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Deep learning is characterized by its strong ability of data feature extraction. -is method can provide unique advantages when
applying it to visible and near-infrared spectroscopy for predicting soil organic matter (SOM) content in those cases where the SOM
content is negatively correlated with the spectral reflectance of soil. -is study relied on the SOM content data of 248 red soil samples
and their spectral reflectance data of 400–2450nm in Fengxin County, Jiangxi Province (China) to meet three objectives. First, a
multilayer perceptron and two convolutional neural networks (LeNet5 and DenseNet10) were used to predict the SOM content based
on spectral variation and variable selection, and the outcomes were compared with that from the traditional back-propagation neural
network (BPN). Second, the four methods were applied to full-spectrum modeling to test the difference to selected feature variables.
Finally, the potential of direct modeling was evaluated using spectral reflectance data without any spectral variation. -e results of
prediction accuracy showed that deep learning performed better at predicting the SOM content than did the traditional BPN. Based on
full-spectrum data, deep learning was able to obtain more feature information, thus achieving better and more stable results (i.e.,
similar average accuracy and far lower standard deviation) than those obtained through variable selection. DenseNet achieved the best
prediction result, with a coefficient of determination (R2)� 0.892± 0.004 and a ratio of performance to deviation (RPD)� 3.053± 0.056
in validation. Based on DenseNet, the application of spectral reflectance data (without spectral variation) produced robust results for
application-level purposes (validationR2� 0.853± 0.007 and validation RPD� 2.639± 0.056). In conclusion, deep learning provides an
effective approach to predict the SOM content by visible and near-infrared spectroscopy and DenseNet is a promising method for
reducing the amount of data preprocessing.

1. Introduction

Soil organic matter (SOM) content, a key indicator of soil
fertility, substantially impacts the physicochemical proper-
ties and quality of soil; thus, the SOM content must be
considered in scientific fertilization. Visible (VIS, 400–
780 nm) and near-infrared (NIR, 780–2526 nm) spectros-
copy is a convenient and efficient technique for quickly and
inexpensively monitoring SOM [1], since spectral reflectance
of soil is negatively correlated with the SOM content and the
SOM content could be obtained from measured soil re-
flectance spectrum [2, 3].

Many studies have proposed and tested various spectral
data modeling techniques, including linear regression (LR),
partial least squares regression (PLSR), back-propagation
(BP) neural network (BPN), and support vector machine
(SVM). Xie et al. [4] predicted the SOM content in mountain
red soil using PLSR, BPN, SVM, and a combination model
based on the radial basis function (RBF) neutral network
applied on a full spectrum (450–2450 nm); they found that
the RBF-based combination model gave the best results with
a ratio of the performance to deviation (RPD� 2.06), fol-
lowed by the SVM (RPD� 1.67). Ye et al. [5] found that
compared with LR, BPN yielded better results for prediction
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of the SOM content based on hyperspectral data. In other
work, Shi et al. [6] were able to use PLSR to predict the SOM
content from the Chinese VIS-NIR spectral library.

After data preprocessing by principal components
analysis, Zeng et al. [7] found that the SVM gave the best
prediction results of the SOM content (RPD� 2.28). Ad-
ditionally, Ji et al. [8] used 441 soil samples (400–2450 nm)
to predict the SOM content, for which the SVM had a
RPD� 2.16, but the best accuracy came from PLSR-BP with
a RPD� 2.36. -e inversion accuracy of models such as
PLSR, BPN, and SVM is generally higher than that of LR,
the most commonly used modeling technique [5]. Chen
et al. [9] used the BPN to update the importance variables
generated from a random forest to provide a variable se-
lection strategy. According to prior studies, the current
approach to predict the SOM content by VIS-NIR spec-
troscopy finds the feature spectrum and then establishes a
prediction model [9–14]. Most of these studies have focused
on the preprocessing of soil spectral data and the screening
of useful feature spectra. Yet we still need a high-perfor-
mance modeling technique to simplify the preprocessing
requirements of spectral data, which is also crucial for
ensuring accurate predictions.

Deep learning has developed rapidly in recent years.-is
method allows for a computational model consisting of
multiple processing layers to learn data representations with
multiple levels of abstraction [15]. By learning the deep
nonlinear network structure, a complex function approxi-
mation is realized using the BP algorithm. -e obtained
results indicate how the deep learning machine should
change its internal parameters to discover the complex
structure of larger data sets, demonstrating the powerful
ability to learn the essential features of a data set from a
smaller sample set [16].

Recently, Chen et al. [17] proposed a deep learning
method using a multilayer perceptron (MLP) structure to
predict the soil organic carbon content. In addition, the
convolutional neural network (CNN) has been applied to
studies of image recognition. -e CNN uses the convolution
and pooling operations to extract the abstract feature maps
of the data, layer by layer, thereby learning the structural
features and their essential relationships within the spectral
data [18]. In this way, the spectral curve can be regarded as a
wavelength× 1 gray scale image, and the same-padding skill
may be used for convolution operations in a deeper network.
-erefore, it should be feasible to perform SOM inversion
directly using raw or transformed spectral data. As com-
puting power improves and deep learning rapidly develops,
exploring how deep learning may be applied for predicting
the SOM content from VIS-NIR wavelengths is increasingly
necessary.

To this end, this study applied three deep learning models
to estimate the SOM content and compared their accuracy to
that of the traditional BPN model. Since deep learning can
learn the essential features of a data set, we also compared
outcomes based on the full spectrum versus selected char-
acteristic spectrum. Furthermore, the best-performing model
was used to fit the spectral reflectance data and test whether
some data preprocessing steps could be removed.

2. Materials and Methods

2.1. StudyArea and Sampling andDataCollection. -e study
area was located in the central part of Fengxin County,
Jiangxi Province, in China, which has typical red soil. -e
soil samples were collected from gardens, woodlands, and
paddy fields throughout this area. Specifically,
1 km × 1 km grid was used to select the sampling point,
taking into account its topography, vegetation cover, and
land use type. From each grid one sample was collected
and used; for areas with complex geographies, more
sampling points were used per grid to ensure adequate
data representation. Figure 1 shows the spatial distri-
bution of the 248 soil samples obtained in total. Each
composite sample was obtained by a four-point mixing
method: the sampling depth was 0–20 cm for paddy fields
or 0–30 cm for gardens and woodlands. All samples were
air-dried in the laboratory.

After removing debris, the soil samples were grounded and
passed through a 2 mm sieve. Each sample was then divided
into two parts, for soil spectroscopy and SOM analysis, re-
spectively. -e SOM was determined using a potassium di-
chromate solution [19], while a FieldSpec4 spectrometer (ASD
Inc., Cambridge, United Kingdom) was used to measure the
spectral reflectance of a sample. -e spectral acquisition range
of the FieldSpec4 spectrometer is 350–2500nm, and its
spectral sampling interval is 1.4 nm (350–1000nm) and 2nm
(1001–2500nm), with a resampling interval of 1 nm. A total of
2151 wavelength variables were generated for SOM content
prediction. A soil sample was placed in a black sample dish
6 cm in diameter and 2 cm deep, filled to the brim and its
surface flattenedwith a ruler.-e built-in light source included
with the MugLite device was used for measurements; it was
positioned above the sample dish in the slot atop the in-
strument. Both dark current and standard whiteboard cali-
brations were performed on the instrument before each
sample’s data acquisition. Five spectral data were collected per
sample, for which their arithmetic mean was taken as the
spectral curve for that sample to reduce measurement error.

2.2. Data Preprocessing. Because the influence from the
immediate environment and the instrument itself to-
gether generated substantial noise in the edge band of the
measured spectrum, the wavelengths spanning 350–
399 nm and 2451–2500 nm were removed. Wavelet
transform was used to reduce the noise generated during
the measurement process: three-layer decomposition was
performed by the Daubechies6 wavelet and soft thresh-
olding was used to detail high-frequency coefficients
[2, 20, 21]. To reduce data dimensions and data re-
dundancy, resampling by 10 nm interval was carried out
to accelerate the training process, whose result was
similar to the original data. Figure 2 shows the spectral
curves of red soils after preprocessing, in which the SOM
content was divided into six groups of <15, 15–25, 25–35,
35–45, 45–55, and >55 g/kg and their spectra average
taken. Evidently, a distinct iron oxide absorption valley
was present in the samples around 900 nm, accompanied
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by apparent water absorption valleys at 1400, 1900, and
2200 nm [22].

Following the work of Hong et al. [12], Zhang et al.
[23], and Xu et al. [24], the fractional-order derivative
(FOD) algorithm was used as a mathematical method to
analyze the obtained reflection spectra. -is allows in-
terpolation between integer derivatives and thereby ex-
tracts more exceptional details from the spectral signals.
-e 1.5 order derivative with the Grünwald–Letnikov
method was applied here to transform the spectral data,
which generated 203 wavelength band variables. -is
Grünwald–Letnikov process is shown in formula (1),
where v is the order, Γ(x) is the Gamma function, and n is
the difference between the upper and lower limits of the
derivative:

dvf(x)

dxv
≈ f(x) +(−v)f(x − 1) +

(−v)(−v + 1)

2
f(x − 2) + · · ·

+
Γ(−v + 1)

n!Γ(−v + n + 1)
f(x − n).

(1)
-e Pearson correlation coefficients between trans-

formed the spectral data and SOM content are shown in
Figure 3(a). In all, 67 variables (at 620–650, 670, 730–840,
970, 980, 1220, 1270–1390, 1420, 1430, 1530, 1580–1620,
1720–1770, 1850–1940, 1990–2030, 2230, and 2290–
2310 nm) having r2 values >0.4 and P values <0.01
(Figure 3(b)) were selected for further analysis, and the
wavelength around 900 nm affected by iron oxide was
removed.

Based on the studies of Xie et al. [4] and Ji et al. [8], 186
training samples and 62 validation samples were then
generated using a 3 :1 ratio, with the geostatistics module in
ArcGIS 10.5 (ESRI Inc., Redlands, USA). -e spatial dis-
tribution of these training and validation samples is shown
in Figure 1.

2.3. Model Architecture. -e MLP is a forward-structured
artificial neural network, consisting of multiple layers of
neurons and their connections. In addition to the input
nodes, each node functions as a neuron (or processing unit)
with a nonlinear activation function [25]. Here, the BP al-
gorithm was used to train the MLP. Figure 4 depicts the
eight-layer deep MLP architecture used, which had seven
hidden layers.

-e typical architecture for the CNN is LeNet5 [26], in
which the convolutional layer and the pooling layer are
alternated with the fully connected layer. It was Harley [27]
who realized the 2D and 3D visualization of LeNet5’s ar-
chitecture, demonstrating the scale and complexity of typical
CNN architecture (http://www.cs.cmu.edu/∼aharley/vis/).
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Figure 1: Spatial distribution of soil sampling points in Fengxin County (Jiangxi Province, China).
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Figure 2: Spectral curves of soils differing in their organic matter
content.
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DenseNet [28] is a type of CNN having dense con-
nections and drawing on the shortcut idea of ResNet [29]. In
such a network, there is a direct connection between any two
layers, for which the input of each layer of the network is the
union of outputs from all prior layers, and the feature map
learned by a given layer is also directly transmitted to all
layers behind it and used as input. Figure 5 shows a diagram
for the DenseNet architecture with three dense blocks,
consisting mainly of two components, a dense block and a
transition layer. Dense connections have many obvious
advantages, since each module uses the available in-
formation from all layers in front of the module and each
layer has a dense connection to the preceding layer. Such
connections could strengthen the transfer of gradients,
enhance feature reuse, and reduce overfitting of small-sized
sample data sets [30].

3. Deep Learning Proposal

3.1. Activation Function. Admittedly, some problems can
occur in the BP process of deep neural networks, such as the
disappearance of the gradient and slow training. Never-
theless, the process can be optimized, by adjusting both the
activation function and the optimizer. Each neuron node in
the neural network first accepts the output value of the upper
neuron as the input value of that neuron and transmits this
input value to the next neuron. -e input neuron node will
directly transfer the input attribute value to the next neuron.
In multilayer neural networks, there is a functional re-
lationship between the output of the upper nodes and the
input of lower nodes, which is called an activation function.
In this respect, traditional MLP uses the sigmoid function
(formula (2), where f (x) is a nonlinear function), such that
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Figure 3: Correlation coefficients of raw spectral reflectance/fractional-order derivative (1.5) with the soil organic matter content (a) and 67
variables selected from the fractional-order derivative (1.5) with r2> 0.4 and P< 0.01 (b).
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Figure 4: -e architecture of multilayer perceptron for deep learning.
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the BP process of MLP multiplies the partial derivatives of
the function, layer by layer, and the derivative interval of
sigmoid ranges from 0 to 0.25.-erefore, whenMLP’s layers
are profound its gradient will disappear; this leaves the
problem that the power operation will increase the training
time in a large-scale deep network [31]:

f(x) �
1

1 + e−x
. (2)

In LeNet5 convolution, the tanh activation function
(formula (3), where f (x) is a nonlinear function) is used, which
is beset by same problem as the sigmoid function. However,
the difference between them is that tanh’s derivative range is 0
to 1; thus, the tanh function is better equipped than the
sigmoid function for practical applications [32]:

f(x) �
ex − e−x

ex + e−x
. (3)

-e rectified linear unit (ReLU) has the advantage of easy
optimization. According to formula (4), the output of half of
the definition domain is zero, whereas the second derivative of
the ReLU is almost zero everywhere and the first derivative of
the modified linear element is 1 when it is in the active state.
-us, when the parameters of affine transformation are ini-
tialized, b can be set to a small positive value, such as 0.1; this
makes it possible for linear rectifier units to activate most of
the inputs in the training set at the beginning, allowing the
derivatives to pass [31]. Currently, the ReLU is themost widely
used activation function in deep learning applications [33]:

f(x) � max 0, wTx + b . (4)

3.2. Avoiding Model Overfitting. Generalization ability is a
model’s adaptability to validation samples and it is an im-
portant index to evaluate the overall performance of a given
model [34]. Taking the BPN as an example, it often suffers
from the phenomenon of overfitting, in which the model
performs well with the training data but performs poorly
with the validation data. Deep learning has a strong ability to
fit data; thus, some robust methods are also needed to
prevent overfitting and to build models with excellent
generalization ability.

In this respect, the most commonly used method to
avoid overfitting is the L2 regularization. It adds the sum of
squares of weighted parameters directly from the original
loss function, as represented by formula (5), where L is loss,
Ein is the training sample error without the regularization
term, and λ is an adjustable regularization parameter:

L � Ein + λ
j

ω2
j . (5)

Including a hyperparameter dropout can ignore half of
the feature detectors in each training batch (when the
dropout is set to 0.5), that is, let half of the hidden layer
nodes have a value of 0 to reduce the mutual correlation
between the feature detectors (hidden layer nodes). When
the network is propagated in its forward direction, the ac-
tivation value of an individual neuron can be stopped with a
certain probability. However, because the whole network
does not rely too much on some local features, this can
significantly reduce model overfitting [35].

Early stopping is also a technique used to prevent over-
fitting. In a deep neural network, overfitting problems are
more of a risk. -erefore, while generating models in the
training iteration process the model is simultaneously eval-
uated with a verification set. Each training iteration output
performance is saved. If there is no better result within a
certain number of iterations, the training is terminated, and
the better weighted parameters are used as output [36].

3.3. Model Experimentation. -is was carried out using a
desktop computer equipped with an Intel Core i9 7920X
CPU and 64GB of memory. Its operating system was
Windows 10, and two GeForce 1080TI GPUs with 11GB of
memory each provided acceleration for model training and
validation. -e Keras framework with Tensorflow backend
supported the implementation of all neural network models.
Keras is a simple and easy-to-use neural network library that
provides most of the building blocks needed to build a
relatively complex model [37].

In all experiments, the Nadam optimizer [38] was used
to accelerate the training process, and the batch size was set
to 32. -e BPN was built with an input layer, a hidden layer,
and an output layer, wherein the input layer had 203 neurons
and the single hidden layer had 400 neurons, the activation
function was sigmoid, and the learning rate was 0.001. -e
MLP was based on the architecture depicted in Figure 3,
using a dropout value set to 0.3, and its learning rate was
0.00001. -e LeNet5 architecture changed the activation
function of the output neuron to the sigmoid function for
prediction value, and the output neuron performed an L2
regularization to reduce overfitting; its dropout rate was set
to 0.3, with a learning rate of 0.001. DenseNet also changed
the activation function of output neurons to the sigmoid
function for regression but it removed all the batch-nor-
malization operations in the architecture, adjusting the
kernel size of the pooling layer to adapt the input data; its
dropout rate was set to 0.5, with a learning rate of 0.001.

SOM content data were normalized to speed up the
training process. Root mean square error (RMSE) was used
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Figure 5: -e architecture of DenseNet for deep learning [28].
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as the loss function in the training process with all neural
network models tested. -e coefficient of determinant (R2),
RMSE, and RPD were used to evaluate the optimization of
the model. An RPD value between 1.5 and 2 indicates the
model can achieve rough estimation, 2.0 to 2.5 indicates the
model has moderate predictive ability, 2.5 to 3 indicates the
model has good predictive ability, and any value higher than
3 indicates that the model has excellent predictive ability
[39]. To prevent overfitting, all the neural network models
were engaged in the abovementioned “early stopping”
method. -e indicator display form used the average index
plus standard deviation of the last P (P stands for the pa-
tience of iterations according to the early stopping setting)
models before an exit.

4. Results and Discussion

4.1. Approach Process of Different Models. Figure 6(a) shows
the approach process of the BPN, MLP, LeNet5, and
DenseNet10 models applied to the 203 variables. -eir
corresponding evaluation curves demonstrated that the
training and the verification loss functions of each model
were small, suggesting all were characterized by good
generalization ability. -e entire training process revealed
that use of dropout and L2 regularization can effectively
suppress the overfitting phenomenon; the prediction ac-
curacy of a given model was stable in the later stage of
training, and its prediction results could be accurately cal-
culated using the early exit technique. Additionally, the BPN
used the sigmoid activation function and LeNet5 used the
tanh activation function. Comparing the MLP with Den-
seNet10 using the ReLU activation function, the training
process using the ReLU activation function model was
smoother and more efficient at fitting the training data.

Figure 6(b) shows the training and approach process for
BPN, MLP, LeNet5, and DenseNet10 applied to the 67 se-
lected variables. For MLP, LeNet5, and DenseNet10, the
amplitude of their validation curves was more significant
than for the 203 variables. ForMLP, as the input decreased, it
would easily undergo overfitting had the dropout method
not been used, but the dropout randomly chosen would
ignore the hidden layer nodes. For every batch training
process, since each hidden layer node was randomly ignored,
the network of each epoch was somewhat different. -e
dropout effect was the same for the CNN. Further, less
information reduced receptive fields (i.e., the region in the
input space corresponding to a particular feature of the
CNN); hence, fewer neurons might lose some features. As
shown by our results, a smaller amount of data increased the
difference in accuracy between each epoch, resulting in a
greater gap between each epoch of the validation set and a
higher standard deviation. -ese results collectively in-
dicated that full spectrum is more suitable for deep learning.

4.2. Prediction Accuracy of Different Models. Table 1 sum-
marizes the prediction accuracy results of the MLP, CNN,
and BPN models. -e accuracy of the validation set samples
is the most important indicator to measure the performance

of a given model. With 203 variables, DenseNet10 had the
largest coefficient of determination (R2� 0.892± 0.004) and
the smallest root mean square error (RMSE� 4.933± 0.091),
while its performance deviation ratio was the highest
(RPD� 3.053± 0.056). -e prediction accuracy of MLP did
not differ from that of DenseNet10. LeNet5 had an RPD
around 2.8, whereas the BPN had an RPD below 2.5.
DenseNet10 increased its R2 value by more than 0.06, de-
ceased its RMSE by ∼1.18, and increased its RPD by ∼0.59
compared with the BPN. -e traditional modeling method,
BPN, had a particular gap in verification accuracy when
compared with the deep learning model, with full-spectrum
data.

-e MLP entails a structural evolution of the BPN. -e
results obtained with 203 bands showed that the MLP has a
stronger ability to fit data fitting ability because its artificial
neural network with multiple hidden layers has an excellent
feature learning ability and the learned features are essential
for data characterization. -e drawback of shallow structure
algorithms is that their ability to represent complex func-
tions is limited in the case of finite samples and computa-
tional units, hindering the generalization ability for complex
problems.

-e number of parameters for DenseNet10 (43,273) was
far lower than that of LeNet5 (108,941). -e advanced ar-
chitecture of the CNN gave an absolute improvement in the
prediction accuracy with fewer parameters. After testing
both DenseNet40 and DenseNet121 architectures of the
deeper network, the results did not improve, which meant
that Occam’s razor law should be invoked. -e eight-layer
MLP had a slight gap vis-à-vis DenseNet10 in its prediction
accuracy.-eMLP used full connections, so its total number
of parameters, at 1,044,401, was much higher than that of
DenseNet10, demonstrating that DenseNet has clear ad-
vantages for parsimonious modeling.

Table 1 also provides the predicted accuracy results of
different models from selected feature variables. Among
MLP, LeNet5, and DenseNet10, their overall accuracy results
were not substantially different between the 67 and 203
variables used. However, the BPN was better adjusted to
selected feature variables because of its shallow structure.
For MLP, fewer bands would quickly lead to a gradient
disappearance problem, resulting in lower model accuracy.
For both BPN and MLP, with fewer variables, the R2 values
in the training set were lower than those in the validation set.
By contrast, the CNN had better generalization ability with
fewer bands. In conclusion, deep learning can achieve the
same prediction accuracy without screening sensitive vari-
ables and is more suited to fit SOM data obtained from the
full spectrum with using feature variables.

4.3. Prediction without Any Spectral Variation. During data
preprocessing, FOD can effectively improve the correlation
between soil spectral reflectance and SOM content, making
the full-spectrum data more useful for analytical modeling.
However, FOD is a time-costly algorithm, one not conducive
to real-time monitoring. Table 2 summarizes the prediction
accuracy results of using different depths of DenseNet to fit
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Figure 6: Continued.
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Figure 6: Training and validation curves for model evaluation using the root mean square error (RMSE), coefficient of determination (R2),
and ratio of performance to deviation (RPD): (a) approach of different models using the full spectrumwith 203 variables and (b) approach of
different models applied to a subset of 67 selected variables.
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the model based on raw reflectance data. Across different
depths, DenseNet19 gave the best result with the validation
set, with R2� 0. 853± 0.007, RMSE� 5.722± 0.124, and
RPD� 2.639± 0.056; however, this was worse than the re-
sults obtained from transformed spectral data. -us, al-
though deep learning has robust data mining ability, its
prediction results are still based on data learning. For good
prediction accuracy, it is therefore necessary to improve the
correlation between the SOM content and spectral data
through transformation of spectral data. However, the result
of DenseNet is deemed acceptable for practical purposes.

Our result for DenseNet19 has an improved RPD that is
0.97 greater than that of the SVM, and 0.58 more that from
the RBF combination model reported by Xie et al. [4] who
predicted the SOM content in mountain red soil based on
spectral reflectance data. Additionally, the RPD for Den-
seNet19 exceeds that for both SVM (RPD� 2.16) and PLSR-
BP (RPD� 2.36) obtained by Ji et al. [8] who applied training
models on a full spectrum (450–2450 nm). -ese findings
therefore suggest that DenseNet is a powerful tool for data
feature extraction.

Due to the overlapping absorption characteristics of
spectral activity, the VIS-NIR spectra of soils are multilinear,
broad, and nonspecific, which may weaken the model
performance of SOM estimation. A deep learning algorithm
embodies the powerful ability of data feature extraction,
excludes outlier data, and finds hidden patterns in the data
set, which can especially solve nonlinear problems with high

model accuracy. However, in the process of model building,
local optimal problems occur frequently in training raw re-
flectance in DenseNet, the gradient tends to disappear in deep
MLP, while the setting of hyperparameters and the optimization
of model structure are time costly. Although this modeling
process can be complicated and time-consuming, the accuracy
of its prediction results is generally high after the model is built.
-e prediction based on spectral reflectance data enables robust
prediction accuracy, which could effectively reduce the amount
and time spent on data preprocessing, thereby improving the
efficiency of real-time monitoring.

5. Conclusions

In this study we investigated deep learning framework al-
gorithms for predicting the SOM content by VIS-NIR
spectroscopy. Based on FOD (1.5) spectral variation, we
compared BPN, MLP, and CNN (including LeNet5 and
DenseNet10) with full-spectrum data (203 variables) and a
subset of 67 variables highly correlated with the SOM
content (r2 values >0.4). Our results indicate that deep
learning methods including the MLP and CNN can be used
to predict the SOM content from VIS-NIR soil spectra, each
displaying state-of-the-art performance. Hence, these
methods are better suited to fit the full-spectrum data where
more information leads to stable results, as their averaged
accuracy is similar to that obtained with selected variables,
but standard deviations are much lower.

Table 1: Prediction accuracy results of different model with the fractional-order derivative (1.5) transformation of soil spectral reflectance
data.

Model Variables
Training Validation

R2 RMSE R2 RMSE RPD

BPN 67 0.831± 0.003 4.900± 0.062 0.867± 0.000 5.382± 0.001 2.843± 0.001
BPN 203 0.835± 0.018 5.107± 0.290 0.834± 0.018 6.112± 0.290 2.465± 0.092
MLP 67 0.806± 0.021 5.657± 0.288 0.861± 0.019 5.578± 0.364 2.709± 0.164
MLP 203 0.890± 0.011 4.249± 0.199 0.886± 0.002 5.044± 0.037 2.987± 0.022
LeNet5 67 0.872± 0.015 4.542± 0.224 0.870± 0.020 5.304± 0.401 2.901± 0.220
LeNet5 203 0.902± 0.006 3.909± 0.114 0.863± 0.001 5.471± 0.033 2.790± 0.022
DenseNet10 67 0.927± 0.009 3.376± 0.191 0.888± 0.012 4.925± 0.274 3.133± .0.177
DenseNet10 203 0.907± 0.009 3.367± 0.177 0.892± 0.004 4.933± 0.091 3.053± 0.056
Data are the mean± standard deviation. R2� coefficient of determination, RMSE� root mean square error, and RPD� the ratio of performance to deviation.

Table 2: Prediction accuracy results of using different depths of DenseNet based on the full-spectrum data without the fractional-order
derivative transformation.

Model Learning rate
Training Validation

R2 RMSE R2 RMSE RPD

DenseNet10 0.001 0.832± 0.012 5.334± 0.177 0.806± 0.007 6.519± 0.128 2.345± 0.050
DenseNet10 0.0006 0.837± 0.013 5.188± 0.203 0.836± 0.010 6.037± 0.199 2.508± 0.085
DenseNet13 0.001 0.878± 0.010 4.376± 0.164 0.833± 0.005 6.117± 0.095 2.462± 0.038
DenseNet13 0.0006 0.861± 0.012 4.697± 0.199 0.828± 0.006 6.207± 0.108 2.431± 0.044
DenseNet16 0.001 0.856± 0.012 4.782± 0.197 0.827± 0.008 6.172± 0.135 2.461± 0.051
DenseNet16 0.0006 0.858± 0.011 4.792± 0.177 0.848± 0.007 5.847± 0.131 2.576± 0.058
DenseNet19 0.001 0.870± 0.010 4.515± 0.179 0.853± 0.007 5.722± 0.124 2.639± 0.056
DenseNet19 0.0006 0.916± 0.009 3.628± 0.177 0.853± 0.011 5.745± 0.222 2.622± 0.099
Data are the mean± standard deviation. R2� coefficient of determination, RMSE� root mean square error, and RPD� the ratio of performance to deviation.
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-e multilayer artificial neural network model has a
strong feature learning ability, and the feature data obtained
by the deep learning model could capture a more essential
representation of the original soil data. As a high-perfor-
mance deep learning model, the CNN can extract effective
feature structures from complex spectral data for learning,
displaying stronger model expression ability than traditional
shallow learning models. Moreover, the CNN reduces the
number of parameters needed for SOM prediction and
improves the generalization ability of the model via its
network structure of local connection and weight sharing.

Overall, the DenseNet architecture gives the best pre-
diction accuracy with fewer calculation parameters. It also
achieves high accuracy without FOD (1.5) transformation of
soil spectra data. As DenseNet reduces the data pre-
processing of variable selection and spectral variation, it is
suitable for real-time monitoring. Hence, we suggest Den-
seNet is a promising solution for predicting the SOM
content by VIS-NIR spectroscopy.-is method could also be
widely used in other similar spectral applications.
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