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ABSTRACT

Deciphering the massive volume of complex

electronic data that has been compiled by hos-

pital systems over the past decades has the

potential to revolutionize modern medicine, as

well as present significant challenges. Deep

learning is uniquely suited to address these

challenges, and recent advances in techniques

and hardware have poised the field of medical

machine learning for transformational growth.

The clinical neurosciences are particularly well

positioned to benefit from these advances given

the subtle presentation of symptoms typical of

neurologic disease. Here we review the various

domains in which deep learning algorithms

have already provided impetus for change—ar-

eas such as medical image analysis for the

improved diagnosis of Alzheimer’s disease and

the early detection of acute neurologic events;

medical image segmentation for quantitative

evaluation of neuroanatomy and vasculature;

connectome mapping for the diagnosis of Alz-

heimer’s, autism spectrum disorder, and atten-

tion deficit hyperactivity disorder; and mining

of microscopic electroencephalogram signals

and granular genetic signatures. We addition-

ally note important challenges in the integra-

tion of deep learning tools in the clinical setting

and discuss the barriers to tackling the chal-

lenges that currently exist.

Keywords: Artificial intelligence; Biomedical

informatics; Computer vision; Connectome

mapping; Deep learning; Genomics; Machine
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INTRODUCTION

Twenty-first century healthcare is marked by an

abundance of biomedical data and the devel-

opment of high-performance computing tools

capable of analyzing these data. The availability

of data and increased speed and power of

computer systems together present both

opportunities and challenges to researchers and

healthcare professionals. Most significantly,

they provide the potential to discover new dis-

ease correlates and translate these insights into

new data-driven medical tools that can improve

the quality and delivery of care. However, such

advancements require the navigation of high-

dimensional, unstructured, sparse, and often
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incomplete data sources, with the outcomes

being cumbersome to track. Identifying novel

clinical patterns amidst this complexity is defi-

nitely not a trivial task [1–3].

Modern representation learning methods

enable the automatic discovery of representa-

tions needed to generate insights from raw data

[4]. Deep learning algorithms are an example of

such representation learning approaches that

hierarchically compose nonlinear functions to

transform raw input data into more sophisti-

cated features that enable the identification of

novel patterns [5]. Such approaches have

proved to be essential in modern engineering

breakthroughs—from face recognition and self-

driving cars to chat-bots and language transla-

tion [6–12]. In medicine, the successful appli-

cation of deep learning algorithms to routine

tasks has enabled a flood of academic and

commercial research, with publications on var-

ious applications growing from 125 published

papers identified as machine learning publica-

tions in arXiv, the electronic scientific and

engineering paper archive, in 2000, to more

than 3600 by November of 2018 (see Fig. 1).

The multidiscipline of clinical neurosciences

has similarly experienced the beginnings of an

impact from deep learning, with movement

towards the development of novel diagnostic

and prognostic tools. Deep learning techniques

are particularly promising in the neurosciences

where clinical diagnoses often rely on subtle

symptoms and complicated neuroimaging

modalities with granular and high-dimensional

signals. In this article, we discuss the applications

of deep learning in neurology and the ongoing

challenges, with an emphasis on aspects relevant

to the diagnosis of common neurologic disor-

ders. However, our aim is not to provide com-

prehensive technical details of deep learning or

its broader applications. We begin with a brief

overview of deep learning techniques followed

by a review of applications in the clinical neuro-

science field. We conclude the review with a

short discussion on existing challenges and a

look to the future. This article is based on previ-

ously conducted studies and does not contain

any studies with human participants or animals

performed by any of the authors.

FUNDAMENTALS OF DEEP

LEARNING

Machine learning is a subset of artificial intelli-

gence that learns complex relationships among

Fig. 1 Machine learning publications in PubMed by year through 2018 showing the exponential growth of interest in the
field, as reported by the US National Library of Medicine of the National Institutes of Health [13]
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variables in data [14]. The power of machine

learning comes from its ability to derive pre-

dictive models from large amounts of data with

minimal or, in some cases, entirely without the

need for prior knowledge of the data or any

assumptions about the data. One of the most

widely discussed modern machine learning

algorithms, the artificial neural network (ANN),

draws inspiration from biological neural net-

works that constitute mammalian brains. The

functional unit of the ANN is the perceptron,

which partitions input data into separable cat-

egories or classes [15]. When hierarchically

composed into a network, the perceptron

becomes an essential building block for modern

deep neural networks (DNNs), such as multi-

layer perceptron classifiers. Similar examples of

commonly used traditional machine learning

algorithms include linear regression (LR), logis-

tic regression, support vector machines (SVMs),

and the Naı̈ve Bayes classifier (Fig. 2).

These traditional machine learning methods

have been important in furthering advance-

ments in medicine and genomics. As an exam-

ple, LR has proven useful in the search for

complex, multigene signatures that can be

indicative of disease onset and prognosis, tasks

which are otherwise too intricate and cumber-

some even for researchers with professional

training [16]. Although such tools have been

very effective in parsing massive datasets and

identifying relationships between variables of

interest, traditional machine learning

techniques often require manual feature engi-

neering and suffer from overhead that limits

their utility in scenarios that require near real-

time decision-making.

Deep learning differs from traditional

machine learning in how representations are

automatically discovered from raw data. In

contrast to ANNs, which are shallow feature

learning techniques, deep learning algorithms

employ multiple, deep layers of perceptrons

that capture both low- and high-level repre-

sentations of data, enabling them to learn richer

abstractions of inputs [5]. This obviates the need

for manual engineering of features and allows

deep learning models to naturally uncover pre-

viously unknown patterns and generalize better

to novel data. Variants of these algorithms have

been employed across numerous domains in

engineering and medicine.

Convolutional neural networks (CNNs) have

garnered particular attention within computer

vision and imaging-based medical research

[17, 18]. CNNs gather representations across

multiple layers, each of which learns specific

features of the image, much like the human

visual cortex is arranged into hierarchical layers,

including the primary visual cortex (edge

detection), secondary visual cortex (shape

detection), and so forth [19]. CNNs consist of

convolutional layers in which data features are

learned: pooling layers, which reduce the

number of features, and therefore computa-

tional demand, by aggregating similar or

Fig. 2 Breakdown of algorithm types in the machine learning family that are commonly used in medical subdomain
research and analyses
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redundant features; dropout layers, which

selectively turn off perceptrons to avoid over-

reliance on a single component of the network;

and a final output layer, which collates the

learned features into a score or class decision,

i.e., whether or not a given radiograph shows

signs of ischemia. These algorithms have

achieved rapid profound success in image clas-

sification tasks and, in some cases, have mat-

ched board-certified human performance

[20–24].

Recurrent neural networks and variants, such

as long short-term memory (LSTM) and gated

recurrent units, have revolutionized the analy-

sis of time-series data that can be found in

videos, speech, and texts [25]. These algorithms

sequentially analyze each element of input data

and employ a gating mechanism to determine

whether to maintain or discard information

from prior elements when generating outputs.

In this manner, they efficiently capture long-

term dependencies and have revolutionized

machine translation, speech processing, and

text analysis.

Autoencoders (AEs) are a class of unsuper-

vised learning algorithms that discover mean-

ingful representations of data by learning a

lower-dimensional mapping from inputs to

outputs [26, 27]. They are composed of an

encoder, which learns a latent representation of

the input, and a decoder, which reconstructs

the input from the latent representation. By

constraining the latent representation to a

lower dimensionality than the input, AEs are

able to learn a compressed representation of

data that contains only the features necessary to

reconstruct the input. Such algorithms are often

employed to learn features that can be subse-

quently utilized in conjunction with the deep

learning techniques previously discussed.

Generative adversarial networks are a newer

class of algorithms aimed at generating novel

data that statistically mimic input data by

approximating a latent distribution for the data

[28]. Such algorithms are composed of two

competing (‘‘adversarial’’) networks: a genera-

tor, which produces synthetic data from noise

by sampling from an approximated distribu-

tion, and a discriminator, which aims to dif-

ferentiate between real and synthetic instances

of data. As the two networks engage in this

adversarial process, the fidelity of the generated

data gradually improves. In some contexts, the

resulting data have been utilized to augment

existing datasets [29].

These strides in deep learning are largely due

to breakthroughs in computing capabilities and

the open-source nature of research in the field.

The application of graphics processing units to

deep learning research has dramatically accel-

erated the size and complexity of algorithm

architectures and simultaneously reduced the

time to train such algorithms from months to

the order of days. The consequence has been

high-throughput research characterized by

rapid experimentation, ultimately enabling

more efficacious algorithms. In addition, the

rise of open-source deep learning frameworks,

such as TensorFlow, Keras, PyTorch, Caffe, and

others, has increased accessibility to technical

advances and facilitated the sharing of ideas

and their rapid application across various

domains [30, 31]. The truly collaborative nature

of deep learning research has led to surprising

innovations and changed the landscape of

medical research and care.

LITERATURE REVIEW

In this article, we review and summarize pub-

lished literature on the application of deep

learning to the clinical neurosciences. We used

search engines and repositories such as Google

Scholar, PubMed, ScienceDirect, and arXiv to

identify and review existing literature and per-

formed keyword searches of these databases

using the following terms: ‘‘deep learning,’’

‘‘machine learning,’’ ‘‘neurology,’’ ‘‘brain,’’ and

‘‘MRI.’’ Following a comprehensive review of

the literature initially retrieved, we identified

312 articles as containing one or more keywords

associated with our queries. Of these articles,

134 were subsequently identified as being rele-

vant to the subject of this review. Following

collation of the relevant articles, we grouped

articles first into broad modalities, namely

image classification, image segmentation,

functional connectivity and classification of

brain disorders, and risk prognostication.
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Within these areas, we then grouped publica-

tions into disease applications. We focused our

discussion on the clinical implications of the

developments in the field.

DEEP LEARNING IN NEUROLOGY

The deep learning techniques described above

are playing an increasingly crucial role in neu-

rological research, tackling problems within

several subdomains. First, radiological image

classification and segmentation has been a tra-

ditional locus of deep learning development

efforts. Image classification and segmentation

tasks are uniquely suited to deep learning due to

the high-dimensional nature of neuroimaging

data which is unfavorable to manual analysis,

combined with the naturally digital nature of

most modern imaging. Secondly, deep learning

has been applied to functional brain mapping

and correlational studies using functional

magnetic resonance imaging (fMRI) data for

tasks such as prediction of postoperative sei-

zure. Lastly, diagnostic prognostication with

deep learning using multiple data types,

including lab values, images, notes, among

others, has been used to assign disease risk. In

the following sections, we discuss the successes

and challenges inherent in the deep learning

approaches adopted towards these tasks, as well

as the limitations and difficulties that such

methods face within the field of neurology and

within medicine as a whole.

Medical Image Classification

The first application of deep learning in medi-

cine involved the analysis of imaging modali-

ties, especially those for the detection of

Alzheimer’s disease (AD) and other cognitive

impairments. A variety of publicly available

databases, such as the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) and Brain

Tumor Segmentation Benchmark (BraTS), have

become available to spur advancements in

neuroimaging analysis [32, 33].

Early approaches used AEs in conjunction

with a classifier to distinguish AD, mild cogni-

tive impairments (MCI) and healthy controls.

Among the first such applications, Suk and Shen

utilized a stacked AE to learn multimodal brain

representations from structural MRI and posi-

tron emission tomography (PET), and incorpo-

rated those features with cerebrospinal fluid

biomarker data and clinical scores from the

Mini-Mental State Examination (MMSE) and

Alzheimer’s Disease Assessment Scale-Cognitive

subscale (ADAS-Cog) to train an SVM classifier

that improved diagnostic accuracy [34]. Other

approaches pre-trained a stacked AE using nat-

ural images (everyday images) prior to training

on brain MR images in order to learn more

high-fidelity anatomical features, such as gray

matter and structural deformities, for incorpo-

ration into a CNN [35]. Variations on these

approaches have been used to incrementally

improve diagnostic performance [36–42].

Whereas older approaches were limited to

two-dimensional (2D) slices of medical images

due to computational constraints, newer appli-

cations have been able to incorporate the full

3D volume of an imaging modality for AD

detection. Among the first such examples was

work by Payan and Montana in which they

trained a sparse AE on 3D patches of MRI scans

to learn a volumetric brain representation that

was used to pre-train a 3D CNN for AD diagnosis

[43]. More recently, Hosseini-Asl et al. used an

adaptable training regime with a 3D CNN pre-

trained by a convolutional AE to learn general-

izable AD biomarkers [44, 45]. This approach

was notable because it allowed the transfer of

learned features from the source CADDementia

dataset to the target ADNI dataset, resulting in

state-of-the-art AD diagnosis accuracy on an

external dataset. Analogous work with volu-

metric data has been conducted in the com-

puted tomography (CT) domain to differentiate

AD from brain lesions and the processes of

normal aging [46].

The most recent work has built on existing

work in AD diagnosis and focused on predicting

the onset of AD in at-risk patients in order to

stem progression of the disease. Ding et al. used

fluorine-18-fluorodeoxyglucose PET scans of the

brain derived from the ADNI database to train a

CNN to diagnose AD [47]. Unlike many inves-

tigators before them, however, the authors

evaluated the efficacy of their algorithm against

Neurol Ther (2019) 8:351–365 355



data from the long-term follow-up of patients

who did not have AD at the time. Interestingly,

they found that the algorithm predicted onset

of AD on average 75.8 months prior to the final

diagnosis on an independent dataset, which

surpassed the diagnostic performance of three

expert radiologists.

Deep learning-based image classification has

also been applied in the diagnosis of acute

neurologic events, such as intracranial hemor-

rhage (ICH) and cranial fractures, with the aim

of reducing time to diagnosis by optimizing

neuroradiology workflows. Titano et al. trained

a 3D CNN in a weakly supervised manner on

37,236 CT scans to identify ICH for the pur-

poses of triaging patient cases [48]. They lever-

aged a natural language processing algorithm

trained on 96,303 radiology reports to generate

silver-standard labels for each imaging study

and validated the efficacy of their CNN on a

subset of studies with gold standard labels gen-

erated by manual chart review [49]. The inves-

tigators conducted a double-blind randomized

control trial to compare whether the algorithm

or expert radiologists could more effectively

triage studies in a simulated clinical environ-

ment and found that the CNN was 150-fold

faster in evaluating a study and significantly

outperformed humans in prioritizing the most

urgent cases. Subsequent studies have similarly

demonstrated the potential for deep learning to

optimize radiology workflows in the diagnosis

of ICH and detect as many as nine critical

findings on head CT scans with sensitivity

comparable to that of expert radiologists

[50–52].

Medical Image Segmentation

Segmentation of radiological brain images is

critical for the measurement of brain regions,

including shape, thickness, and volume, that

are important for the quantification of struc-

tural changes within the brain that occur either

naturally or due to various disease processes

[53]. Accurate structural classification is partic-

ularly important in patients with gliomas, the

most common brain tumor type, with less than

a 2-year survival time [54, 55]. Manual

segmentations by expert raters show consider-

able variation in images obscured by field arti-

facts or where intensity gradients are minimal,

and rudimentary algorithms struggle to achieve

consistency in an anatomy that can vary con-

siderably from patient to patient [33]. In light of

these factors, deep learning segmentation of

neuroanatomy has become a prime target for

efforts in deep learning research.

Measurement of the performance of neu-

roanatomical segmentation algorithms has

been standardized by the BraTS, which was

established at the 2012 and 2013 Medical Image

Computing and Computer Assisted Interven-

tions (MICCAI) conference [33]. Prior to the

establishment of this challenge, segmentation

algorithms were often evaluated on private

imaging collections only, with variations in the

imaging modalities incorporated and the met-

rics used to evaluate effectiveness. The estab-

lishment of BraTS has been critical in

standardizing the evaluation of various models

for the determination of which to pursue in

clinical practice. At the time of BraTS estab-

lishment, the models being evaluated were lar-

gely simple machine learning models, including

four random forest-based segmentation models

[33]. Since then, there has been considerable

advancement in performance, largely based on

the adoption of CNNs for anatomical

segmentation.

The traditional computational approach to

segmentation is to employ an atlas-based seg-

mentation, namely the FreeSurfer software,

which assigns one of 37 labels to each voxel in a

3D MRI scan based on probabilistic estimates

[56]. In a recent comparative study, Wachinger

et al. designed and applied a deep CNN, called

DeepNAT, for the purposes of segmenting neu-

roanatomy visualized in T1-weighted MRI scans

into 25 different brain regions. The authors

used the MICCAI Multi-Atlas Labeling chal-

lenge, consisting of 30 T1-weighted images, in

addition to manually labeled segmentations

[53, 57]. When the authors compared the cur-

rent clinical standard, FreeSurfer, which uses its

own anatomical atlas to assign anatomic labels,

to DeepNAT, they found that DeepNAT showed

statistically significant performance improve-

ments. Performance in segmentation was
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measured using a Dice volume overlap score,

with DeepNAT achieving a Dice score of 0.906,

in comparison to FreeSurfer’s 0.817 [53].

In addition to tissue-based segmentation

efforts, vascular segmentation has been an area

of deep learning research aimed at quantifying

brain vessel status. Traditional vessel segmen-

tation relies on either manual identification or

rule-based algorithms since there is no equiva-

lent atlas-based method for brain vessels as

there is for neuroanatomy. In their recent study

on blood vessel segmentation, Livne et al.

applied a U-net model to labeled data from 66

patients with cerebrovascular disease and then

compared the method to the traditional vascu-

lar segmentation method of graph-cuts. The

U-net model outperformed graph-cuts, achiev-

ing a Dice score of 0.891 compared to 0.760 for

graph-cuts [58]. Of note, the model, which was

trained on 3T MRI time-of-flight images, failed

to generalize well to 7T images [58].

Quantification of changes in white matter as

biomarkers for disease processes has been a

third area of deep learning segmentation efforts

in neurology. Perivascular spaces (PVSs) are

small spaces surrounding blood vessels that can

be caused by the stress-induced breakdown of

the blood–brain barrier by various inflamma-

tory processes [59, 60]. While PVSs have been

implicated in a wide range of disease processes,

the quantification of these spaces is difficult due

to their tubular and low-contrast appearance

even on those clinical MRI machines with the

highest-approved resolution [61]. In one 2018

study, Lian et al. used a deep CNN to evaluate

PVSs in 20 patients scanned on a 7T MRI

machine, comparing these to gold-standard

manual labels. Their deep CNN outperformed

unsupervised algorithmic methods, such as a

Frangi filter, as well as a U-net deep learning

model, achieving a positive predictive value

(PPV) of 0.83 ± 0.05, compared to a PPV of

0.62 ± 0.08 for the Frangi filter and 0.70 ± 0.10

for the U-net.

U-net models have also been leveraged in

quantifying white matter hyperintensities as

biomarkers for age-related neurologic disorders

[62]. White matter changes have been shown to

be involved in various forms of cortical

dementia, such as AD, and manifest themselves

as high-intensity regions in T2-fluid-attenuated

inversion recovery (FLAIR) MRI scans [63]. In

addition to quantifying PVSs, U-nets have been

used in segmentation efforts to identify regions

of abnormally intense white matter signals. In

2019, Jeong et al. proposed a sailiency U-net, a

U-net combined with simple regional maps,

with the aim to lower the computational

demand of the architecture while maintaining

performance in order to identify areas of signal

intensity in T2-FLAIR MRI scans of patients with

AD [62, 64]. Their model achieved a Dice coef-

ficient score of 0.544 and a sensitivity of 0.459,

indicating the utility of such a model to aug-

ment clinical image analysis [62]. The efforts

described above in neuroanatomical segmenta-

tion and anomaly detection highlight the ver-

satility of deep learning in analyzing an

inherently complex organ system.

Functional Connectivity

and Classification of Brain Disorders

Research in diagnostic support using multiple

modalities has been a key area of focus in deep

learning research, particularly in disease spaces

such as AD, autism spectrum disorder (ASD),

and attention deficit hyperactivity disorder

(ADHD). For all of these diseases, the onset can

be insidious, and diagnosis is reliant on non-

specific symptoms, such as distractibility and

hyperactivity in the case of ADHD, which

results in poor sensitivity and specificity for

clinical diagnostic testing; in fact, the sensitiv-

ity of the American Psychiatric Association’s

Diagnostic and Statistical Manual testing for

ADHD is between 70 and 90% [65]. Further-

more, delays in diagnosis inevitably delay

treatment, resulting in the treatment being less

effective or entirely ineffective [65]. Using fMRI

and connectome mapping alongside clinical

and demographic data points, multidisciplinary

teams have sought to improve upon the accu-

racy of currently utilized neurological tests.

Within the realm of AD and disorders

implicated in MCIs, deep learning has been

increasingly adopted as a method to analyze

neural connectivity information. Although

much of the work in connectome mapping has
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relied on less complex classifiers, recent publi-

cations have explored the benefits of deep

learning [66, 67]. When applied to fMRI data,

deep learning has several advantages over sim-

pler SVMs and Lasso models, and exhibits an

exponential gain in accuracy over simpler

models with increasing volumes of training data

[5, 68]. Meszlenyi et al. utilized a variant of a

convolutional neural network called a connec-

tome convolutional neural network (CCNN) to

classify MCI in a relatively small dataset of

functional connectivity data from 49 patients

[67]. Although accuracies were comparable

between the deep learning and less complex

classifiers (53.4% accuracy for the CCNN com-

pared to 54.1% for the SVM), the authors pos-

tulate that the accuracy benefits of the CCNN

architecture are well suited to fMRI tasks as

dataset sizes expand [67].

Deep learning classifiers have been applied

numerous times toward the accurate diagnosis

of ASD using fMRI data. In one study published

in 2015, Iidaka et al. selected 312 patients with

ASD and 328 control patients from the Autism

Brain Imaging Data Exchange (ABIDE), together

with 90 regions of interest, and used a proba-

bilistic neural network to classify individuals

with ASD. Their method achieved a classifica-

tion accuracy of 90% [69]. Additionally, Chen

et al. published a classifier based on a con-

structed functional network and additional data

from the ABIDE dataset in a clustering analysis

aimed at grouping discriminative features and

found that many discriminative features clus-

tered into the Slow-4 band [70].

In the realm of ADHD, several efforts have

been made to use publicly available imaging

data and deep learning algorithms for diagnosis.

In a study published in 2014, Kuang et al.

attempted to classify ADHD using a deep belief

network, comprised of stacked Boltzmann’s

machines trained on the public ADHD-200

dataset [71]. Using time-series fMRI data, the

deep belief network achieved an accuracy of

35.1%. While each of the above classifiers have

achieved results that are either on-par or less

accurate than clinical diagnoses using fMRI

data, methods are expected to improve dra-

matically as the quantity of labeled data con-

tinues to grow [71].

Risk Prognostication

In addition to widespread research on deep

learning applications for image classification

and segmentation, researchers have applied

deep learning to a variety of other neurology-

specific and general medicine data for the pur-

poses of risk prognostication. These efforts have

been applied to electroencephalogram (EEG)

signals and genetic biomarkers in the hope of

predicting clinically meaningful events. Neu-

rologists frequently rely on EEG data for the

management and diagnosis of neurological

dysfunction, in particular epilepsy and epileptic

events. Several studies using deep learning

methods have investigated its utility when

applied to preictal scalp EEGs as a predictive

tool for seizures [72–74]. The most successful of

these efforts included a LSTM network, which is

particularly useful for interpreting time-series

data, allowing a model to allocate importance

to previously seen data in a sequence when

interpreting a given datapoint. These algo-

rithms are uniquely suited to large sequences of

data and have proved their efficacy in predict-

ing epileptic events [73].

In their 2018 study, Tsiouris et al. used a two-

layer LSTM-based algorithm to predict epileptic

seizures using the publicly available CHB-MIT

scalp EEG database. While previous efforts had

been made using CNNs and scalp EEGs to pre-

dict epileptic events, the novel use of an LSTM

set a new state-of-the-art over traditional

machine learning algorithms and other deep

learning algorithms. Following feature extrac-

tion, the LSTM was provided several meaningful

features, including statistical moments, zero

crossings, Wavelet Transform coefficients,

power spectral density, cross-correlation, and

graph theory, to use in the prediction of sei-

zures. Notably, the authors compared the pre-

dictive ability of the raw EEG data to the

extracted features and determined that feature

extraction improved model performance [73].

This model configuration achieved a minimum

of 99.28% sensitivity and 99.28% specificity

across the 15-, 30-, 60-, and 120-min preictal

periods, as well as a maximum false positive rate

of 0.11/h. Similar experiments on the CHB-MIT

scalp EEG database using CNNs, as opposed to
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LSTMs, achieved worse results, namely poorer

sensitivity and a higher hourly rate of false

positives [75, 76].

Genetic data has been another important

area of research and development for precision

medicine. Predictive tasks in large-scale geno-

mic profiles face high-dimensional datasets that

are often pared down by experts who hand-se-

lect a small number of features for training

predictive models [77]. In ASD, deep learning

has played a particularly important role in

determining the impact of de-novo mutations,

including copy number variants and point

mutations, on ASD severity [78]. Using a deep

CNN, Zhou et al. modeled the biochemical

impact of observed point mutations in 1790

whole-genome sequenced families with ASD, on

both the RNA and DNA levels [78]. This

approach revealed that both transcriptional and

post-transcriptional mechanisms play a major

role in ASD, suggesting biological convergence

of genetic dysregulation in ASD.

Genomic data, either alone or in conjunc-

tion with neuroimaging and histopathology,

has provided cancer researchers a wealth of data

on which to perform cancer-related predictive

tasks [77, 79, 80]. Deep learning offers several

advantages when working simultaneously with

multiple data modalities, removing subjective

interpretations of histological images, accu-

rately predicting time-to-event outcomes, and

even surpassing gold standard clinical para-

digms for glioma patient survival [80]. Using

high-powered histological slices and genetic

data, namely IDH mutation status and 1p/19q

codeletion, on 769 patients from The Cancer

Genome Atlas (TCGA), Mobadersaney et al.

used a survival CNN (SCNN) to predict time-to-

event outcomes. The histological and genetic

model performed on par with manual histologic

grading or molecular subtyping [80]. In a sec-

ond paper by this group, SCNNs were shown to

outperform other machine learning algorithms,

including random forest, in classification tasks

using genetic data from multiple tumor types,

including kidney, breast, and pan-glioma can-

cers [77]. The ability of deep learning algo-

rithms to reduce subjectivity in histologic

grading and disentangle complex relationships

between noisy EEG or genetic data, has the

potential to improve current standards for pre-

dicting clinical events.

CHALLENGES

Despite the profound biomedical advances due

to deep learning algorithms, there remain sig-

nificant challenges that must be addressed

before such applications gain widespread use.

We discuss some of the most critical hurdles in

the following sections.

Data Volume

Deep neural networks are computationally

intensive, multilayered algorithms with param-

eters on the order of millions. Convergence of

such algorithms requires data commensurate

with the number of parameters. Although there

are no strict rules governing the amount of data

required to optimally train DNNs, empirical

studies suggest that tenfold more training data

relative to the number of parameters is required

to produce an effective model. It is no surprise

then that domains, such as computer vision and

natural language processing, have seen the most

rapid progress due to deep learning given the

wide availability of images, videos, and free-

form text on the Internet.

Biomedical data on the other hand is mostly

decentralized—stored locally within hospital

systems—and subject to privacy constraints that

make such data less readily accessible for

research. Furthermore, given the complexity of

patient presentations and disease processes,

reliable ground truth labels for biomedical

applications are extremely expensive to obtain,

often requiring the efforts of multiple highly

specialized domain experts. This paucity of

labeled data remains an important bottleneck in

the development of deep learning applications

in medicine.

Data Quality

Healthcare data are fundamentally ill-suited for

deep learning applications. Electronic medical

records are highly heterogeneous, being
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composed of clinical notes, a miscellany of

various codes, and other patient details that

may often be missing or incomplete. Clinical

notes consist of nuanced language and acro-

nyms that often vary by specialty and contain

redundant information that provides an inac-

curate temporal representation of disease onset

or progression. Diagnosis codes suffer from a

similar fate as they track billing for insurance

purposes instead of health outcomes. This

inherent complexity makes it impossible for

deep learning algorithms to parse signal from

noise.

Generalizability

Although existing deep learning applications

have garnered success in silico, their widespread

adoption in real-world clinical settings remains

limited due to concerns over their efficacy

across clinical contexts. Much of the concern is

based on the tendency of deep learning algo-

rithms to overfit to the statistical characteristics

of the training data, rendering them hyper-

specialized for a hospital or certain patient

demographic and less effective on the popula-

tion at-large [81, 82]. The siloed existence of

healthcare data in hospitals and the hetero-

geneity of data across healthcare systems make

the task of developing generalizable models

even more difficult. And even when multi-in-

stitutional data are acquired, the data are often

retrospective in nature, which prevents practi-

cal assessment of algorithm performance.

Interpretability

The power of deep learning algorithms to map

complex, nonlinear functions can render them

difficult to interpret. This becomes an impor-

tant consideration in healthcare applications

where the ability to identify drivers of outcomes

becomes just as important as the ability to

accurately predict the outcome itself. In the

clinical setting, where clinical decision support

systems are designed to augment the decision-

making capacity of healthcare professionals,

interpretability is critical to convince healthcare

professionals to rely on the recommendations

made by algorithms and enable their wide-

spread adoption. As such, major efforts within

the deep learning community to tackle prob-

lems of interpretability and explainability have

the potential to be particularly beneficial for

facilitating the use of deep learning methods in

healthcare.

Legal

Medical malpractice rules govern standards of

clinical practice in order to ensure the appro-

priate care of patients. However, to date, no

standards have been established to assign cul-

pability in contexts where algorithms provide

poor predictions or substandard treatment rec-

ommendations. The establishment of such reg-

ulations is a necessary prerequisite for the

widespread adoption of deep learning algo-

rithms in clinical contexts.

Ethical

Incidental introduction of bias must be care-

fully evaluated in the application of deep

learning in medicine. As discussed previously,

deep learning algorithms are uniquely adept at

fitting to the characteristics of the data on

which they are trained. Such algorithms have

the capability to perpetuate inequities against

populations underrepresented in medicine and,

by extension, in the very healthcare data used

to train the algorithms. Furthermore, recent

research evaluating algorithmic bias in a com-

mercial healthcare algorithm provides a cau-

tionary tale on the importance of critically

evaluating the very outcomes algorithms are

trained to predict [83].

CONCLUSION

Deep learning has the potential to fundamen-

tally alter the practice of medicine. The clinical

neurosciences in particular are uniquely situ-

ated to benefit given the subtle presentation of

symptoms typical of neurologic disease. Here,

we reviewed the various domains in which deep

learning algorithms have already provided
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impetus for change—areas such as medical

image analysis for improved diagnosis of AD

and the early detection of acute neurologic

events; medical image segmentation for quan-

titative evaluation of neuroanatomy and vas-

culature; connectome mapping for the

diagnosis of AD, ASD, and ADHD; and mining

of microscopic EEG signals and granular genetic

signatures. Amidst these advances, however,

important challenges remain a barrier to inte-

gration of deep learning tools in the clinical

setting. While technical challenges surrounding

the generalizability and interpretability of

models are active areas of research and progress,

more difficult challenges surrounding data pri-

vacy, accessibility, and ownership will necessi-

tate conversations in the healthcare

environment and society in general to arrive at

solutions that benefit all relevant stakeholders.

The challenge of data quality, in particular, may

prove to be a uniquely suitable target for

addressing using deep learning techniques that

have already demonstrated efficacy in image

analysis and natural language processing.

Overcoming these hurdles will require the

efforts of interdisciplinary teams of physicians,

computer scientists, engineers, legal experts,

and ethicists working in concert. It is only in

this manner that we will truly realize the

potential of deep learning in medicine to aug-

ment the capability of physicians and enhance

the delivery of care to patients.
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