0001-6127-9824
https://doi.org/10.3390/app13020726
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13020726?type=check_update&version=2

Appl. Sci. 2023, 13, 726 2 of 15

Memory- and model-based approaches are two commonly used collaborative filtering-
based techniques [1]. Memory-based (also called neighborhood-based) CF makes pre-
dictions based on the nearest neighborhoods. Neighborhood-based methods are further
classified into two types: user-based methods and item-based methods [7]. User-based CF
will give a recommendation based on the user’s past interaction history. On the other hand,
item-based CF learns the relationships between items and recommends comparable items
to a user based on their interaction history. In model-based CF, the latent factor model
(LFM) is one of its variants, which captures the user and item’s latent representations from
high-dimensional data [8].

The matrix factorization (MF) technique is one of the successful and efficient methods
in LFM. This method decomposes high-dimensional data into low-rank data [9], and
the method projects the latent factors into a shared latent space. Then, it predicts users’
preferences for items in this space by taking the inner product between user latent and item
latent vectors [10,11].

To improve the efficiency of matrix factorization, several academics have conducted
a range of studies. For example, the work given in Ref. [12] uses additional features like
item content to address the problem of sparsity, whereas [13,14] combine, social matrix
factorization with social relations to boost recommendation quality. Despite its high quality,
it has low computational performance for large amount of data, scalability problems for
sparse data, and information extraction problems for non-linear data. When there is a
lack of rating data, matrix factorization frequently results in poor recommendation quality.
Contrarily, a large amount of data will make computing more difficult. As a result, it is
necessary to look for various alternative models to increase the quality of recommendations.

Deep learning (DL), a new discipline, has achieved astounding success in several
domains, especially in natural language processing [15–17]. Recently, recommendation
systems have benefited from the deployment of DL, which provides new possibilities for
enhancing the effectiveness of RSs. One benefit of deep learning is its ability to handle
non-linear data representations. It can boost computational power and handle massive
amount of data [18]. It can also aid in solving sparsity problems, which results in higher
recommendation quality and performance [19]. In general, the work done by [20] has
mentioned several specific benefits of deep learning. It allows for the modeling of non-
linearity in data using a variety of non-linear activation functions. Deep neural networks
(DNNs) enable models to incorporate a variety of information while reducing the time
required for feature generation.

In this article, we look at the advantages of deep learning architecture and provide a
new approach for improving RS performance. We present such a dual DL and embedding-
based latent factor model for recommender systems, (shortened as DELCR). To improve
recommendation performance, DELCR employs embedding and deep neural network
architectures to determine the latent factors. The model combines known deep learning
and latent factor models to extract deep abstractions and non-linear feature representations
of the data for rating prediction. The core idea is to map the dense user and item vectors
generated by embedding techniques into two fully connected deep neural network (DNN)
architectures. We used the concept from the work cited in [8]. For the proposed model, we
embed the interaction rating matrix to obtain a dense vector that overcomes the sparsity
problem, and we developed the model to predict the rating score.

In general, in most existing deep learning-based recommender system designs, input
feature vectors are concatenated and projected into a common DNN architecture to learn
the abstraction of the important features. According to our argument, the approach is
insufficiently resilient to extract the required information from the data. Because users
have naturally complex abstractions, we must understand these phenomena separately to
obtain the appropriate information. We argue that such a strategy is insufficiently robust to
learn the required features from the data. Existing approaches did not employ separate
architectures for these two different elements. However, the proposed model transforms
the dense feature vector obtained from embedding techniques into separate deep neural

Appl. Sci. 2023, 13, 726 3 of 15

networks. In addition, we will integrate the inner product into the network’s output
layers for the sake of obtaining the interaction rating results. The newly designed model,
DELCR, efficiently learns the sparse data set in the embedding layer and the non-linear
feature of the data in their corresponding DNN structure, which results in the quality of
the recommendation. Thus, we can infer that the use of these two separate architectures
will make a significant difference in the performance of the model.

The main contributions of our work are as follows:

• We develop a dual DNN structure to extract the non-linear representation of users’
and items’ latent factors in their respective spaces separately.

• We construct a robust DL and embedding-based latent factor model. The method effec-
tively alleviates sparsity problems by combining deep learning and embedding techniques.

• We conduct an extensive experiment on two real-world datasets to predict the rat-
ing score. The result demonstrates that DELCR improves the performance of the
recommendation to the state-of-the-art level.

The remainder of the paper is organized as follows: Section 2 includes preliminary
work, while Section 3 includes related work. Section 4 presents the proposed model. Then,
the experimental result is described in Section 5. Finally, the conclusion is mentioned in
Section 6.

2. Preliminaries
2.1. Problem Statement

In this section, we develop a user-item historical interaction rating matrix Y from the
user’s explicit feedback as follows:

Let set of users U = {u1, u2, u3, . . . , um} and set of items V = {v1, v2, v3, . . . , vn} de-
note m and n total number of users and items in the matrix, respectively. Following [8], we
set R ∈ Rm×n to be the interaction matrix between user and item, where yij ∈ R represent
the preference score of user i for item j. Then, we define matrix Y using Equation (1)

rij =

{
yij if yij ∈ R.
unknown otherwise

(1)

2.2. Learning the Model

Existing parameter estimation methods are typically based on optimizing an objective
function. Pointwise loss and pairwise loss are the two forms of objective functions that
are most frequently employed in the literature [21]. Pointwise learning techniques are
often used as a regression framework by minimizing the Frobineous norm. As a result, we
optimized Equation (2) in the embedding space to determine user latent vectors in matrix
P and item latent vectors in matrix Q.

min
P,Q
‖R− PQT‖2

F. (2)

Any recommendation task must have a robust objective function for model optimiza-
tion. Thus, in the proposed method, we incorporate the loss function in Equation (3) along
with (2) to learn the model parameters for optimization because it performs very well with
pointwise explicit data types [22].

L = min
p,q

[
∑
i,j
(r̂ij − rij)

2 + λW2 + αb2

]
. (3)

where r̂ij is the user i’s rating for the item j estimated by the model. We use L2 regularization
terms to avoid over-fitting and enhance the model’s predictive performance for unseen data.
The regularization values related to hidden-layer’s weight W and bias b are represented by
the positive numbers λ and α, respectively.

Appl. Sci. 2023, 13, 726 4 of 15

3. Related Work
3.1. Latent Factor Model for Recommender Systems

The matrix factorization model is one of the well-known techniques in the latent
factor model. It is also a popular research topic in collaborative filtering since it frequently
produces a good low-dimensional latent feature representation of users and items. The
models generate a latent space from each user and item vector. Finally, it predicts the
elements that were missed using the inner product. To demonstrate this concept, consider
the latent factors of a user p and an item q, respectively. Then, the method estimates the
approximate rating score, r̂ij, by applying Equation (4) [11].

r̂ij = piqT
j =

K

∑
k=1

(pikqjk), (4)

where K represents the embedding dimension that must be taken into account.
The latent factors pi and qj in most MF-based models are calculated using gradient

descent methods to minimize the square error between the true value rij and the estimated
values r̂ij [11,14,23] on Equation (5).

∑
i,j

e2
ij = min

pi ,qj
∑(rij − r̂ij)

2. (5)

According to [14], SVD is one of the most effective matrix factorization approaches
for enhancing reliability and scalability issues. To improve rating prediction, biased SVD
introduced biasing features to the model [14]. By decomposing the rating matrix, the SVD++
algorithm achieved excellent prediction performance [23]. However, these methods are not
robust because they require too many iterations to discover the proper latent features. The
author of [24] suggested using large values of latent dimension K to overcome this. How-
ever, in the case of a sparse rating matrix, this also has an impact on the recommendation’s
quality. As a result, we use a dual deep learning network architecture to extract these latent
features in our proposed method, which is well suited to tackling those problems.

3.2. Deep Learning-Based Recommender Systems

The main problem of the recommender task is the non-linear interaction and large
amount of data between users and items, making feature learning a difficult task. This in
turn makes the learning process slow, as it requires much more time to train. In addition,
it affects the computational power. Therefore, we will employ deep learning frameworks
that can handle the above-stated challenges and improve the quality performance of the
RSs. For instance, the author of [21], in Neural Collaborative Filtering (NCF), showed
that the inner product could be automatically learned using the multi-layer perceptron
(MLP). This implicitly learns the non-linear feature representation between users and items,
which is the MF-based models’ main weakness. DeepFM [25] integrated factorization
machine (FM) and MLP to build an end-to-end framework for learning both low and
high-dimensional feature data. Due to this, many companies employ RSs to improve the
user experience and boost sales on their websites. For example, Ref. [26] developed a
video recommendation algorithm based on deep neural networks on YouTube. The authors
of [27] stated that Netflix RS has an 80% impact on consumer decisions. Most of these
approaches outperformed traditional recommendation models significantly. As a result, we
can observe that deep learning has sparked a significant change in the recommender sector.
To solve the aforementioned shortcomings, we introduce a dual deep learning architecture
to determine the latent factors. Like that of NCF, our approach does not learn the interaction
record automatically; instead, we use dual deep learning and embedding-based techniques
to extract the features of users and items separately. We then predict the ratings using the
inner product.

Appl. Sci. 2023, 13, 726 5 of 15

4. The Proposed Model

In this section, first, we will go over the model that motivated us, called DMF. Then, we
will present an embedding technique that reveals the behavior of the latent factor features.
A dual deep learning-based recommender system that integrates embedding techniques is
also discussed.

4.1. DMF Method

The authors of [8] introduced DMF for top-N item recommendations. To modify
the representation of the user and item, the model first maps users’ and items’ input
vectors into latently structured spaces. In this space, users and items are represented
by low-dimensional vectors. DMF uses latent features to compute the rank of items for
specified users based on similarity results. DMF uses both explicit and implicit feedback as
input features. On the other hand, DELCR uses dense latent factors as input features, and
we developed the method to predict the ratings rather than predict the rank. For model
optimization, we use distinct loss functions from DMF. In DMF, they filled the missing
values in the rating matrix with zeros. We believed that this resulted in biases, which in
turn affected the performance of recommendations. In our case, we learned these missed
values from existing rating values using embedding techniques. In addition, we used
an embedding layer to create a dense vector representation that addresses the problem
of sparsity in our scenario. In particular, our approach maps the input data into a low-
dimensional dense vector before mapping the features into a dual deep neural network
structure. In general, our model is a pure collaborative filtering method because, unlike
DMF, it predicts user preference for an item based on previous interactions.

4.2. Overview of the Architecture

The proposed model follows the following procedures:

• To handle sparsity problems, the method first learns the unknown rating values from
the user–item interaction matrix R.

• We use embedding techniques to learn those missed values from existing ratings.
• The ultimate goal of the model is to predict the ratings using two fully connected deep

neural networks.

4.3. Latent Factor Model

The latent factor (LF) model is one of the variants of the CF-based approach that is
responsible for capturing users’ and items’ latent vectors from high-dimensional data. The
method uses the inner product to determine the interactions [28]. In our proposed model,
we follow the procedure of the LF model to predict the ratings for the sake of overcoming
the sparsity problem. In most traditional LF models, they follow the concepts used in SVD
as an overall rating prediction. However, here we used the factors as input to the method.
According to Ref. [29], the missing values are first filled by taking the average values of
the existing ratings, and the latent factors are obtained using SVD techniques. In contrast
to this method, we learned the missed values from existing ratings by minimizing the
loss function in Equation (8). In addition, Ref. [29] has multiple user latent feature matrix
and one-item latent matrix, which increase computational complexity. In this regard, the
proposed method has only one user latent factor matrix P and one item latent factor matrix
Q that are used as feature input vectors for the DNN architectures. The architecture of our
proposed scheme, DELCR, is shown in, Figure 1. The details of the proposed method are
discussed layer by layer as follows:

Input Layer: The input layer of our model takes explicit feature vectors obtained from
past user interactions for items called “historical interactions”. The rating could be taken as
it is since it shows the level of a user’s liking for a given item. In this step, we used only
known user ratings to determine the dense user and item latent factors as a feature. The
proposed method follows the procedure shown in [30]. In their work, they embed user ID
to obtain a dense continuous-valued vector. However, in our case, we embed user rating

Appl. Sci. 2023, 13, 726 6 of 15

values to obtain the embedding vectors. Here, we initialized the latent factors with random
values during the model training to adjust the values.

User embedding

User layer 1

User layer 2

User layer N

Prediction Layer

 Ratings

 5

 ? 1

 ? 4 ?

 3 ? 2

In
p

u
t

L
ay

er

Output Layer

DNN Layers

Embedding Layer Item embedding

Item layer 1

Item layer 2

Item layer N

............

Figure 1. General scheme of the proposed model. The architecture consists of an embedding layer
with a dense vector obtained from the input matrix, followed by deep neural network layers. In
the output layer, the method generates the latent factors that are used for rating prediction in the
prediction layer.

Embedding layer: The embedding layer of DELCR projects each high-dimensional
input feature vector and sparse data matrix into two dense low-rank matrices. To obtain the
user u and item v primitive feature vectors in the embedding space, perform the following
steps: Let P ∈ Rm×k represent the user embedding matrix and Q ∈ Rn×k represent the
item embedding matrix, where k represents the embedding dimension. The user latent
vector pi and the item latent vector qj are then computed using Equations (6) and (7),
respectively [31].

pi = PTui. (6)

qj = QTvj. (7)

To demonstrate the concepts discussed above, the method first decomposes the rating
matrix R into two low-rank matrices, P (the user latent matrix) and Q (the item latent
matrix), that satisfy R ≈ PQT . To find the matrices, we used the embedding loss function

Appl. Sci. 2023, 13, 726 7 of 15

(LEM) using Equation (8) to minimize the difference between the true and approximate
values [32].

LEM = min
P,Q

 ∑
(i,j)∈Rknown

(rij − piqj
T)2

. (8)

A Dual deep learning layer: To capture the data’s non-linear phenomena and intrinsic
abstraction, we map embedded user latent pi and item latent qj into the dual deep learning
structures independently. This can be illustrated as follows:

After obtaining the dense feature vectors via the embedding equation, we trained the
deep neural network to minimize the loss function (LDL).

LDL = min
θ

[
∑
i,j
(r̂ij − rij)

2 + λW2 + αb2

]
. (9)

We conclude that the proposed method learns the latent features in their correspond-
ing deep neural network architecture by minimizing the two loss functions specified at
Equations (8) and (9) at the same time using the Adaptive Moment Estimation (Adam)
algorithm [33].

In contrast to many other models, such as [21,25,26], DELCR does not combine latent
vectors to flow via the shared DNN. We constructed a dual deep learning model that learns
users’ and items’ latent features separately for the proposed technique. Here, user and item
input vectors are projected into the next connected layer until they reach the output layers.
To extract non-linearity features in the data, we used the activation function tanh in each
hidden-layer of the network and ReLu in the output layer of the network. To illustrate this
concept, let p0 represent the initial user latent feature vector and q0 represent the initial
item feature vectors. Then, for the user fully connected DNN layer, we apply Equation (10).

xu1 = σ(wT
u1 p0 + bu1),

xu2 = σ(wT
u2xu1 + bu2),

...

puL = σ(wT
uLxuL−1 + buL),

(10)

where wu1, wu2, . . . , wuL and bu1, bu2, . . . , buL indicate weights and biases of users, respec-
tively. In this case, σ stands for an activation function. From each layer we have
xu1, xu2, . . . , puL as an output. Likewise, completely connected item layers can be expressed
using Equation (11).

xv1 = σ(wT
v1q0 + bv1),

xv2 = σ(wT
v2xv1 + bv2),

...

qvL = σ(wT
vLxvL−1 + bvL),

(11)

where qvL denotes the output latent factor from item layers.
prediction layer: After obtaining the latent features, puL and qvL of users and items,

respectively, we apply Equation (12) to estimate the desired rating score, r̂ij.

r̂ij = puL � qvL, (12)

where � represents the dot product.

Appl. Sci. 2023, 13, 726 8 of 15

5. Experiments

In this part, we undertake an extended experiment to answer the undermentioned
research questions:

• RQ1 Does our method outperform the baseline models?
• RQ2 How does the use of the embedding techniques improve the recommendation

performance?
• RQ3 How does the performance of DELCR vary with different hyper-parameter values?

5.1. Experimental Datasets

This study makes use of freely available MovieLens datasets. The GroupLens research
team put together these datasets. It is a collection of various-sized movie ratings. It is a
popular dataset for testing collaborative filtering algorithms [21]. For model comparison,
we chose data comprising ML-100K and ML-1M. We summarized the details of the data
in Table 1.

Table 1. Details of the datasets used.

Datasets Users Items Ratings Rating Density

ML-100K 944 1683 100,000 6.3%
ML-1M 6040 3706 1,000,208 4.5%

5.2. Evaluation Protocol

To ensure the accuracy of the recommendation result, the predicted performance of
the models is evaluated using the root mean squared error (RMSE) and mean absolute error
(MAE). The MAE measures the absolute error between the expected and actual values,
and the RMSE determines the difference between the true and predicted values. In most
recommender system literature, these are extensively used evaluation metrics [34]. In this
case, the lower the MAE and RMSE values, the better the accuracy is [23]. This is depicted
in Equations (13) and (14).

MAE = ∑
(i,j)∈DTest

|r̂ij − rij|
|DTest|

, (13)

RMSE =

√√√√ ∑
(i,j)∈DTest

(r̂ij − rij)2

|DTest|
, (14)

where rij indicates user i’s preference for item j, r̂ij is the associated estimated result of user
i to item j, and |DTest| is the test set’s size in the data.

5.3. Baseline Methods

To evaluate the performance of the proposed model, DELCR, we compared it with the
state-of-the-art models for MAE and RMSE evaluation metrics provided in [29].

• For collaborative filtering, MDA employs an autoencoder architecture with MF for
model prediction [35].

• CDL provides a hierarchical Bayesian model by combining two methods. It enables
the acquisition of an appropriate latent feature to address the sparsity problem [12].

• RMF model uses Manhattan distance to minimize the distances within matrices. It
successfully solves the problem of data sparsity [36].

• DMF is a Deep MF model that uses MLP to transform the representation of the user
and item [8].

• HLFM is one of the MF-based algorithms that investigates the underlying hierarchical
characteristics of users and items. To increase the effectiveness of RSs, the approach
integrates the hierarchy of items as well as user preferences [37].

Appl. Sci. 2023, 13, 726 9 of 15

• DLFCF is a CF model based on latent factors. The model uses deep factorization on
users and items to determine their latent representation vectors [29].

• DELCR is the model presented in this paper.

5.4. Parameter Settings

We randomly divided the data into training with 80%, and the rest went to test and
validation data. Each time, we execute five different pieces of training and pick the average
value as the final result to acquire representative prediction results as depicted in Table 2.
Our tests were run on the Ubuntu 18.04 operating system, with a CPU memory of 16GB
and a GPU memory of 6GB (NVIDIA). Tensorflow (https://www.tensorflow.org accessed
on 27 February 2021). was utilized to simulate the model, which will be released publicly
upon acceptance. For model optimization, we used Adam [33], with a batch size of 512,
a learning rate of 0.0001, and a regularizer coefficient λ of 1× e−6. We employed two
hidden-layers for the dual neural network with several factors on the hidden-layers as
{80, 40} and set the number of embedding dimensions to 8.

Table 2. Results of the DELCR from five-fold validation for both datasets. The values show the
metrics’ average and a 95% confidence interval in a five-fold validation.

Folds
For ML-100K For ML-1M

MAE RMSE MAE RMSE

Fold 1 0.672 ± 0.005 0.855 ± 0.005 0.643 ± 0.007 0.818 ± 0.004
Fold 2 0.674 ± 0.003 0.857 ± 0.007 0.642 ± 0.005 0.817 ± 0.006
Fold 3 0.671 ± 0.004 0.853 ± 0.002 0.644 ± 0.003 0.817 ± 0.001
Fold 4 0.673 ± 0.007 0.855 ± 0.007 0.642 ± 0.001 0.818 ± 0.004
Fold 5 0.675 ± 0.007 0.858 ± 0.003 0.641 ± 0.003 0.818 ± 0.003

5.5. Experimental Results

Table 2 lists MAE and RMSE metrics used in the experiments. The results in Table 2
are the averages for five different pieces of training, along with marginal error estimates
for each metric and a 95% confidence interval. Our analysis of the results shows that
their coefficient of variance is less than 1%. These findings indicated that outcomes are
reproducible and that the proposed approach generates reproducible results.

The performance result of our proposed method, DELCR, is summarized in Table 3.
The bold result was achieved using our method. When compared to the methods de-
picted in Table 4, the percentage improvement result shows a significantly improved
performance overall.

Table 3. Performance comparison result of DELCR for both datasets. The bold result is obtained
using the proposed method.

Methods
For ML-100K For ML-1M

MAE RMSE MAE RMSE

MDA 0.758 0.981 0.686 0.879
CDL 0.742 0.953 0.689 0.871
RMF 0.732 0.938 0.689 0.876
DMF 0.735 0.940 0.691 0.878
HLFM 0.750 0.962 0.698 0.880
DLFCF 0.717 0.901 0.678 0.854
DELCR 0.674 0.856 0.643 0.818

https://www.tensorflow.org

Appl. Sci. 2023, 13, 726 10 of 15

Table 4. Performance improvement results in DELCR for both datasets.

Methods
For ML-100k For ML-1M

MAE RMSE MAE RMSE

MDA 11.08% 12.74% 6.27% 6.94%
CDL 9.16% 10.18% 6.68% 6.08%
RMF 7.92% 8.74% 6.68% 6.62%
DMF 8.30% 8.94% 6.95% 6.83%
HLFM 10.13% 11.02% 7.88% 7.05%
DLFCF 6.00% 5.00% 5.16% 4.22%

6. Discussion
6.1. Performance Comparison (RQ1)

Figures 2a and 3a, show that our model converges for both datasets. The rate of
convergence of our method is faster for ML-1M than for ML-100K because ML-1M has
10 times more data points than ML-100K. We can also observe that a two-hidden-layer
model delivers the greatest performance result for both datasets. The following is a
summary of the main outcomes of the experiments:

(a) Loss graph (b) Performance curve for both metrics

Figure 2. A model with 2 hidden-layer for the ML-100K dataset. In Part (a), we have the training and
validation loss curve versus the number of training epochs, and in Part (b), we have the performance
results. As observed, the method converges.

(a) Loss graph (b) Performance curve for both metrics

Figure 3. A model with 2 hidden-layer for the ML-1M dataset. In Part (a), we have the training and
validation loss curve versus the number of training epochs, and in Part (b), we have the performance
results. As observed, the method converges.

Appl. Sci. 2023, 13, 726 11 of 15

• According to Table 4, the proposed method, DELCR, outperforms all other methods
for both datasets. Particularly when contrasted to our highly motivated DMF model,
our DELCR approach with ML-100K results in a relative improvement of 8.30% of
MAE and 8.94% of RMSE. In addition, the method delivers a relative improvement
with MAE of 6.95% and RMSE of 6.83% for the ML-1M dataset. Furthermore, when
contrasted to the DL-based models, CDL and MDA, the advances made by our
model are significant. For these two particular models, there is an average relative
improvement of 10.12% of MAE and 11.46% of RMSE for the ML-100K dataset whereas,
for ML-1M dataset, there is an average relative improvement of 6.48% of MAE and
6.51% of RMSE. The reasons for this best performance achievement are: (i) the use of
embedded ratings will effectively alleviate the problem of the sparse dataset and (ii) the
separate mapping of these dense embedded vectors to our proposed architecture helps
to discover the complex and abstract latent features of these two different entities
called users and items effectively.

• Once more, the discrepancy between the DELCR and RMF methods is significant.
When we see the comparison with the ML-100K dataset, we got a 7.92% and 8.74%
MAE and RMSE relative improvement, respectively. For the ML-1M dataset, the
method gives a relative improvement with 6.68% of MAE and 6.62% of RMSE. This
means that using a deep learning architecture allows us to successfully extract the
latent variables in our data, which was previously the fundamental constraint of most
classic matrix factorization-based models.

• When we evaluate DELCR, with the state-of-the-art latent factor models HLFM and
DLFCF, DELCR produces relatively minimal improvement results for MAE and RMSE
as compared to the other methods. This is expected as the model follows the latent
factor approach. In spite of this, the proposed model improvement result is due to
the effectiveness of the architecture in mining the latent features in a robust way. In
addition, when we see improvements made by the proposed method among the two
used datasets, our method yields a better result for the ML-100K dataset than ML-1M.
This achievement demonstrates that DELCR effectively alleviates the problem of data
sparsity since ML-100K is relatively sparser than ML-1M. In general, our method
outperforms all other methods in terms of improving the quality of recommendations.
This performance improvement shows the effectiveness of an embedding technique
and the use of a dual deep-learning architecture in the proposed method.

6.2. Effect of Embedding (RQ2)

To look into the impact of embedding, we compared the performance of our proposed
method, DELCR (with embedding), with that of DCF (without embedding), which was
our previously published proceeding. For a fair comparison, we made the number of
hidden-layers for DCF [19] the same as DELCR. We observe that DELCR with embedding
outperforms DCF on both datasets. Specifically, our proposed method outperforms DCF
with a relative improvement of 3.56% and 3.49% of MAE and RMSE, respectively, for the
ML-100K dataset. It also shows a relative improvement for the ML-1M dataset with a MAE
of 2.87% and a RMSE of 2.85% as shown in Table 5. From this result, we can conclude that
the use of an embedding technique improves the performance of recommendation quality.

Table 5. Embedding effect for both datasets.

Models
ML-100K ML-1M

MAE RMSE MAE RMSE

DCF 0.698 0.887 0.662 0.842
DELCR 0.674 0.856 0.643 0.818

Appl. Sci. 2023, 13, 726 12 of 15

6.3. Sensitivity to Hyper-Parameters (RQ3)

In this subsection, we look at how different hyperparameter values affect the perfor-
mance of the methods we have developed.

6.3.1. Depth of Layers in the Network

The most important parameters are the number of layers utilized in the network and
the number of neurons taken into account in each layer. To determine the ideal number
of layers for the network, we carried out an extensive experiment. The results depicted
in Table 6 show that performance decreases as we go deeper. This result demonstrates
that our system performs best with two hidden-layers in the network, so we chose the two
hidden-layer model outcomes given in Figures 2b and 3b since they provide the smallest
MAE and RMSE results. The reason for these performance decrements is that, as we move
deeper, we have to train more parameters that contribute to over-fitting for the limited
amount of available data, resulting in poor recommendation quality.

Table 6. Models performance result with different number of layers using both datasets.

Models
For ML-100k For ML-1M

MAE RMSE MAE RMSE

Two layer 0.674 0.856 0.643 0.818
Three layer 0.685 0.874 0.659 0.835
Four layer 0.707 0.896 0.677 0.860

6.3.2. Number of Nodes in Each Layer

The number of nodes also plays a big role in our method. We experimented to
determine the right number of nodes to take into account for each layer, and we came up
with 80 neurons for the first outer layer. By taking half of the nodes from the layer before, we
may compute the subsequent number of nodes for the subsequent inner layer. Thus, the two
hidden-layer models require 80 and 40 neurons on successive layers, the three hidden-layer
models require 80, 40, 20, and the four hidden-layer models require 80, 40, 20, 10 neurons on
successive layers. The results obtained from the models are depicted in Table 6.

6.3.3. Number of Nodes in the Final Hidden Layers

Referring to the results shown in Table 6, which are values extracted from Figures 2b,
3b, 4b and 5b, we subsequently conclude that our proposed model will have two hidden-
layers in the network. In the final hidden-layer, we played around with the number of
nodes. According to [8], the number of neurons placed on the last layer is used as a
prediction factor. As a result, we programmed it to range between 20 to 80, with a step size
of 10. The best results were obtained whenever we had 40 nodes in the final hidden-layer,
as shown in Table 7.

Table 7. Performance of DELCR with different numbers of neurons on the last layer for ML-
1M dataset.

Metrics
Number of Neurons

20 30 40 50 60 70

MAE 0.650 0.647 0.643 0.645 0.644 0.643
RMSE 0.825 0.823 0.818 0.819 0.820 0.818

Appl. Sci. 2023, 13, 726 13 of 15

(a) Loss graph (b) Performance curve for both metrics

Figure 4. A three-hidden-layer model for the ML-100K dataset. In Part (a), we have the training and
validation loss curve versus a number of training epochs, and in Part (b), we have the performance
results. As observed, the method converges.

(a) Loss graph (b) Performance curve for both metrics

Figure 5. A four-hidden-layer model for the ML-100K dataset. In Part (a), we have the training and
validation loss curve versus several training epochs, and in Part (b), we have the performance results.
As observed, the method converges.

7. Conclusions

In this paper, we explored a dual DL and embedding-based latent factor method for
recommender systems. The method combines deep learning and embedding techniques
to overcome the data sparsity problem faced by latent factor models. To overcome this
problem, the design first embeds users’ and items’ input vectors to build a dense low-
dimensional representation of data using embedding techniques. Then, it projects these
dense vectors separately into two well-structured deep neural network architectures to
discover the abstract and non-linear representation of the data. Finally, we use the inner
product to estimate the rating score in the network’s output layers. By significantly im-
proving performance, this framework effectively alleviates problems observed in latent
factor-based models. We performed extensive experiments on two real-world datasets,
and the resulting experimental findings revealed that our proposed model outperformed
existing state-of-the-art techniques for the rating prediction task on all datasets. As we dis-
cussed in our approach, particularly effective results were obtained for the sparse dataset
ML-100K rather than ML-1M. We can conclude from this result that deep learning ap-
proaches are one of the most effective technical means of improving the performance of
recommendation systems.

Appl. Sci. 2023, 13, 726 14 of 15

In the future, we plan to incorporate other deep learning architectures for recom-
mender systems to improve the quality of their performance in advance. We also intend to
look into the effect of dual embedding on dual deep learning architectures.

Author Contributions: A.T. and Q.L. built the framework of the whole paper. A.T. and Y.G. car-
ried out preprocessing of the data. A.T. designed the whole experiment and method and imple-
mented the experiment. Q.L. provided analytical and experimental tools. H.L. and M.A. wrote the
manuscript. T.D. revised the manuscript. All authors have read and agreed to the published version
of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (No. U19B2028,
No. U22B2061).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: This study makes use of publicly available MovieLens datasets. This
data can be found at https://files.grouplens.org/datasets/movielens/, accessed on 26 February 2021.

Conflicts of Interest: The authors declare no conflict of interest

References
1. Pawlicka, A.; Pawlicki, M.; Kozik, R.; Choraś, R.S. A systematic review of recommender systems and their applications in

cybersecurity. Sensors 2021, 21, 5248. [CrossRef] [PubMed]
2. Ricci, F.; Rokach, L.; Shapira, B. Recommender systems: Introduction and challenges. In Recommender Systems Handbook; Springer:

Boston, MA, USA, 2015; pp. 1–34.
3. Sun, Z.; Guo, Q.; Yang, J.; Fang, H.; Guo, G.; Zhang, J.; Burke, R. Research commentary on recommendations with side information:

A survey and research directions. Electron. Commer. Res. Appl. 2019, 37, 100879. [CrossRef]
4. Catherine, R.; Mazaitis, K.; Eskenazi, M.; Cohen, W. Explainable entity-based recommendations with knowledge graphs. arXiv

2017, arXiv:1707.05254.
5. Wang, H.; Zhang, F.; Hou, M.; Xie, X.; Guo, M.; Liu, Q. Shine: Signed heterogeneous information network embedding for

sentiment link prediction. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining,
Marina Del Rey, CA, USA, 5–9 February 2018; pp. 592–600.

6. Sun, Y.; Yuan, N.J.; Xie, X.; McDonald, K.; Zhang, R. Collaborative intent prediction with real-time contextual data. ACM Trans.
Inf. Syst. (TOIS) 2017, 35, 1–33. [CrossRef]

7. Wang, Y.; Deng, J.; Gao, J.; Zhang, P. A hybrid user similarity model for collaborative filtering. Inf. Sci. 2017, 418, 102–118.
[CrossRef]

8. Xue, H.J.; Dai, X.; Zhang, J.; Huang, S.; Chen, J. Deep matrix factorization models for recommender systems. In Proceedings of the
26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; Volume 17, pp. 3203–3209.

9. Yagci, A.M.; Aytekin, T.; Gurgen, F.S. A Meta-Algorithm for Improving Top-N Prediction Efficiency of Matrix Factorization
Models in Collaborative Filtering. Int. J. Pattern Recognit. Artif. Intell. 2020, 34, 2059007. [CrossRef]

10. He, X.; Zhang, H.; Kan, M.Y.; Chua, T.S. Fast matrix factorization for online recommendation with implicit feedback. In
Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, Pisa Italy,
17–21 July 2016; pp. 549–558.

11. Koren, Y.; Bell, R.; Volinsky, C. Matrix factorization techniques for recommender systems. Computer 2009, 42, 30–37. [CrossRef]
12. Wang, H.; Wang, N.; Yeung, D.Y. Collaborative deep learning for recommender systems. In Proceedings of the 21th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, Sydney, Australia, 10–13 August 2015; pp. 1235–1244.
13. Guo, L.; Ma, J.; Chen, Z.; Zhong, H. Learning to recommend with social contextual information from implicit feedback. Soft

Comput. 2015, 19, 1351–1362. [CrossRef]
14. Gu, Y.; Yang, X.; Peng, M.; Lin, G. Robust weighted SVD-type latent factor models for rating prediction. Expert Syst. Appl. 2020,

141, 112885. [CrossRef]
15. Bengio, Y. Learning deep architectures for AI. Found. Trends® Mach. Learn. 2009, 2, 1–127. [CrossRef]
16. Hinton, G.E. Deep belief networks. Scholarpedia 2009, 4, 5947. [CrossRef]
17. Adnan, M.; Habib, A.; Ashraf, J.; Mussadiq, S.; ALI, A. Deep neural network based m-learning model for predicting mobile

learners’ performance. Turk. J. Electr. Eng. Comput. Sci. 2020, 28, 1422–1441. [CrossRef]
18. Dang, D.; Chen, C.; Li, H.; Yan, R.; Guo, Z.; Wang, X. Deep knowledge-aware framework for web service recommendation.

J. Supercomput. 2021, 77, 14280–14304. [CrossRef]
19. Tegene, A.T.; Liu, Q.; Muhammed, S.B.; Leka, H.L. Deep Learning Based Matrix Factorization For Collaborative Filtering.

In Proceedings of the 2021 18th International Computer Conference on Wavelet Active Media Technology and Information
Processing (ICCWAMTIP), Chengdu, China, 17–19 December 2021; pp. 165–170.

https://files.grouplens.org/datasets/movielens/
http://doi.org/10.3390/s21155248
http://www.ncbi.nlm.nih.gov/pubmed/34372489
http://dx.doi.org/10.1016/j.elerap.2019.100879
http://dx.doi.org/10.1145/3041659
http://dx.doi.org/10.1016/j.ins.2017.08.008
http://dx.doi.org/10.1142/S0218001420590077
http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1007/s00500-014-1347-0
http://dx.doi.org/10.1016/j.eswa.2019.112885
http://dx.doi.org/10.1561/2200000006
http://dx.doi.org/10.4249/scholarpedia.5947
http://dx.doi.org/10.3906/elk-1907-8
http://dx.doi.org/10.1007/s11227-021-03832-2

Appl. Sci. 2023, 13, 726 15 of 15

20. Zhang, S.; Yao, L.; Sun, A.; Tay, Y. Deep learning based recommender system: A survey and new perspectives. ACM Comput.
Surv. (CSUR) 2019, 52, 1–38. [CrossRef]

21. He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; Chua, T.S. Neural collaborative filtering. In Proceedings of the 26th International
Conference on World Wide Web, Perth, Australia, 3–7 April 2017; pp. 173–182.

22. Salakhutdinov, R.; Mnih, A.; Hinton, G. Restricted Boltzmann machines for collaborative filtering. In Proceedings of the 24th
International Conference on Machine Learning, Corvalis, OR, USA, 20–24 June 2007; pp. 791–798.

23. Wang, S.; Sun, G.; Li, Y. SVD++ recommendation algorithm based on backtracking. Information 2020, 11, 369. [CrossRef]
24. Rendle, S. Factorization machines with libfm. ACM Trans. Intell. Syst. Technol. (TIST) 2012, 3, 1–22. [CrossRef]
25. Guo, H.; Tang, R.; Ye, Y.; Li, Z.; He, X. DeepFM: A factorization-machine based neural network for CTR prediction. arXiv 2017,

arXiv:1703.04247.
26. Covington, P.; Adams, J.; Sargin, E. Deep neural networks for youtube recommendations. In Proceedings of the 10th ACM

Conference on Recommender Systems, Boston, MA, USA, 15–19 September 2016; pp. 191–198.
27. Gomez-Uribe, C.A.; Hunt, N. The netflix recommender system: Algorithms, business value, and innovation. ACM Trans. Manag.

Inf. Syst. (TMIS) 2015, 6, 1–19. [CrossRef]
28. Wu, D.; Luo, X.; Shang, M.; He, Y.; Wang, G.; Zhou, M. A deep latent factor model for high-dimensional and sparse matrices in

recommender systems. IEEE Trans. Syst. Man Cybern. Syst. 2019, 51, 4285–4296. [CrossRef]
29. Mongia, A.; Jhamb, N.; Chouzenoux, E.; Majumdar, A. Deep latent factor model for collaborative filtering. Signal Process. 2020,

169, 107366. [CrossRef]
30. Nassar, N.; Jafar, A.; Rahhal, Y. A novel deep multi-criteria collaborative filtering model for recommendation system. Knowl.-Based

Syst. 2020, 187, 104811. [CrossRef]
31. Cheng, W.; Shen, Y.; Zhu, Y.; Huang, L. DELF: A Dual-Embedding based Deep Latent Factor Model for Recommendation. In

Proceedings of the IJCAI, Stockholm, Sweden, 13–19 July 2018; Volume 18, pp. 3329–3335.
32. He, G.; Zhao, D.; Ding, L. Dual-embedding based Neural Collaborative Filtering for Recommender Systems. arXiv 2021,

arXiv:2102.02549.
33. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
34. Shi, C.; Hu, B.; Zhao, W.X.; Philip, S.Y. Heterogeneous information network embedding for recommendation. IEEE Trans. Knowl.

Data Eng. 2018, 31, 357–370. [CrossRef]
35. Li, S.; Kawale, J.; Fu, Y. Deep collaborative filtering via marginalized denoising auto-encoder. In Proceedings of the 24th

ACM International on Conference on Information and Knowledge Management, Melbourne, Australia, 18–23 October 2015;
pp. 811–820.

36. Liu, T.; Tao, D. On the performance of manhattan nonnegative matrix factorization. IEEE Trans. Neural Netw. Learn. Syst. 2015,
27, 1851–1863. [CrossRef] [PubMed]

37. Wang, S.; Tang, J.; Wang, Y.; Liu, H. Exploring hierarchical structures for recommender systems. IEEE Trans. Knowl. Data Eng.
2018, 30, 1022–1035. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/3158369
http://dx.doi.org/10.3390/info11070369
http://dx.doi.org/10.1145/2168752.2168771
http://dx.doi.org/10.1145/2843948
http://dx.doi.org/10.1109/TSMC.2019.2931393
http://dx.doi.org/10.1016/j.sigpro.2019.107366
http://dx.doi.org/10.1016/j.knosys.2019.06.019
http://dx.doi.org/10.1109/TKDE.2018.2833443
http://dx.doi.org/10.1109/TNNLS.2015.2458986
http://www.ncbi.nlm.nih.gov/pubmed/26277001
http://dx.doi.org/10.1109/TKDE.2018.2789443

	Introduction
	Preliminaries
	Problem Statement
	Learning the Model

	Related Work
	Latent Factor Model for Recommender Systems
	Deep Learning-Based Recommender Systems

	The Proposed Model
	DMF Method
	Overview of the Architecture
	Latent Factor Model

	Experiments
	Experimental Datasets
	Evaluation Protocol
	Baseline Methods
	Parameter Settings
	Experimental Results

	Discussion
	Performance Comparison (RQ1)
	Effect of Embedding (RQ2)
	Sensitivity to Hyper-Parameters (RQ3)
	Depth of Layers in the Network
	Number of Nodes in Each Layer
	 Number of Nodes in the Final Hidden Layers

	Conclusions
	References

