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Introduction

SARS-CoV-2 and the resulting COVID-19 disease is one of the biggest challenges of the 

21st century. At the time of this publication, about 43 million people have tested posi-

tive and 1.2 million people have died as a result [1]. Fighting this virus requires hero-

ism of healthcare workers, social organization and technological solutions. �is survey 

focuses on advancing technological solutions, with an emphasis on Deep Learning. We 

additionally highlight many cases where Deep Learning can facilitate social organization 

such as Spread Forecasting, Misinformation Detection, or Public Sentiment Analysis. 

Deep Learning has gained massive attention by defeating the world champion at Go [2], 

controlling a robotic hand to solve a Rubik’s cube [3], and completing fill-in-the-blank 

text prompts [4]. Deep Learning is advancing very quickly, but what is the current state 

of this technology? What problems does Deep Learning have the capability of solving? 

How do we articulate COVID-19 problems for the application of Deep Learning? We 

explore these questions through the lens of Deep Learning applications fighting COVID-

19 in many ways.
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�is survey aims to illustrate the use of Deep Learning in COVID-19 research. Our 

contributions are also follows:

• �is is the first survey viewing COVID-19 applications solely through the lens of 

Deep Learning. In comparison with other surveys on COVID-19 applications in Data 

Science or Machine Learning, we provide extensive background on Deep Learning.

• For each application area surveyed, we provide a detailed analysis of how the given 

data is inputted to a deep neural network and how learning tasks are constructed.

• We provide an exhaustive list of applications in data domains such as Natural Lan-

guage Processing, Computer Vision, Life Sciences, and Epidemiology. We particu-

larly focus on work in Literature Mining for COVID-19 research papers, compiling 

papers from the ACL 2020 NLP-COVID workshop.

• Finally, we review common limitations of Deep Learning including Interpretability, 

Generalization Metrics, Learning from Limited Labeled Data, and Data Privacy. We 

describe how these limitations impact each of the surveyed COVID-19 applications. 

We additionally highlight research tackling these issues.

Our survey is organized into four primary sections. We start with a “Background” on 

Deep Learning to explain the relationship with other Artificial Intelligence technologies 

such as Machine Learning or Expert Systems. �is background also provides a quick 

overview of SARS-CoV-2 and COVID-19. �e next section lists and explains “Deep 

Learning applications for COVID-19”. We organize surveyed applications by input data 

type, such as text or images. �is is different from other surveys on COVID-19 that 

organize applications by scales such as molecular, clinical, and society-level [5, 6].

From a Deep Learning perspective, organizing applications by input data type will 

help readers understand common frameworks for research. Firstly, this avoids repeat-

edly describing how language or images are inputted to a Deep Neural Network. Sec-

ondly, applications working with the same type of input data have many similarities. For 

example, cutting-edge approaches to Biomedical Literature Mining and Misinforma-

tion Detection both work with text data. �ey have many commonalities such as the 

use of Transformer neural network models and reliance on a self-supervised representa-

tion learning scheme known as language modeling. We thus divide surveyed COVID-19 

applications into “Natural Language Processing”, “Computer Vision”, “Life Sciences”, and 

“Epidemiology”. However, our coverage of applications in Life Sciences diverges from 

this structure. In the scope of Life Sciences, we describe a range of input data types, such 

as tabular Electronic Health Records (EHR), textual clinical notes, microscopic images, 

categorical amino acid sequences, and graph-structured network medicine.

�e datasets used across these applications tend to share the common limitation of 

size. In a rapid pandemic response situation, it is especially challenging to construct 

large datasets for Medical Image Analysis or Spread Forecasting. �is problem is evi-

dent in Literature Mining applications such as Question Answering or Misinformation 

Detection as well. Literature Mining data is an interesting situation for Deep Learn-

ing because we have an enormous volume of published papers. Despite having such a 

large unlabeled dataset, downstream applications such as question answering or fact 

verification datasets are extremely small in comparison. We will continually discuss the 
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importance of pre-training for Deep Learning. �is paradigm relies on either super-

vised or self-supervised transfer learning. Of core importance, explored throughout this 

paper, is the presence of in-domain data. Even if it is unlabeled, such as a biomedical 

literature corpus, or slightly out-of-domain, such as the CheXpert radiograph dataset for 

Medical Image Analysis [7], availability of this kind of data is paramount for achieving 

high performance.

When detailing each application of Deep Learning to COVID-19, we place an empha-

sis on the representation of data and the task. Task descriptions mostly describe how 

a COVID-19 application is constructed as a learning problem. We are solely focused 

on Deep Learning applications, and thus we are referring to representation learning of 

raw, or high-dimensional data. A definition and overview of representation learning is 

provided in “Background” section. �e following list quickly describes different learning 

variants found in our surveyed applications:

• Supervised Learning optimizes a loss function with respect to predicted and ground 

truth labels. �ese ground truth labels require manual annotation.

• Unsupervised Learning does not use labels. �is includes clustering algorithms that 

look for intrinsic structure in data.

• Self-Supervised Learning optimizes a loss function with respect to the predicted 

and ground truth labels. Differently from Supervised Learning, these labels are con-

structed from a separate computing process, rather than human annotation.

• Semi-Supervised Learning uses a mix of human labeled and unlabeled data for repre-

sentation learning.

• Transfer Learning describes initializing training with the representation learned 

from a previous task. �is previous task is most commonly ImageNet-based super-

vised learning in “Natural Language Processing” or Internet-scale language modeling 

in “Computer Vision”.

• Multi-Task Learning simultaneously optimizes multiple loss function, usually either 

interleaving updates or applying regularization penalties to avoid conflicting gradi-

ents from each loss.

• Weakly Supervised Learning refers to supervised learning with heuristically labeled 

data, rather than carefully labeled data.

• Multi-Modal Learning describes representation learning in multiple data types 

simultaneously, such as images and text or images and electronic health records.

• Reinforcement Learning optimizes a loss function with respect to a series of state 

to action predictions. �is is especially challenging due to credit assignment in the 

sequence of state to action mappings when receiving sparse rewards.

It is important to note the distinction between these learning task constructions in each 

of our surveyed applications. We further contextualize our surveyed applications with 

an overview of “Limitations of Deep Learning”. �ese limitations are non-trivial and 

present significant barriers for Deep Learning to fight COVID-19 related problems. 

Solutions to these issues of “Interpretability”, “Generalizationmetrics”, “Learning from 

limited labeled datasets”, and “Data privacy” will be important to many applications 

of Deep Learning. We hope describing how the surveyed COVID-19 applications are 
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limited by these issues will develop intuition about the problems and motivate solutions. 

Finally, we conclude with a “Discussion” and “Conclusion” from our literature review. 

Our Discussion describes lessons learned from a comprehensive literature review and 

plans for future research.

Deep Learning for “Natural Language Processing” (NLP) has been extremely success-

ful. Applications for COVID-19 include Literature Mining, Misinformation Detection, 

and Public Sentiment Analysis. Searching through the biomedical literature has been 

extremely important for drug repurposing. A success case of this is the repurposing of 

baricitinib [8], an anti-inflammatory drug used in rheumatoid arthritis. �e potential 

efficacy of this drug was discovered by querying biomedical knowledge graphs. Modern 

knowledge graphs utilize Deep Learning for automated construction. Other biomedi-

cal literature search systems use Deep Learning for information retrieval from natural 

language queries. �ese Literature Mining systems have been extended with question 

answering and summarization models that may revolutionize search altogether. We 

additionally explore how NLP can fight the “infodemic” by detecting false claims and 

presenting evidence. NLP is also useful to evaluate public sentiment about the pan-

demic from data such as tweets and provide tools for social scientists to analyze free-text 

response surveys.

“Computer Vision” is another mature application domain of Deep Learning. �e 

Transformer revolution in Natural Language Processing largely owes its success to 

Computer Vision’s pioneering into large datasets, massive models, and the utilization 

of hardware that accelerates parallel computation, namely GPUs [9]. Computer Vision 

applications to COVID-19 include Medical Image Analysis, Ambient Intelligence, and 

Vision-based Robotics. Medical Image Analysis has been used to supplement RT-PCR 

testing for diagnosis by classifying COVID-induced pneumonia from chest X-rays and 

CT scans. Haque et al. [10] recently published a survey on Computer Vision applications 

for physical space monitoring in hospitals and daily living spaces. �ey termed these 

applications “Ambient Intelligence”. �is is an interesting phrase to encompass a mas-

sive set of more subtle applications such as automated physical therapy assistance, hand 

washing detection, or surgery training and performance evaluation. �is section is par-

ticularly suited to our discussion on Data Privacy in “Limitations of Deep Learning”. We 

also look at how Vision-Based Robotics can ease the economic burden of COVID-19, as 

well as automate disinfection.

Deep Learning can improve virus spread models used in “Epidemiology”. Our cov-

erage of these models starts with “black-box” forecasting. �ese models use a history 

of infections, as well as information such as lockdown phase, to predict future cases 

or deaths. We describe how this varies based on region specificity. We will then look 

at adding more structure to the population model. �e most well-known example of 

this are Susceptible, Infected, and Recovered (SIR) models. �e illustrative SIR model 

describes how a population transitions from healthy or “Susceptible”, to “Infected”, and 

“Recovered” through a set of three differential equations. �ese equations solve for the 

infection and recovery rates from data of initial and recovered populations. �e chal-

lenge with these SIR models is that they have limiting assumptions. We will explore how 

Deep Neural Networks have been used to solve differential equations and integrate the 

non-linear impact of quarantine or travel into these SIR models. For even finer-grained 
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predictions, we looked into the use of Contact Tracing, potentially enabling personal-

ized risk of infection analysis.

�e application of Deep Learning for “Life Sciences” is incredibly exciting, but still in 

its early stages. RT-PCR has become the gold standard for COVID-19 testing. �is viral 

nucleic acid test utilizes primers and transcription enzymes to amplify a chunk of DNA 

such that fluorescent probes can signal the presence of the viral RNA. However, these 

tests have a high false negative rate. We will look at studies that sequence this RNA and 

deploy deep classification models, use Computer Vision to process expression, as well 

as studies that design assays to cover a wide range of genomes. New diagnostic tools are 

being developed with detailed biological and historical information about each patient. 

�is is known as Precision Medicine. Precision Medicine in COVID-19 applications 

looks at predicting patient outcome based on patient history recorded in Electronic 

Health Records (EHR), as well as miscellaneous biomarkers such as blood testing results. 

�is is another section that is highly relevant for our cautionary “Limitations of Deep 

Learning” with respect to Data Privacy.

Another exciting application area is the intersection of Deep Learning and molecular 

engineering. Deep Learning has received massive press for the development of Alpha-

Fold. Given the 1-dimensional string of amino acids, AlphaFold predicts the resulting 

3-D structure. �ese models have been used to predict the 3-D structure of the spike 

proteins on the outer shell of the coronavirus, as well as its other proteins. Having 

a model of this structure allows biochemists to see potential binding targets for drug 

development. �ese bindings can prevent the virus from entering human cells through 

membrane proteins such as ACE2. We can use Deep Learning to suggest potential bind-

ing drug candidates. Developing new drugs will have to undergo a timely and costly clin-

ical trial process. For this reason, COVID-19 research has been much more focused on 

drug repurposing to find treatments.

Within the scope of Natural Language Processing, we present the automated construc-

tion of biomedical knowledge graphs from a massive and rapidly growing body of litera-

ture. �ese graphs can be used to discover potential treatments from already approved 

drugs, an application known as drug repurposing. Drug repurposing is highly desirable 

because the safety profile of these drugs has been verified through a rigorous clinical 

trial process. Biomedical experts can search through these knowledge graphs to find 

candidate drugs. However, another interesting way to search through these graphs is to 

set up the problem as link prediction. Given a massive graph of nodes such as proteins, 

diseases, genes and edges such as “A inhibits B”, we can use graph representation learn-

ing techniques such as graph neural networks to predict relations between nodes in the 

graph.

Our final application area surveyed is the use of Deep Learning for “Epidemiology”. 

How many people do we expect to be infected with COVID-19? How long do we have 

to quarantine for? �ese are query examples for our search systems, described as NLP 

applications, but epidemiological models are the source of these answers. We will begin 

exploring this through the lens of “black-box” forecasting models that look at the his-

tory of infections and other information to predict into the future. We will then look at 

SIR models, a set of differential equations modeling the transition from Susceptible to 

Infected to Recovered. �ese models find the reproductive rate of the virus, which can 
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characterize the danger of letting herd immunity develop naturally. To formulate this as 

a Deep Learning task, a Deep Neural Network approximates the time-varying strength 

of quarantine in the SIR model, since integrating the Exposed population would require 

extremely detailed data. Parameter optimizers from Deep Learning such as Adam [11] 

can be used to solve differential equations as well. We briefly investigate the potential of 

Contact Tracing data. Tracking the movement of individuals when they leave their quar-

antine could produce incredibly detailed datasets about how the virus spreads. We will 

explore what this data might look like and some tasks for Deep Learning. �is is another 

application area that relates heavily to our discussion of data privacy in “Limitations of 

Deep Learning”.

�ese applications of Deep Learning to fight COVID-19 are promising, but it is impor-

tant to be cognizant of the drawbacks to Deep Learning. We focus on the issues of 

“Interpretability”, “Generalization metrics”, “Learning from limited labeleddatasets”, and 

“Data Privacy”. It is very hard to interpret the output of current Deep Learning models. 

�is problem is further compounded by the lack of a reliable measure of uncertainty. 

When the model starts to see out-of-distribution examples, data points sampled from 

a different distribution than the data used to train the model, most models will con-

tinue to confidently misclassify these examples. It is very hard to categorize how well a 

trained model will generalize to new data distributions. Furthermore, these models can 

fail at simple commonsense tasks, even after achieving high performance on the training 

dataset. Achieving this high performance in the first place comes at the cost of massive, 

labeled datasets. �is is unpractical for most clinical applications like Medical Image 

Analysis, as well as for quickly building question-answering datasets. Finally, we have 

to consider data privacy with these applications. Will patients feel comfortable allowing 

their ICU activity to be monitored by an intelligent camera? Would patients be com-

fortable with their biological data and medical images being stored in a central data-

base for training Deep Learning models? �is introduction should moderate enthusiasm 

about Deep Learning as a panacea to all problems. However, we take an optimistic look 

at these problems in our section “Limitations of Deep Learning”, explaining solutions to 

these problems as well, such as self-explanatory models or federated learning.

Background

�is section will provide a background for this survey. We begin with a quick introduc-

tion to COVID-19, followed by what Deep Learning is and how it relates to other Arti-

ficial Intelligence technologies. Finally, we present the relationship of this survey with 

other works reviewing the use of Artificial Intelligence, Data Science, or Machine Learn-

ing to fight COVID-19.

SARS-CoV-2 originated from Wuhan, China and spread across the world, causing 

a global pandemic. �e response has been a mixed bag of mostly chaos and a little 

optimism. Scientists were quick to sequence and publish the complete genome of 

the virus [12], and individuals across the world quarantined themselves to contain 

the spread. Scientists have lowered barriers for collaboration. However, there have 

been many negative issues surrounding the pandemic. �e quick infection and lack of 

resources has overloaded hospitals and heavily burdened healthcare workers. SARS-

CoV-2 has a unique characteristic of peak infection before symptom manifestation 
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that has worked in the favor of the virus. Misinformation has spread so rampantly, a 

new field of “infodemiology” has sprouted to fight the “infodemic”. Confusion of cor-

rect information is compounded by a rapidly growing body of literature surrounding 

SARS-CoV-2 and COVID-19. �is research is emerging very quickly and new tools 

are needed to help scientists organize this information.

A technical definition of Deep Learning is the use of neural networks with more 

than one or two layers. A neural network “layer” is typically composed of a para-

metric, non-linear transformation of an input. Stacking these transformations forms 

a statistical data structure capable of mapping high-dimensional inputs to outputs. 

�is mapping is executed by optimizing the parameters. Gradient descent is the tool 

of choice for this optimization. Gradient descent works by taking the partial deriv-

ative of the loss function with respect to each of the parameters, and updating the 

parameters to minimize the loss function. Deep Learning gets the name “Deep” in 

reference to stacking several of these layers. �e second part of the name, “Learning”, 

references parameter optimization. State-of-the-art Deep Learning models typically 

contain between 100 million to 10 billion parameters and 50–200 layers. Two of the 

largest models publicly reported are composed of 600 and 175 billion parameters [4, 

13]. Scaling up the size of these models has accelerated extremely quickly in the past 

few years [14].

In application of data such as text, images, or molecular sequences, Deep Learning 

is a massive step up from Machine Learning. �is is because Deep Learning learns 

these features automatically, compared to Machine Learning where features are 

manually-constructed. Machine Learning also describes fitting parametric models to 

map from input to output. Machine Learning processes inputs represented by human 

crafted features. A crafted feature to classify an animal as a dog or a zebra could be 

the weight of the animal, or the possession of stripes.

For high-dimensional data such as image pixel tensors or text embedding matrices, 

it is very hard to manually design high performing features for Machine Learning. 

Machine Learning is much different from Deep Learning, in which the features are 

learned automatically from this high-dimensional “raw” data. �e features learned in 

Deep Learning are referred to as representations. A representation is typically ana-

lyzed through the penultimate vector that is inputted to the output prediction. It is 

very challenging to interpret this representation because of the non-linear interac-

tions between variables that lead to it. For example, we cannot say the 3rd and 8th 

position of the representation vector solely look for the possession of stripes. In 

addition to looking at the penultimate layer vector output, the representation is also 

examined through the first embedding vector for word tokens. In either case, these 

high-dimensional vectors are commonly visualized through dimensionality reduction 

techniques such as t-SNE [15] or UMAP [16].

�e entire set of intermediate neural network outputs can equally be considered 

as the representation of the data. It is very important to view representations in this 

way for the sake of transfer learning. �is is where a neural network is trained on one 

task, usually one with a much larger set of labeled data, and then sequentially trained 

on another task. �e difference between human-designed features and representation 

learned from raw data is the core distinction between Deep and Machine Learning.



Page 8 of 54Shorten et al. J Big Data            (2021) 8:18 

Deep Learning is a piece in the bigger picture of Artificial Intelligence (AI). In addition 

to the distinction between Deep and Machine Learning, the scope of AI also includes 

Symbolic Systems. Symbolic Systems produce intelligent behavior through symbol 

manipulation and logic. Examples include Expert Systems and Knowledge Graphs. 

Expert Systems uses if-else rules to make decisions. Knowledge Graphs store relations 

between objects in graph data structures. �e application of Knowledge Graphs is 

extremely useful for fighting COVID-19, an example of this is BenevolentAI’s Knowl-

edge Graph [17]. �is is done by searching through explicitly coded relations between 

proteins, drugs, and clinical trial observations, to name a few. Biomedical researchers 

use a structured query language, rather than natural language, to search through these 

graphs.

Deep Learning does not process information in the same way as Symbolic Systems. 

Rather than topological compositions of atomic units, Deep Learning stores information 

in distributed tensors. �ere is an interplay with Deep Learning in symbolic systems like 

Knowledge Graphs. Deep Learning is used to automate the construction of Knowledge 

Graphs through Named Entity Recognition and Relation Extraction tasks. Manually per-

forming these tasks on big datasets such as a corpus of biomedical literature would be 

impossible. �is automated Knowledge Graph construction is discussed heavily in our 

survey in application to drug repurposing.

We recommend readers explore Chollet’s Measure of Intelligence [18] for a defini-

tion of intelligence more generally. Intelligence is defined as a function of prior knowl-

edge, experience, and generalization difficulty. �is is a useful framework for thinking 

about the intelligence required with surveyed COVID-19 applications. What makes one 

application require more intelligence than another? How can we add more prior knowl-

edge to these systems? How might this prior knowledge limit generalization ability? It 

is argued that we can trade off more prior knowledge for less experience, or vice-versa, 

we can start with less prior knowledge and make up for that with more experience. �e 

success of these components are determined by the generalization difficulty of the task. 

Different kinds of prior knowledge injected into an artificial intelligence may limit gen-

eralization ability, as will different subsets of experience. �e efforts of Deep Learning 

research can be thought of as discovering mechanisms of prior knowledge, collecting 

experience, and measuring generalization difficulty.

�e current generation of Deep Learning is defined in our survey as sequential pro-

cessing networks with many layers, updating its parameters with a global loss func-

tion, and forming distributed representations of data. We have seen an evolution from 

Machine Learning in representation learning. We also seek to integrate Symbolic Sys-

tems, such as the use of Knowledge Graphs. We think it is useful for readers to think 

of the interplay between prior knowledge, experience, and generalization difficulty to 

frame the difficulty of our surveyed applications.

Many other researchers have surveyed the use of Artificial Intelligence to fight 

COVID-19. Our survey builds on these reports, with a more detailed dive into Deep 

Learning. Surveys covering AI, Data Science, or Machine Learning applied to COVID-

19 vary mostly in how they organize COVID-19 applications. For example, Bullock et al. 

[5] organize their survey into molecular, clinical, and societal perspectives. Figure 1 illus-

trates how we have deviated from other surveys in presenting COVID-19 applications. 
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Most notably, we do not cover the use of Deep Learning for audio data or the Internet of 

�ings (IoT). Furthermore, applications we do not cover include the diagnostic potential 

of audio data from breathing recordings [6], and IoT applications such as smartphone 

temperature and inertial sensors [19]. Contrary to other surveys, we integrate publicly 

available datasets into our applications, rather than separate the two topics.

Bullock et al. [5] describe the aim of their survey as “not to evaluate the impact of the 

described techniques, nor to recommend their use, but to show the reader the extent 

of existing applications and to provide an initial picture and road map of how Artifi-

cial Intelligence could help the global response to the COVID-19 pandemic”. We have 

a similar aim in our survey, focusing solely on Deep Learning. Our survey draws heavy 

inspiration from Raghu and Schmidt’s paper, “A Survey of Deep Learning for Scientific 

Discovery” [20]. �ey cover different Deep Learning models, variants to the supervised 

learning training process, and limitations of Deep Learning, most notably reliance on 

large, labeled datasets. Our survey aims to provide a similar overview of Deep Learn-

ing and how it can be adapted to different kinds of scientific problems, focused on 

COVID-19.

Fig. 1 Organization of Artificial Intelligence COVID-19 Applications, comparison with other literature surveys
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Deep Learning applications for COVID‑19

Natural Language Processing

We begin our coverage of Natural Language Processing (NLP) by describing how 

text data is inputted to Deep Neural Networks. In order to feed language as an input 

to a Deep Neural Network, words are first tokenized into smaller components and 

mapped to an index in an embedding table. We take a token such as “cat” and map it 

into a d-dimensional embedding vector, where d is described as the hidden dimen-

sion of the Deep Neural Network. For further illustration, the token “the” might be 

mapped to position “810” in an index table the size of the entire vocabulary. Each of 

these positions holds a d-dimensional embedding vector representing a unique token. 

Note this strategy can be used for any categorical variable input. �is input represen-

tation has been very successful with language tokens. �is strategy is used for other 

categorical variable encodings as well, such as amino acids tokens.

NLP has seen a boom of interest due to the invention of the Transformer Neural 

Network architecture [21]. �is marks a transition from a focus on Recurrent Neu-

ral Networks (RNNs). RNNs iteratively process a sequence piece by piece, usually 

with explicit internal memory such as the Long Short-Term Memory (LSTM) mod-

els. �e main attraction of the Transformer is the use of attention layers. �e atten-

tion layer was invented to help RNNs preserve information from early tokens in the 

sequence. �e famous paper “Attention is all you Need” [21], showed that attention 

layers are potent enough on their own to do away with recurrent sequence process-

ing. Another benefit of this is the ability to massively parallelize the computation in 

the networks. �e importance of this parallelization is best described with a quick 

history of AlexNet in Computer Vision.

�e success of AlexNet [22] in the Computer Vision task of image classification was 

a large driver of interest in Deep Learning. AlexNet is an implementation of a Con-

volutional Neural Network, a new architecture at the time that has since been widely 

adopted. �e forward and backward computation in Convolutional and Transformer 

Neural Networks can run in parallel. Parallelization enables massive computing accel-

eration from Graphics Processing Units (GPUs). A similar breakthrough has hap-

pened in NLP with Transformers. �is perfect marriage with parallel GPU computing 

has dramatically improved Deep Learning performance.

Scaling up Transformers allows them to take advantage of big data, a necessary 

component of Deep Learning success described further in “Limitations of Deep 

Learning”. Another reason for the advancement of NLP is the success of self-super-

vised pre-training and transfer learning. It would be extremely challenging to find a 

big dataset of question-answer pairs related to COVID-19. However, we can find big 

data in the entire corpus of research published on SARS-CoV-2 and COVID-19. �is 

data is not labeled. We cannot rely on supervised learning to learn representations 

from this data. �e solution to this has been self-supervised language modeling. Lan-

guage models mask out a token randomly and the model predicts what the masked 

token had originally been. �e term “self-supervised” comes from the way this task 

can use supervised loss functions such as cross-entropy loss on the predicted token, 

but the task is constructed without human annotation.
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After self-supervised language modeling on a large corpus, the model is transferred 

to a new task, such as Yelp review sentiment classification. �e initialization of the neu-

ral network from the weights learned by language modeling is an incredibly powerful 

starting point. Gururang et al. [23] show the importance of in-domain data for this self-

supervised pre-training. General-purpose language models such as BERT [24] or GPT 

[25] are trained on a massive corpus, such as all the text on Wikipedia, a massive set of 

books, and articles sourced from the internet. Language models repurposed for COVID-

19 literature mining tasks such as BioBERT [26] or SciBERT [27] are pre-trained on a 

more domain-relevant corpus of scientific papers and biomedical literature. Another 

example, COVID-BERT [28] is pre-trained on a corpus of tweets about COVID-19. 

In-domain pre-training is extremely important for the success of transfer learning for 

COVID-19 NLP tasks. We will return to this theme in our discussion of Medical Image 

Analysis as well.

We present NLP applications for COVID-19 ordered by difficulty with respect to cur-

rent Deep Learning systems. Figure 2 is a quick description of the GLUE NLP bench-

mark. �is table gives information about each task such as how many training examples 

are in each dataset, a quick description of the task, and a high-level summary of the data 

domain [29]. �e GLUE benchmark is a set of tasks to evaluate NLP systems. �e latest 

NLP systems perform so well at these tasks that a new benchmark, SuperGLUE [30] has 

since been designed. Starting with the GLUE benchmark should provide readers a solid 

foundation for understanding what current NLP can easily solve. We explain how these 

tasks are setup as a Deep Learning problem to help readers understand the similarities 

of GLUE tasks with our surveyed COVID-19 applications. We will then transition to 

adapting these task formulations to COVID-19 applications.

�e GLUE benchmark divides supervised learning tasks into categories of Single-Sen-

tence, Similarity and Paraphrase, and Inference. �ese categories mostly distinguish the 

input format for classification tasks. Single-Sentence deals with one sentence as input, 

whereas similarity and inference deal with two. On the GLUE benchmark, this text is 

Fig. 2 What tasks has NLP conquered? A quick overview of the number of examples, tasks, and domains 
contained in the GLUE benchmark (Image taken from Wang et al. [29])
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sentence-length sequences. �e length of the sequence is an important distinction to 

make. Intuitively, it might seem easier to classify a longer sequence, such as an entire 

COVID-19 clinical report; however, attention over a long document has a much higher 

computational cost than sentence-length input sequences.

In the GLUE benchmark, single sentences are classified based on if they are gram-

matically acceptable or if they are positive or negative in sentiment. Text Classification 

applications in COVID-19 include certain approaches to Misinformation Detection, 

Public Sentiment Analysis, topic classification, and question category classification. Mis-

information Detection and Public Sentiment Analysis research usually work with Twit-

ter data. Tweets are great for NLP models since they are limited to 280 characters. An 

example of this is COVID-Twitter-BERT from Muller et al. [28].

Topic classification with scientific papers addressing COVID-19 requires construct-

ing a heavily truncated atomic unit for papers. We cannot pass entire scientific papers 

as input to most NLP models. An application example of this is filtering out COVID-

19 papers focused solely on Radiological findings from Liang and Xie [31]. Another 

example of this task is COVID-19 question classification from Wei et al. [32]. Wei et al. 

fine-tune BERT to categorize public questions about COVID-19 into categories such as 

transmission, societal effects, prevention, and more. �is helps public officials under-

stand what the public is concerned about with respect to COVID-19.

Similarity tasks in the GLUE benchmark are based on telling if two text sequences have 

the same semantic meaning. In GLUE, this is explored on miscellaneous data sources, 

news snippets, and questions asked on the Quora social network. In applications to Mis-

information Detection, we might have a list of common rumors about COVID-19. We 

can use these semantic similarity models to detect when these rumors are being spread 

on social media. �is detection is much more flexible than keyword models that would 

simply look for terms like “5G”. Semantic similarity models also play an enormous role in 

information retrieval systems.

Information retrieval models try to find the most relevant information given a query. 

�is is executed by performing the same task, but at multiple stages of granularity. Gen-

erally, we will consider these stages of high recall and high precision as retrieval and 

re-ranking. Retrieval and re-ranking could be further decomposed to trade-off between 

higher precision and more computation. �e first retrieval stage has typically been 

done by hand-crafted TF-IDF and BM25 text features. Only very recently has informa-

tion retrieval looked at transformer-derived representations for the first retrieval stage 

[33]. �e second stage of re-ranking takes the retrieved documents as input and assigns 

a more precise relevant score for each document, sorting them by the highest score to 

answer the query.

�e next task in NLP relevant to COVID-19 applications is question answering (QA). 

QA has been well studied on the SQuAD benchmark [34]. �is formulation of question 

answering (QA) is referred to as extractive QA. �e model has to classify the answer as a 

start and end span within a provided chunk of context. �e supervised learning problem 

is to output the indices from the context. For COVID-19 extractive question answer-

ing, an important question is, how do we get the context to classify the answer in? One 

solution would be to pair extractive QA with the information retrieval systems previ-

ously described to provide context to find the answer span. In addition to SQuAD-style 
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questions, we look at complex question answering. Complex, or multi-hop, question 

answering requires the model to combine information from different sources to derive 

the answer.

Some approaches to QA surveyed generate the answer directly [35], rather than classi-

fying its presence in a context. We consider this formulation to be more akin to abstrac-

tive question answering. We will explore two approaches to QA, either using symbolic 

knowledge graphs or relying on a neural system. A symbolic knowledge graph is desir-

able for the sake of interpretability. However, manual relation labeling in the COVID-19 

literature does not scale. Neural systems still play a role in constructing these knowledge 

graphs through Named Entity Recognition and Relation Extraction tasks. �e alterna-

tive approach to using symbolic knowledge graphs is to rely solely on Deep Learning 

models. In this case, a Deep Learning model stores all the information it needs to answer 

questions in its parameters [36]. We refer readers to [37] for current work on Knowledge 

Intensive Tasks in NLP.

Another NLP task that is interesting for COVID-19 applications is abstractive ques-

tion answering, summarization, and chatbots. �ese tasks require the model to devise 

novel sequences of text to answer questions, summarize articles, or chat with a user. We 

view each of these application areas as facing the same problem, differing with respect 

to the size of the input and output. All of these applications may be expected to contain 

a massive amount of information, whether that information is accessed directly in the 

parameters of the model or in the input context window. We note that these types of 

models are still in the early stage of development. We survey Abstractive QA and sum-

marization models implemented in Literature Mining systems such as CO-Search [38] 

and CAiRE-COVID [39].

�e ambition of NLP tasks in COVID-19 research range on the scale from well stud-

ied GLUE-style problems to extractive question answering when the context is provided, 

and then up to chatbots and abstractive summarization. We note that at the time of 

this publication, reliable abstractive summarization is a moonshot application of Deep 

Learning. Artificial Intelligence is an exciting and imagination-provoking technology. 

�e results from GPT-3, a 175 billion parameter language model, has been extremely 

inspiring. COVID-19 researchers are certainly pushing the limits of what NLP can do.

Literature Mining

�e COVID-19 pandemic ignited a call to arms of scientists across the world. Conse-

quentially, searching for signal in the noise is more challenging. �e most popular open 

literature dataset, CORD-19 [40], contains over 128,000 papers. �ese papers contain 

information about SARS-CoV-2, as well as related coronaviruses such as SARS and 

MERS, information about COVID-19, and relevant papers in relation to drug repurpos-

ing. No single or group of human beings could be expected to read this amount of text. 

�e need to organize a massive scale of text data has inspired development of many NLP 

systems.

CORD-19: �e COVID-19 Open Research Dataset [40] is the most popular dataset 

containing this growing body of literature. �e dataset consists of data from publica-

tions and preprints on COVID-19, as well as historical coronaviruses such as SARS and 

MERS. �ese papers are sourced from PubMed Central (PMC), PubMed, the World 
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Health Organization’s COVID-19 database, and preprint servers such as bioRxiv, 

medRxiv, and arXiv. �e CORD-19 research paper documents the rapid growth of their 

dataset from an initial release of 28,000 papers when published on April 22nd, up to 

140,000 when revised on July 10th. We observed documentation of this explosive growth 

as well when surveying Literature Mining systems built on top of this dataset. �e 

CORD-19 data is cleaned and implemented with the same system used for the Semantic 

Scholar Open Research Corpus [41].

Whereas CORD-19 is general purpose, TREC-COVID [42] is more narrowly focused 

on a test evaluation of information retrieval. �e authors state the twin goals of the 

dataset are “to evaluate search algorithms and systems for helping scientists, clinicians, 

policy makers, and others manage the existing and rapidly growing corpus of scientific 

literature related to COVID-19 and to discover methods that will assist with managing 

scientific information in future global biomedical crises” [43]. �e TREC-COVID data-

set consists of topics where each topic is composed of a query, question, and narrative. 

�e narrative is a longer description of the question. Figure 3 shows an example of the 

interface the authors use to label the TREC-COVID dataset.

�e following list provides a quick description of some Literature Mining systems built 

from datasets such as CORD-19 and TREC-COVID. �ese systems use a combination of 

Information Retrieval, Knowledge Graph Construction, Question Answering, and Sum-

marization to facilitate exploration into the COVID-19 scientific literature.

• CO-Search [38] is a Retrieve-then-Rank system composed of many parts, shown 

in Fig.  4. Before answering any user queries, the entire document corpus is 

encoded with Sentence-BERT (SBERT) [44], TF-IDF, and BM25 features. A user 

enters a query and it is encoded with a similar combination of featurizers. �is 

query encoding is used to index the featurized documents and thus return the 

most semantically similar documents to the query. Having retrieved these docu-

Fig. 3 Interface for human labeling TREC-COVID documents (Image taken from Voorhees et al. [43])
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ments, the next task is ranking for presentation to the user. First, the retrieved 

documents and query are passed as input to a multi-hop question answering 

model and an abstractive summarization system. �e output from these models 

are weighted with the original scoring from the retrieval step, and the top scoring 

documents are presented to answer the query.

 CO-Search is a combination of many cutting-edge NLP models. �eir pre-training 

task for the SBERT encoder is very interesting. �e authors train SBERT to take a 

paragraph from a research paper and classify whether it cites another paper, given 

only the title of the other paper. SBERT is a siamese architecture which takes one 

sequence as input at a time. SBERT uses the cosine similarity loss between the 

output representation of each separately encoded sequence to compare the para-

graph and the title. �e representation learned from this pre-training task is then 

used to encode the documents and queries, as previously describe. We will unpack 

the question answering and abstractive summarization systems later in the survey.

• Covidex [45] is a Retrieve-then-Rank system combining keyword retrieval with 

neural re-ranking. �e most different aspects of Covidex as compared to CO-

Search are a sequence-to-sequence (seq2seq) approach to re-ranking and boot-

straps the training of this model from the MS MARCO [46] passage ranking 

dataset. �e MS MARCO dataset contains 8.8M passages obtained from the top 

10 results by the Bing search engine, corresponding to 1M unique queries. �e 

Fig. 4 CO-Search System Architecture (Image taken from Esteva et al. [38])
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monoT5 [47] seq2seq re-ranker takes as input “Query q: Document: d Relevant: “ 

to classify whether the document is relevant or not to the query.

• SLEDGE [48] deploys a similar pipeline of keyword-based retrieval followed by neu-

ral ranking. Differently from Covidex, SLEDGE utilizes ths SciBERT [27] model for 

re-ranking. SciBERT is an extension to BERT that has been pre-trained on Scientific 

Text. Additionally, the authors of SLEDGE find large gains by integrating the publica-

tion date of the articles into the input representation.

• CAiRE-COVID [39] is a similar system to CO-Search. �e primary difference comes 

from the use of the MRQA [49] model and avoiding fine-tuning the QA models on 

COVID-19 related datasets. �is system tests the generalization of existing QA mod-

els comprising of a pre-trained BioBERT [26] fine-tuned on the SQuAD dataset. �e 

user interface of CAiRE-COVID is depicted in Fig. 5

�e preceding list are examples of Information Retrieval (IR) systems. As mentioned 

previously, IR describes the task of finding relevant documents from a large set of can-

didates given a query. �ese systems typically deploy multi-stage processing to break up 

the computational complexity of the problem. �e first stage is the retrieval stage, where 

a set of documents much smaller than the total set is returned that best match the query. 

�is first stage of retrieval has only recently integrated the use of neural representations. 

As previously listed, many systems combine TF-IDF or BM25 sparse vectors with dense 

representations derived from SBERT. �e relationship between these representations 

is well stated in Karpukhin et al. [33], “the dense, latent semantic encoding of contexts 

and questions is complementary to the sparse vector representation by design”. �is 

describes how some queries benefit massively from keyword features, whereas others 

need the contextual information captured in SBERT-style representations.

Deep Neural Networks can be viewed as compression machines for the sake of seman-

tic nearest neighbor retrieval. �ey take high-dimensional inputs such as the matrix 

embedding of a paragraph and gradually compress it into a much lower dimensional 

Fig. 5 User Interface for the CAiRE-COVID Literature Mining system consisting of Extractive Summary, 
Abstractive Summary, and most relevant documents (Image taken from Su et al. [39])
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vector. BERT takes in a sequence of 512 tokens and embeds it into a matrix of size 

(512 × 768), 768 being the hidden dimension used in the BERT-base release. BERT then 

processes this matrix through 12 transformer blocks, eventually connecting it to fully-

connected layers that end up with an output vector corresponding to each token index. 

In the BERT architecture, the final vector is indexed at the beginning, [CLS] token. �is 

final vector is the representation of the original sequence of 512 tokens. �e SBERT 

architecture, used in the listed systems, has a more explicit aggregation for the final out-

put vector, rather than indexing the [CLS] token.

In the first stage of Neural Retrieval, we would like to use these vector representa-

tions to find the most similar documents to our query. BERT is very successful at pair-

wise regression tasks. �is is where two sequences are passed in as input, separated by 

a [SEP] token. �e cross-sequence attention in BERT classifies the relationship of the 

sequences. �is is the setup for tasks like Semantic Text Similarity (STS), Natural Lan-

guage Inference (NLI), and Quora Question Pairs (QQP). However, this setup is costly 

for information retrieval, passing in each query and document to get a similarity classifi-

cation would require quadratic comparisons.

Sentence-BERT (SBERT) begins the transition to Transformer-based neural retrieval. 

SBERT uses a siamese architecture that avoids the pairwise bottleneck of BERT. Siamese 

architectures describe passing two inputs separately through a neural network and com-

paring the output representations. Each SBERT “tower” takes a single sequence as input 

and is trained with a cosine similarity loss. SBERT is then used to encode the documents 

from a database. Nearest neighbor GPU index optimizations [50] are extremely fast 

at finding the most similar representations to a query embedding. �is is a significant 

improvement because the semantics contained in these representations are much better 

than TF-IDF or BM-25 features. �e second stage is the refining or re-ranking of initially 

matched documents. �e second stage faces a much smaller set of total documents than 

initial retrieval and the bottleneck of pairwise models is negligible.

When asking a question about COVID-19, we might not want to be redirected to a list 

of articles to answer our question. We desire intelligent systems that can directly answer 

our question. �is is the challenge of Question Answering. Tang et al. [51] describe the 

challenge of constructing datasets for COVID-19 QA in a similar format as the SQuAD 

dataset. Five annotators working on constructing this dataset for 23 hours resulted in 

124 question-article pairs. �is includes deconstruction of topics such as “decontamina-

tion based on physical science” into multiple questions such as “UVGI intensity used 

for inactivating COVID-19” and “Purity of ethanol to inactive COVID-19”. �e authors 

demonstrate the zero-shot capabilities of pre-trained language models on these ques-

tions. �is is an encouraging direction as Shick and Shutze [52, 53] have recently shown 

how to perform few-shot learning with smaller language models.

Knowledge Graph Construction

One of the best mechanisms of organizing information is the use of Knowledge Graphs. 

Figure 6 is an example of a Knowledge Graph of our surveyed Deep Learning applica-

tions for COVID-19. Each relation in this example is A “contains” B. �is is an illustra-

tive example of organizing information topologically. It is often easier to understand how 

complex systems work or ideas connect when explicitly linked and visualized this way. 
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We want to construct these kinds of graphs with all of the biomedical literature relevant 

to COVID-19. �is raises questions about the construction and usability of knowledge 

graphs. Can we automatically construct these graphs from research papers and articles? 

At what scale is this organization too overwhelming to look through?

In application to COVID-19, we would like to construct Biomedical Knowledge 

Graphs. �ese graphs capture relations between entities such as proteins and drugs and 

how they are related such as “chemical A inhibits the binding of protein B”. Richardson 

et al. [8] describe how they use the BenevolentAI knowledge graph to discover barici-

tinib as potential treatment for COVID-19. In this section, we focus on how NLP is used 

to construct these graphs. Under our “Life Sciences” section, we will discuss the poten-

tial use of graph neural networks to mine information from the resulting graph-struc-

tured data.

Figure  7 shows examples of different nodes and links. We see the 2019-nCoV node 

(continually referred to as COVID-19 in our survey), the ACE2 membrane protein node, 

and the Endocytosis cellular process node, to name a few. �e links describe how these 

different nodes are related such as 2019-nCoV “Binds” ACE2, ACE2 “Expressed in” 

AT2 lung cell. Richardson et  al. [8] describe how this structure allows them to query 

Fig. 6 A Knowledge Graph organization of our survey on Deep Learning to fight COVID-19. Here every 
relation is “A contains B”
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the graph and form hypotheses about approved drugs. �e authors originally have the 

hypothesis that the AAK1 protein is one of the most known regulators of endocytosis 

and that disruption of this might stop the virus from entering the cells. �e knowledge 

graph returns 378 AAK1 inhibitors, 47 having been approved for medical use and 6 that 

have inhibited AAK1 with high affinity. However, the knowledge graph shows that many 

of these compounds have serious side-effects. baricitinib, one of the 6 AAK1 inhibitors, 

also binds another kinase that regulates endocytosis. �e authors reason that this can 

reduce both viral entry and inflammation in patients. �is is further described in Steb-

bing et al. [54].

We note that this kind of traversal of the Knowledge Graph requires significant prior 

knowledge on the part of the human-in-the-loop. �is motivates our emphasis on 

Human-AI interaction in “Limitations of Deep Learning”. Without human accessible 

interfaces, the current generation of Artificial Intelligence systems are useless. We will 

describe how Deep Learning, rather than expert querying, can be used to mine these 

graphs in our section on “Life Sciences”. Within the scope of NLP, we describe how these 

graphs are constructed from large datasets. �is is referred to as Automated Knowledge 

Base Construction.

A Knowledge Graph is composed of a set of nodes and edges. We can set this up as a 

classification task where Deep Learning models are tasked to classify nodes in a body of 

text. �is task is known as Named Entity Recognition (NER). In addition to identifying 

Fig. 7 BenevolentAI Knowledge Graph used to suggest baricitinib as a treatment for COVID-19 (Image taken 
from Richardson et al. [8])
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nodes, we want to classify their relation. As a supervised learning task, these labels 

include the set of edges we want our Knowledge Graph to contain, such as “inhibits” 

or “binds to”. Deep Learning serves classify nodes and edges according to a human-

designed set, not to define new nodes and relations. Describing their system called 

PaperRobot, built prior to the pandemic outbreak, Wang et  al. describe that “creating 

new nodes usually means discovering new entities (e.g. new proteins) through a series of 

laboratory experiments, which is probably too difficult for PaperRobot” [55].

�e labeled nodes are linked together with an entity ontology defined by biological 

experts. Defined by Guarino et  al., “computational ontologies are a means to formally 

model the structure of a system, i.e., the relevant entities and relations that emerge from 

its observation, and which are useful to our purposes” [56]. Wang et  al. [57] link the 

MeSH IDs entities together based on the Comparative Toxicogenomics Database (CTD) 

ontology. From Davis et al. [58], “CTD is curated by professional biocurators who lever-

age controlled vocabularies, ontologies, and structured notation to code a triad of core 

interactions describing chemical-gene, chemical-disease and gene-disease relationships”.

Wise et  al. [59] construct a similar graph containing 336,887 entities and 3,332,151 

relations. �e set of nodes and edges are shown in Fig. 8. �e authors use a combina-

tion of graph and semantic embeddings to answer questions with the top-k most simi-

lar articles, similar to the Information Retrieval systems previously described. Hosted 

on http://www.CORD1 9.aws, their system has seen over 15 million queries across more 

than 70 countries.

Zeng et  al. [61] describe the construction of a more ambitious Knowledge Graph 

from a large scientific corpus of 24 million PubMed publications. �eir graph contains 

15 million edges across 39 types of relationships connecting drugs, diseases, proteins, 

genes, pathways, and expression. From their graph they propose 41 repurposable drugs 

for COVID-19. Chen et  al. [62] present a more skeptical view of NER for automated 

COVID-19 knowledge graph construction. �ey highlight that even the more in-

domain BioBERT model has not been trained on enough data to recognize entities such 

as “�rombocytopenia”, or even “SARSCOV-2”. �ey instead use a co-occurrence fre-

quency to extract nodes and use word2vec [63] similarity to filter edges.

In SciSight [64], the authors design a knowledge graph that is integrated with the social 

dynamics of scientific research. �ey motivate their approach highlighting that most 

of these Literature Mining systems are designed for targeted search. Targeted search 

is defined as search where the researchers know what they are looking for. SciSight is 

Fig. 8 Meta-data on the count of Entities in CKG and Relation information (Image taken from Wise et al. [60])

http://www.CORD19.aws
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designed for exploration and discovery. �is is done by the construction of knowledge 

graph of topics as well as the social graphs of the researchers themselves.

Misinformation Detection

�e spread of information related to SARS-CoV-2 and COVID-19 has been chaotic, 

denoted as an infodemic [65]. From conspiracy theories ranging from causal attribu-

tion of 5G networks to false treatments and reporting of scientific information, how can 

Deep Learning be used to fight the infodemic? In our survey we will look at this under 

the lens of the spread of misinformation and the detection of it. �e detection of misin-

formation has been formulated as a text classification or semantic similarity problem. 

Our original description of the GLUE benchmark should help readers understand the 

core Deep Learning problem in the following surveyed experiments.

Many studies have built classification models to flag tweets potentially containing mis-

information. �ese papers mostly differ in how they label these tweets. Alam et al. [66] 

label tweets according to 7 question labels; contains a verifiable factual claim, is likely to 

contain false information, is of interest to the general public, is potentially harmful to a 

person, a company, a product, or society, requires verification by a fact-checker, poses 

a specific kind of harm to society, and requires the attention of a government entity. 

Dharawat et  al. [67] look at the seriousness of misinformation, reasoning that “urging 

users to eat garlic is less severe than urging users to drink bleach”. �eir Covid-HeRA 

dataset contains 61,286 tweets labeled as not severe, possibly severe, highly severe, 

refutes/rebuts, and real news/claims. Hossain et  al. [68] collaborate with researchers 

from the UCI school of medicine to establish a set of common Misconceptions. �ese 

misconceptions are used to label Tweets. Examples of this are shown in Fig. 9.

�e detection of misinformation and fact verification has been studied before the 

COVID-19 infodemic. �e most notable dataset of this is the FEVER, Fact Extraction 

and Verification, dataset [70]. �is dataset contains 185,445 claims generated by human 

annotators. �e annotators of the dataset were presented an introduction section of a 

Wikipedia article and asked to generate a factual claim and then perturb that claim such 

that it is no longer factually verified. We refer readers to their paper to learn about addi-

tional challenges of constructing this kind of dataset [70].

Fig. 9 Examples of Misinformation Labels (Image taken from Hossain et al. [69])
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Constructing a new dataset that properly frames a new task is a common theme in 

Deep Learning. Wadden et al. [71] construct the SciFact dataset to extend the ideas of 

FEVER to COVID-19 applications. �is is different from classification task formula-

tions previously mentioned in that they are more creative in task design. SciFact and 

FEVER introduce new datasets that show how supervised learning can tackle Misin-

formation Detection. Wadden et al. [71] design the SciFact dataset to not only classify 

a claim as true or false, but to provide supporting and refuting evidence as well. Wad-

den et al. [71] deploy a clever annotation scheme of using “citances”, sentences in sci-

entific papers that cite another paper, as examples of supporting or refuting evidence 

for a claim. Examples of this are shown in Fig. 10. �e baseline system they deploy to 

test the dataset is an information retrieval model. We refer readers to our previous 

section on Literature Mining to learn more about these models.

�e authors of SciFACT and FEVER baseline their datasets with neural informa-

tion retrieval systems. �eir systems rely on sparse feature vectors such as TF-IDF 

and distributed representations of knowledge implicitly stored in neural networks 

weights. In the previous section we described Knowledge Graphs. Knowledge Graphs 

for fact verification may be more reliable than neural network systems. We could 

additionally keep an index of sentences and passages that resulted in relations added 

to the knowledge graph. �is could facilitate evidence explanations. �e primary dif-

ference with this approach is the extent of automation. Querying Knowledge Base and 

sifting through relational evidence requires much more human-in-the-loop interac-

tion than neural systems. �is approach is also bottlenecked by the problem of scale 

with evidence. We will continue to compare the prospects of Knowledge Graphs and 

Neural Systems in our “Discussion” section.

Public Sentiment Analysis

�e uncertainty of COVID-19 and the challenge of quarantine ignited mental health 

issues for many people. NLP can help us gauge how the public is faring from multi-

ple angles such as economic, psychological, and sociological analysis. Are individuals 

endorsing or rejecting health behaviors which help reduce the spread of the virus? 

Previous studies have looked at the use of Twitter data for election sentiment [72, 73]. 

�is section covers extensions of this work looking into aspects of COVID-19.

Fig. 10 COVID-19 claim examples about COVID-19 and corresponding evidence retrieved (Image taken from 
Wadden et al. [71])
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Twitter is one of the primary sources of data for Public Sentiment Analysis. Other 

public data sources include news articles or Reddit. Tweet classification is very similar to 

the Single-Sentence GLUE benchmark [29] tasks previously described. Each Tweet has 

a maximum of 280 characters, which will easily fit into Transformer Neural Networks. 

Compared with Literature Mining, there is no need to carefully construct atomic units 

for Tweets.

�e core question with Twitter data analysis is filtering of the extracted Tweets into 

categories. �is is usually done by keyword matching. Muller et al. [28] use the keywords 

“wuhan”, “ncov”, “coronavirus”’, “covid”, “sars-cov-2”. Filtering by these keywords over 

a span from January 12th to April 16th, 2020 resulted in 22.5 M collected tweets. �e 

authors use this dataset to train COVID-Twitter-BERT with self-supervised language 

modeling. Previously, we discussed the benefit of in-domain data for self-supervised 

pre-training detailed in [23]. COVID-Twitter-BERT is then fine-tuned for five different 

Sentiment classification datasets. Two of these datasets target Vaccine Sentiment and 

Maternal Vaccine Stance. Compared to fine-tuning the BERT [24] model pre-trained 

on out-of-domain data sources such as Wikipedia and books, fine-tuned COVID-Twit-

ter-BERT models achieve an average 3% improvement across 5 classification tasks. �e 

average improvement was brought down by a very small improvement on the Stanford 

Sentiment Treebank 2 (SST-2) dataset, which does not consist of Tweets. �is further 

highlights the benefits of in-domain self-supervised pre-training for Natural Language 

Processing, and more broadly, Deep Learning applications.

Nguyen et al. [74] construct a dataset of 10K COVID tweets. �ese tweets are labeled 

as to whether they provide information about recovered, suspected, confirmed, and 

death cases, as well as location or travel history of the cases, or if they are uninformative 

altogether. �is dataset was used in the competition WNUT-2020 Task 2: Identification 

of Informative COVID-19 English Tweets. Chauhan [75] describes the efficacy of data 

augmentation to prevent over-reliance on easy clues such as “deaths” and “died” to iden-

tify informative tweets. Sancheti et al. [76] describe the use of semi-supervised learning 

for this task, finding benefits from leveraging unlabeled tweets.

Loon et  al. [77] explore the notion that SARS-CoV-2 “has taken on heterogeneous 

socially constructed meanings, which vary over the population and shape communi-

ties’ response to the pandemic.” �ey tie Twitter data with Google COVID-19 Com-

munity Mobile Reports [78] and find that political sentiment can predict how much 

people are social distancing. �ey find that residents social distanced less in areas where 

the COVID sentiment endorsed concepts of fraud, the political left, and more benign 

illnesses.

Further exploration into Deep Learning components such as architecture design, loss 

functions, or activations [79] will not be as important as dataset curation. With a strong 

dataset, text classification is an easy task for cutting-edge Transformer models. Later on, 

we will look at the Limitations of Deep Learning that highlight what makes this task 

challenging from a perfect performance perspective. Another topic in our coverage of 

limitations is the importance of Human-AI interaction. �is is relevant for all applica-

tions discussed, but especially for public sentiment with respect to user interfaces. Pub-

lic sentiment is typically interpreted by economists, psychologists, and sociologists who 

may not be comfortable adding desired functionality to a PyTorch [80] or Tensorflow 
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[81] codebase. We emphasize the importance of user interfaces that allow users to inte-

grate Public Sentiment Analysis into free-text answers in surveys.

Computer Vision

Computer Vision, powered by Deep Learning, has a very impressive resume. In 2012, 

AlexNet implemented a Convolutional Neural Network with GPU optimizations. 

AlexNet set its sights on the ImageNet dataset. �e result significantly past the compe-

tition with a 63.3% top-1 accuracy. �is marked a large improvement from 50.9% with 

manually engineered image features. AlexNet inspired further interest in Deep Neural 

Networks for Computer Vision. Researchers designed new architectures, new ways of 

representation learning from unlabeled data, and new infrastructure for training larger 

models. In 2020, eight years after AlexNet, the Noisy Student EfficientNet-L2 model 

reached 88.4% top-1 accuracy, an absolute improvement of 25.1%. �e Deep Computer 

Vision resume continues with generation of photorealistic facial images, transferring 

artistic style from one image to another, and enabling robotic control solely from visual 

input.

�e success of Deep Computer Vision is largely attributed to the ImageNet dataset 

[82]. �e ImageNet competition is a dataset that contains 1.2 million images labeled 

in 1,000 categories. Images are inputted to Deep Neural Networks as tensors of the 

dimension height × width × channels. For example, most ImageNet images have the 

dimension 128 × 128 × 3 pixels. �e resolution of image inputs to Deep Learning is an 

important consideration for the sake of computational and storage cost.

Computer Vision stands to transform Healthcare in many ways. �e most salient and 

frequently discussed application to COVID-19 is medical image diagnosis. Deep Learn-

ing has performed extremely well at medical image diagnosis and has underwent clinical 

trials across many diseases [83]. Medical image tasks mostly consider classification and 

segmentation, as well as reconstruction from 2-D slices in a CT-scan to make up the 

final 3-D view.

Computer Vision also stands to aid in subtle hospital operations. Haque et  al. [10] 

describe “Ambient Intelligence” where Computer Vision aids in physical therapy to 

combat ICU-acquired weakness, ensures workers and patients wash their hands prop-

erly, and improves surgical training, to name a few. Computer Vision equips cameras 

to “understand” what they are recording. �ey can identify people. �ey can label every 

pixel of a road for the sake of self-driving cars. �ey can map satellite images into road 

maps. �ey can imagine what a sketch drawing would look like if it was a photographed 

object. Here we use “understand” for the sake of hyperbole, really meaning that it can 

answer semantic questions about image or video data. �ese applications describe the 

potential of Computer Vision to enable a large set of subtle applications in pandemic 

response, such as face mask detection and monitoring social distancing or hospital 

equipment inventory. We hope to excite readers about the implications and gravity of 

this technology; however, in “Limitations ofDeep Learning” we highlight “Data Privacy” 

issues with this kind of surveillance.

Economic damage is one of the greatest casualties of COVID-19. How can we engi-

neer contact-free manufacturing and supply chain processes that don’t endanger work-

ers? Vision-based robotics is a promising direction for this. Current industrial robotics 
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rely on solving differential equations to explicitly control desired movement. �is works 

great when the input can be extremely controlled, but breaks down when the robot must 

generalize to new inputs. Vision-based robotics offers a more general control solution 

that can adapt to novel orientations of objects or weight distributions of boxes.

Medical Image Analysis

Assisting and automating Medical Image Analysis is one of the most commonly dis-

cussed applications of Deep Learning. �ese systems are improving rapidly and have 

moved into clinical trials. We refer readers to Topol’s guidelines for AI clinical research, 

exploring lessons from many clinical fields [84]. Our coverage of Medical Image Diag-

nosis for COVID-19 is mostly focused on classification of COVID-19 pneumonia, viral 

pneumonia, or healthy chest radiographs. �ere are many studies that focus on the 

Semantic Segmentation task, where every pixel in an image is classified. We discuss the 

Semantic Segmentation application in our section on “Interpretability” with respect to 

improving Human-AI Interaction. In our analysis, chest radiographs are sourced from 

either X-ray imaging or higher-resolution CT scans. Motivating the use of radiograph 

diagnosis, Fang et al. [1] find a 98% sensitivity with CT detection compared to 71% with 

RT-PCR. Ai et al. [85] look at the correlation between Chest CT and RT-PCR testing for 

1014 patients concluding that “chest CT may be considered as a primary tool for the cur-

rent COVID-19 detection in epidemic areas” [85]. Das et al. [86] highlight some reasons 

to prefer chest X-rays over CT-scans, namely that they are cheaper and more available, 

and they have lower ionizing radiation than CT scans do.

In our section on “Learning from Limited Labeled Datasets”, we will further discuss 

the challenge of fitting Deep Learning models with relatively small datasets. Medical 

image analysis may be the best example of this. Compared to the 1.4 million images in 

ImageNet, we rarely have more than 1000 COVID-19 positive chest radiographs. �is 

is especially important in a pandemic outbreak situation, where we need to gather diag-

nostic information as fast as possible. Researchers have turned to variants of supervised 

learning as the solution to this problem. �is includes transfer, self-supervised, weakly 

supervised, or multi-task learning.

Fortunately for this application, there are plenty of existing datasets that seek to clas-

sify pneumonia from Chest radiographs and can be used to bootstrap representations 

learned for COVID-19 detection. Irvin et  al. [7] constructed the Chexpert dataset 

of 224,316 chest radiographs of 65,240 patients prior to the COVID-19 outbreak. It is 

important to differentiate between COVID-19 and viral pneumonia, rather than think-

ing about this problem through the lens of COVID-19 vs. healthy. For an example of 

the dataset sizes available, Wenhui et al. [87] train their model on a dataset of 1341 nor-

mal, 1345 viral pneumonia, and 864 COVID-19 images. Wang et al. [42] published the 

COVIDx dataset with 13,975 CXR images across 13,870 unique patients. However, this 

dataset only contains 358 CXR images from 266 COVID-19 patient cases. We refer read-

ers to [88–90] to review common approaches to Deep Learning with class-imbalanced 

datasets.

Our literature review reveals that many of these studies pre-train models on the Ima-

geNet dataset and then fine-tune them on the COVIDx dataset �is representation 

learning strategy is known as transfer learning. Farooq and Hafeez [91] transfer weights 
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from a pre-trained ResNet50, Wang et al. [92] explore the Inception model, and Afshar 

et  al. [93] deploy a Capsule Network. We do not report performance metrics such as 

accuracy, precision, or recall reported in these papers due to experimentation with 

extremely small datasets. All of these papers report gains with transfer learning com-

pared to random weight initializations.

Raghu et al. [83] report a more sobering view of Transfer Learning for Medical Image 

Analysis. Most notably, they show that as medical imaging tasks collect more data, there 

is little to no benefit in ImageNet pre-training. On larger datasets such as Retina and 

ChexPert, there is no significant difference in performance when using Transfer Learn-

ing. However, Transfer Learning does improve performance in the small data regime. 

Small data is defined in this study as 5000 images. In the interest of COVID-19 applica-

tions, we note that this small data benefit is extremely important. However, If COVID-

19 continues to spread and more positive cases are collected, we do not expect transfer 

learning from ImageNet to continue to be useful. We note this is heavily related to the 

domain mismatch between ImageNet and chest radiographs. We do expect transfer 

learning to continue to be effective from datasets such as CheXpert [7].

Transfer learning usually describes supervised learning on one dataset, and then using 

these weights to initialize supervised learning on another dataset. Transfer learning can 

also refer to using self-supervised learning on one dataset, or other learning variants we 

mentioned in our Introduction. �ere have been many promising advancements in self-

supervised representation learning. For our COVID-19 applications, we will consider 

the use of contrastive self-supervised learning. �is learning algorithm pushes represen-

tations of positive pairs to be close together and negative pairs far apart. �e emerging 

practice in contrastive self-supervised learning [94, 95] is to form positive pairs from 

views of an image, where a view is a data augmentation transformation of the image [96]. 

MoCo [94] and SimCLR [95] are two of the most promising models for this. MoCo is 

generally preferred due to memory efficiency.

Zhang et al. [97] take a unique multi-modal approach to construct this learning task. 

�ey look to the short text descriptions that are paired with medical images. �ese 

annotations are much less detailed than the high-quality annotations that bottleneck the 

data collection process. Researchers have looked at how these text descriptions can facil-

itate visual representation learning, but rule-based label extraction is often inaccurate 

and limited to a few categories, and more generally these rules are domain-specific and 

sensitive to the style of text. Zhang et al. leverage this text to form image-text pairs with 

the medical images, naming their algorithm Contrastive Visual Representation Learning 

from Text (ConVIRT).

�e improvements of fine-tuning ConVIRT on different medical image datasets, such 

as COVIDx, compared to ImageNet initialization and other techniques is shown in 

Fig. 11. In the setting with 1% of the CheXpert labels, transfer learning from ConVIRT 

achieves an AUC of 87.0 compared to 80.1 from ImageNet pre-training with supervised 

learning. With 10% of the COVIDx data, ConVIRT achieves 90.3% accuracy compared 

to 84.4%. Although more promising than ImageNet transfer learning with supervised 

learning, with more labeled data, even ConViRT begins to show modest gains to random 

initialization. Sowirijan et al. [98] also present massive gains of the MoCo representation 

learning scheme. However, they only report results on the CheXpert dataset.
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Even in their takedown of ImageNet-based transfer learning for Medical Image Analy-

sis, Raghu et al. [83] note transfer performance differences by redesigning computational 

blocks in the ResNet. As mentioned previously, architecture design is one of the most 

promising trends in Deep Computer Vision research. Subtle architectures changes such 

as the arrangements of Skip-connections in DenseNet [99] can have a significant per-

formance gain over a more standard ResNet [100] model. Researchers have turned to 

parameterizing a discrete search space of candidate architectures and searching through 

it for a suitable architecture. �is search is usually done with evolutionary search [101] 

or reinforcement learning [102]. Wang et al. [42] turn to this research in the develop-

ment of their COVID-Net for chest X-ray diagnosis. �e authors design a macro, high 

level architecture structure, and a micro set of operations such as 7 × 7 vs. 1 × 1 convo-

lutions, and combine them using a generative synthesis search algorithm. �is results in 

a 3% accuracy improvement over a more standard ResNet-50 architecture.

From our literature review, we believe that representation learning schemes and archi-

tecture design are the most salient areas for exploration. We additionally believe that 

multi-task learning with Semantic Segmentation could improve representation learning. 

However, multi-task learning can be challenging to implement due to conflicting gradi-

ent directions with updates. Collecting labeled data for training Semantic Segmentation 

models can be extremely tedious as well. Shan et al. [103] present an interesting human-

in-the-loop strategy for labeling the pixels in COVID-19 CT scans. We also refer readers 

to an investigation from Gozes et al. [104] that uses Medical Image Analysis to explore 

COVID-19 disease progression over time. Finally, we think there may be value in explor-

ing differential diagnosis with the supervised learning label space. �is describes using 

tree structured labels. �ese labels reward the model if at least recognizes a parent node 

with the more specific, ground truth diagnosis. �is strategy is generally known as Neu-

ral Structured Learning [105].

Ambient Intelligence

When we think of the intersection of AI and Healthcare or Medicine, we may jump to 

groundbreaking protein structure prediction or language models that guide research 

directions. However, not all problems are so grandiose in mission. How many of 

Healthcare’s problems are subtle day-to-day operations that can be automated? One 

of the most frequent storylines of the COVID-19 pandemic was fear of an overloaded 

health system. Here, we look at how Computer Vision enables Ambient Intelligence. 

Fig. 11 AUC and Accuracy performance gains from ConVIRT (Image taken from Zhang et al. [97])
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Ambient Intelligence is defined by Haque et al. [10] as “physical spaces that are sensi-

tive and responsive to the presence of humans”. �is section is a brief summary and 

reflection of their survey.

�e survey begins by describing that decision-support systems have corrected sub-

optimal diagnostic and treatment decisions, but automated decisions about physi-

cal actions remain esoteric and unexplored. In a report on medical error, Mackary 

and Daneil found that “as many as 400,000 people die every year in the United States 

owing to lapses and defects in clinical decision-making and physical actions” [106]. 

�e idea of Ambient Intelligence is to integrate smart sensors that can monitor and 

collect data about these physical actions. Haque et  al. [10] explore physical therapy 

assistance, hand washing, and surgeon performance evaluation. Figure 12 illustrates 

the layout of an elderly care unit with caregivers clothed in blue or green. �is graphic 

portrays the scenario where there are more patients than workers, and it may be chal-

lenging to record exactly what kind and how much assistance is given. �is figure 

describes a study where a depth and thermal sensor, (shown as a green highlight), 

are used to observe 1690 activities and 231 instances of caregiver assistance over the 

span of 1 month. A convolutional neural network trained on this data achieved 86% 

Fig. 12 An illustration of Ambient intelligence of daily living spaces in an elderly home equipped with one 
ambient sensor (Image taken from Haque et al. [10])
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accuracy at detecting assistance. �is automated analysis can record the operations of 

the elderly care unit without requiring additional overhead on the caregivers.

In application to COVID-19, we are mostly interested in this kind of reporting in 

Intensive care units (ICUs). Haque et  al. [10] describe activity monitoring with Com-

puter Vision to better understand ICU-acquired weaknesses. In a comparison of 224 

weak and non-weak patients, Hermans et al. report a lower likelihood of weaning from 

mechanical ventilation and hospital discharge amongst weak patients, as well as higher 

in-hospital costs and 1-year mortality. �e solution provided by Ambient Intelligence 

would be to monitor mobility activities to better understand how to combat ICU-

acquired weaknesses.

One of the most promising research directions for Deep Learning in Ambient Intel-

ligence will be compression. We need to compress these Deep Neural Networks so that 

they can be cost-effectively embedded in smart sensors. Some of the most promising 

approaches to compression include mixed precision, quantization, and pruning. Mixed 

precision describes using either 2, 4, 8, or 16-bit precision for neural network weights, 

rather than 32-bits. Quantization is a more effective strategy for reducing this precision. 

�is describes clustering at common values, rather than just truncating to meet preci-

sion requirements. Many of the weights in a neural network can be pruned away, or set 

to zero, and not impact the performance of the model. �e lottery ticket hypothesis [107] 

showed that it is even possible to train pruned networks, rather than waiting until train-

ing is completed to prune networks to zero. However, Deep Learning hardware is only 

recently catching on to accelerate sparse networks, with recent advancements such as 

Block-Sparse Kernels. Compression is an exciting field of Deep Learning research. Some 

interesting directions include understanding the success and phenomena of sparse net-

works, and the opportunity to further explore quantization noise during training [108].

Vision-based robotics

Robotic Control is one of the most popular applications and research areas of Deep 

Learning. As a Deep Learning task, this involves mapping from pixel and sensor states 

to motor force actions. In this section we are focused on the integration of visual input 

to the state representation for control. �is mapping can be learned through either 

supervision with demonstrations or reinforcement learning from scratch. An illustrative 

example of vision-based robotics is the Wozniak coffee cup test [109]. �is describes 

whether a robot would be able to walk into any room and make a cup of coffee. We note 

that this level of generalization is unnecessary for most applications for COVID-19. We 

discuss this further in Generalization Metrics.

�e range of robotic applications considered varies enormously in the complexity of 

manipulation required. For example, a robot unleashing a disinfecting spray on a room 

does not need to have fine-grained manipulation skills. However, a robot assisting a 

patient with a respiratory does. In a similar way, robots facilitating manufacturing and 

economic activity vary along this scale as well. Sorting bottles requires more vision than 

dexterity, whereas assembly requires incredibly dexterous manipulation.

Barfoot et al. [110] outline a plan for the future of Canadian robotics in response to 

the Pandemic. �e authors highlight application potential in disinfection, remote triage, 

logistics, and delivery. �e authors claim that “the pandemic has become an inflection 
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point for accelerating investment in robotics” [110]. Murphy et  al. [111] survey 262 

reports on ground and aerial robots for the COVID-19 response. �ey divide robot-

ics applications into categories of Public Safety, Clinical Care, Continuity of Work and 

Education, Quality of Life, Laboratory and Supply Chain Automation, and Non-Hospital 

Care.

RoboNet [112] is an open database for visual robotic experience containing 15 million 

video frames across 7 different robot platforms. Srinivas et al. [113] recently showed a 

breakthrough performance by introducing a multi-task self-supervised learning system 

to facilitate visual representation learning. Wu et al. [114] demonstrate how a Soft Actor 

Critic agent can learn to fold cloth material. We refer interested readers to “�e Ingredi-

ents of Real-World Robotic Reinforcement Learning” by Zhu et al. [115].

Life Sciences

�is section will address an absolutely massive scope, generally defined here as “Deep 

Learning for Life Sciences”. Our scope ranges from improving the COVID-19 diagnostic 

capabilities of blood testing [116] to ground-breaking applications in protein modeling 

and drug repurposing.

�ere is no shortage of big data at the intersection of Biology and Deep Learning. 

Humans contain 45,000 genes and the entire Human Genome contains 3 billion base 

pairs [117]. �ere are an estimated 37.2 trillion cells in a human body [118]. �ese num-

bers illustrate “Large-Scale Biology” [117]. Despite a solid foundation of information in 

biology, we do not have an exact model of every physiological pathway in the human 

body. We cannot exactly understand what will happen with the introduction of a new 

molecule. However, we can still model proteins such as membrane proteins the virus 

binds with. �ese protein models allow us to design potentially inhibiting drugs much 

better than random chance.

Precision Diagnostics

�e gold standard test for SARS-CoV-2 has been Reverse Transcriptase-Polymer-

ase Chain Reaction (RT-PCR). RT-PCR is a nucleic acid amplification test that works 

by iteratively heating up and denaturing the DNA, binding primers, and then attach-

ing enzymes to amplify the total amount of DNA by providing a complement strand. 

�is amplification enables fluorescent probes to highlight the presence of the viral RNA, 

which would be nearly impossible to do with the pre-amplified sample.

Lopez-Rincon et al. [119] highlight the challenge of declaring that the presence of a 

gene such as ORF1ab evidences SARS-CoV-2 infection. A high-level illustration of RT-

PCR testing is shown in Fig.  13, the challenge is correctly classifying the presence of 

SARS-CoV-2 proteins in the amplified sequence. �e authors construct a dataset of 

viral RNA sequences that are known to be hosted in humans. �ey encode base pairs 

‘A’,’C’,’G’,’T’ into numeric values of 0.25, 0.5, 0.75, and 1. �is is opposed to the embedding 

encodings used for tokens in NLP. �eir system achieves 98.75% accuracy in classifying a 

dataset of 553 coronavirus sequences ranging from 1260 to 31,029 base pairs.

Shiaelis et al. [120] deploy Computer Vision in single-particle fluorescence microscopy 

imaging to detect SARS-CoV-2. We refer readers to our section on Computer Vision for 

a description of how Computer Vision problems commonly use Deep Learning. Shiaelis 
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et al. train their model on lab-grown viral images. �e authors note that the fluorophore 

distribution over the surface of different viruses such as size and shape are perfectly fit-

ted for feature extraction with Deep Convolutional Neural Networks. After the domain 

knowledge used to preprocess, tag, and label these images, they appear surprisingly sim-

ple. �e authors report different binary classification accuracies between virus strains 

such as SARS-CoV-2 vs. influenza A strains on lab-grown training sets. Further, the 

authors have tested their system on about 60,000 clinical samples. �is approach claims 

to take less than five minutes and is a promising step towards rapid mass testing.

Given some of the general shortcomings of RT-PCR testing such as long turnaround 

times and availability of tests, researchers have also explored the diagnostic capability 

of routine blood tests [116]. �ese blood tests yield data about white blood cell counts, 

platelets, and plasma levels. Brinati et al. [116] collect this data from 279 patients and 

achieve a range of 83% to 89% accuracy with a modified random forest classifier. �is 

range is due to different data splits used to evaluate the model. [69] look to combine 

these features with CT scans and clinical information through a late fusion model. [121] 

also look at combining a white blood cell test with CT images for diagnosis. Zhou et al. 

[122] imagine the integration of genomic, transcriptomic, proteomic, and phenomic 

profiles for a more personalized treatment in drug repurposing. We will describe this 

application later on the survey. We refer readers to the illustrative diagram from their 

study [122] describing the integration of different data sources for Precision Diagnos-

tics, shown in Fig.  14. We additionally refer readers to a survey on big data in health 

informatics from Herland et al. [123] to develop intuition on data available for Precision 

Diagnostics.

Protein structure prediction

One of the keys to understanding the biology of SARS-CoV-2 is the structure of the 

outer shell proteins. Structure determines the role and function of a protein [124]. 

Understanding this structure can help with finding potential treatments. “If a group of 

viruses shares a common protein structure, then therapies for one viral infection can 

be repurposed for new diseases like COVID-19” [125]. Experimental verification of 

Fig. 13 Rough overview of RT-PCR amplifications (Image taken from Lopez-Rincon et al. [119])
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structure is done with X-ray crystallography, nuclear magnetic resonance imaging, or 

cryo-electron microscopy. However, this is costly and time consuming. �erefore, 

researchers are interested in models that can predict this structure. �ese validated 

structures have been placed in the Protein Data Bank. �is dataset of 1-D amino acid 

sequences and their resulting, verified 3-D structures is a great starting point for Deep 

Learning. Figure  15 illustrates some neural network designs for different perspectives 

on protien structure prediction. From our perspective on understanding Deep Learn-

ing problems, the Protein Data Bank is a dataset that can be used with Semi-Supervised 

Learning. Semi-Supervised Learning describes the learning problem where there is a 

small, labeled dataset and a larger, unlabeled dataset. �ere are only 158 K experimen-

tally determined structures available in the Protein Data Bank (PDB). However, there are 

over 180 M protein sequences recorded in UniProt. �ese 180 M sequences do not have 

labeled 3-D structures.

Rato et al. [126] inspire exploring into these un-labeled protein sequences, “billions 

of years of evolution have sampled the portions of protein sequence space that are rel-

evant to life, so large unlabeled datasets of protein sequences are expected to contain 

significant biological information” [126]. Rao et al. recognize protein representation 

learning as a semi-supervised learning problem and introduce the Tasks Assessing 

Protein Embeddings (TAPE) benchmark. �ese tasks test the strength of semi-super-

vised protein representation learning and finds self-supervised pre-training to be 

effective. We will discuss self-supervised learning further in Learning with Limited 

Labeled Data.

An important distinction to make in protein structure prediction is between Template 

and Free Modelling. Template Modeling looks for the most similar sequence that has an 

experimentally verified 3-D structure, noting that similar amino acid sequences likely 

have similar 3-D structures as well. From the perspective of Deep Learning, Template 

Modeling can be thought of as a nearest neighbor problem. We look for the most similar 

Fig. 14 AI for Precision Medicine (Image taken from Zhou et al. [122])
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sequence in which we have a verified experimental structure available. Free modeling is 

the more ambitious task of predicting structure without this kind of reference.

�e CASP competition is the premier competition for protein structure prediction 

[128]. In 2018, AlphaFold [124] placed first in the Free Modeling category with the use 

of Deep Learning. AlphaFold marked an incremental improvement in the approach to 

this problem. Traditional models, as well as AlphaFold, use Multiple Sequence Align-

ment (MSA) to find similar sequences to the sequence to be predicted. �ese similar 

sequences are concatenated to the input representation. �is input is then mapped to 

predicting contacts between the carbon atoms of 2 amino acid residues. �is contact 

prediction is traditionally setup as a binary classification problem, do they lie within a 

given distance? AlphaFold rather predicts this distance directly as a regression prob-

lem. �is precise modeling required a stronger model, and AlphaFold uses a variant 

of ResNet [100], developed for Computer Vision, to step up to the challenge.

�is has not been game changing in the same sense of AlexNet and ImageNet, but it 

is a very promising step forward. AlphaFold predicts pairwise distances between amino 

acids in the 3-D structure, aggregates the resulting potential mean force deterministi-

cally, and thus ranks and presents the most likely structure with the lowest energy. Our 

Discussion section aims to bridge different applications under commonalities of Deep 

Learning problems. We hypothesize a potential intersection between MSA features and 

trends in Information Retrieval in our Discussion.

Drug repurposing

When discussing Natural Language Processing applications, we looked at how NLP can 

aid in the construction of Knowledge Graphs (KGs). �ese KGs can be used to find suit-

able candidates for drug repurposing. In this section we will explore how we mine this 

graph-structured biomedical information. Network Medicine [129] is an area of research 

that looks at the holistic view of interaction networks such as protein-protein or drug-

target. �is is extremely important because some drugs may look promising on a cellular 

Fig. 15 Illustrations of how different Neural Network architectures have been applied to Protein Structural 
Modeling (Image taken from Gao et al. [127])



Page 34 of 54Shorten et al. J Big Data            (2021) 8:18 

assay, but show little benefit in real clinical trials. �is kind of information can be mined 

from the biomedical literature and clinical trial reports. A systematic screening of all 

approved drugs is a promising direction for new treatments. Medicines designed for one 

disease finding use in another.

Zhou et  al. [122] published a comprehensive survey on “Artificial intelligence in 

COVID-19 drug repurposing”. �is survey looks at mining Knowledge Graphs to find 

FDA-approved drugs that may be suitable for treating COVID-19. �e survey also con-

siders combinations of drugs such as baricitinib and remdesivir. �e survey primarily 

reviews research that has used graph representation learning for downstream link pre-

diction. Graph representation learning is a branch of Deep Learning that works with 

graph-structured data, such as the Knowledge Graphs previously described.

A citation graph is a great way to develop intuition for Deep Learning on graph-struc-

tured data. Each paper has an embedding for the text content and it is connected to 

other papers based on outgoing and incoming citations. Graph inputs to Deep Learning 

typically consists of two matrices. An adjacency matrix represents connections between 

the nodes in the graph. �e other input matrix is an embedding table with features for 

each of the nodes. A common layer for processing these features is the Graph Convo-

lutional Layer. �is describes learning weights to propagate features along edges in the 

graph such that message passing only occurs between neighbors. �rough several lay-

ers, distant neighbors can share information. At the final representation of the network, 

indexed positions of a node or edge in the feature graph is used for classification. In drug 

repurposing, this task is commonly link prediction between protein target and drug 

nodes. We refer interested readers to Hamilton et al. [130] for a more detailed survey on 

representation learning on graphs.

Under the umbrella of Knowledge Graphs, we presented how Zeng et  al. [61] con-

structed a Knowledge Graph with 15 million edges from a corpus of 24 million Pub-

Med publications. From their graph, Zeng et al. [61] use the RotatE graph representation 

learning algorithm to embed relations into a low-dimensional vector space. �ey then 

suggest potential drug candidates by taking the top-k neighbors in the embedding space. 

�e full pipeline is visualized in Fig. 16. We refer readers to [131] for more information 

on these interaction networks such as Protein-Protein interaction networks.

Epidemiology

�e biggest intervention to the spread of COVID-19 that has been implemented is shel-

tering-in-place. �e solution of limiting contact between people significantly reduces the 

spread and prevalence of SARS-CoV-2. However, sheltering in-place comes at a massive 

economic and mental health cost. �e field of Epidemiology aims to answer questions 

about the spread of infectious diseases such as COVID-19. �e tools of Epidemiology, 

such as the SEIR differential equations, help us understand many important questions 

about the virus. How long will we need to remain quarantined in our homes? How 

much will quarantining slow down the spread of the virus? What do we know about the 

Infection rate? Answering these questions is extremely important for allocating scarce 

resources such as ventilators, personal protective equipment, and ICU beds, as well as 

for public information. �is section will explore how Deep Learning can improve spread 

forecasting.
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Black-box spread forecasting

In this section, we will look at different levels of granularity for spread forecasting. 

�is granularity differs with respect to region modeling, such as country- compared to 

county-wide forecasting, as well as assumptions about the population in the model. We 

will start with Deep Learning approaches that treat the virus and population as a black-

box phenomenon and only use the history of infections and deaths to forecast. �is 

involves inputting a numeric sequence of infected cases to a Recurrent Neural Network 

Fig. 16 Illustration of the use and construction of CoV-KGE for drug repurposing (Image taken from Zeng 
et al. [61])
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(RNN) to predict future infections or deaths. �is strategy trains the RNN with super-

vised learning on the historic data. In addition to the numeric value of cases or deaths, 

these models will add dense embeddings to represent meta-information. �is meta-

information includes policy decisions such as the phase of lockdown in a given region.

�ese models can be useful for forecasting the amount of resources healthcare work-

ers will need. According to Zeroual et al. [132] “accurate short-term forecasting of the 

number of new contaminated and recovered cases is crucial for optimizing the avail-

able resources and arresting or slowing down the progression of such diseases”. In their 

survey, Zeroual et al. [132] compare four different RNN architectures and a Variational 

Auto-Encoder (VAE) for spread forecasting. �e VAE model has an encoder that com-

presses the history of observed cases into a latent vector which the decoder in turn maps 

into predicted cases in the future. Of particular note is the massive difference in how the 

time component is modeled in an RNN compared to a VAE. �eir study predicts cases 

each day from January 22nd, 2020 to June 17th, 2020. We note that this only covers 148 

days, or datapoints, for training the models. With this time-scale, they report the best 

performance with the VAE model. �is is likely because the VAE has explicit mecha-

nisms of sampling and variational inference that help regularize the latent space and 

avoid overfitting. We will discuss this issue further in Learning from Limited Labeled 

Data under Limitations of Deep Learning.

�is approach of sequence modeling can be improved by adding more structure to the 

problem. �is structure involves training sequence models for each county, state, coun-

try, or continent-level. �ese models can then be combined at later layers of the network 

such that the predictions of nearby regions can learned from one another. An important 

application of this modeling level is to decide how to resume travel. �e SARS-CoV-2 

pandemic has incurred a huge hit to travel and resulting economic activity.

Kim et al. [133] predict how much the virus would spread given travel from certain 

geographic regions. �eir Deep Learning task architecture involves encoding travelers at 

the county-level and continent-level. At the county-level, the encoder is a combination 

of self-attention and recurrent layers to embed a history of daily infection numbers and 

the inflow of travelers from each country. �e continent-level encoding aggregates the 

county-level encodings, passing them through an additional feed-forward layer. �eir 

model design is pictured in Fig. 17. Readers may be interested in extending this work by 

exploring multi-task learning.

Le et al. [134] look at even more fine-grained, county- and state-level forecasting. �eir 

dataset consists of confirmed cases, symptom surveys, movement range maps, commu-

nity mobility, doctor visits, PCR tests per state, and weather. �e objective is to disen-

tangle region-specific factors such as demographics, enacted policies, and mobility from 

features of COVID itself. �ey propose a combination of RNNs and vector autoregres-

sive models for this. �is achieves very high-resolution models with respect to county 

and state-level forecasts.

SIR models

We have just described adding additional structure to the population in forecast-

ing models. Under the scope of black-box forecasting, we compared the differences 

between sequence modeling with a single region of numeric cases or deaths compared 
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to combining information from multiple regions. Now we will turn our attention to one 

of the core models of epidemiology, the SIR model. �is model provides additional prior 

knowledge about what we know about infectious disease spread and the population. SIR 

models are more specific in modeling subsets of the population for accurate forecasting.

�e SIR model is short for Susceptible (S), Infected (I), and Recovered (R). Sometimes 

these models are extended to include the Exposed (E) population as well, however this 

requires extremely detailed data. �e model is a set of differential equations to compute 

the change in each S, I, E, and R population. �ese equations are shown in Fig. 18. �e 

model makes a few important assumptions about the data. Firstly, there is a constant 

population, S + I + E + R = 1. Secondly, the rate of increase in infections is a function 

of contact and this contact occurs at a constant rate. Lastly, there is a constant rate of 

recovery.

�e model answers questions given the initial Susceptible and Infected popula-

tions. �ese questions include, will the disease spread? What will be the peak number 

of Infected people? How many people will catch the disease? �is initial population 

data allows us to solve for increase in infections as a function of the spread of the virus 

divided by the recovery rate. �is is known as the R0, reproductive rate of the virus. If 

this reproductive rate is greater than 1, the number of infected is likely to increase.

�e application of Deep Learning for SIR modeling is to reduce some of these simpli-

fying assumptions. In many regions around the world, people have quarantined them-

selves to limit the spread. However, as described with black-box forecasting, there have 

been different phases of quarantine that vary over time. Dandekar and Barbastathis 

Fig. 17 Hi-COVIDNet, using country-level and continent-level encoders to predict imported COVID-19 cases 
from travel (Image taken from Kim et al. [133])

Fig. 18 SEIR differential equations (Image taken from Dandekar and Barbastathis [135])
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[135] introduce a 2-layer neural network to model the time-varying strength of quar-

antining. Figure 19 shows the input vector to the 2-layer neural network to predict the 

quarantine strength. �e authors integrate this prediction into the differential modeling 

of the Infected population.

In a similar way that SIR models add structure to improve black-box forecasting, 

researchers have further drilled into adding population structure. Arik et al. [136] extend 

the SIR Model by adding additional compartments. �ey further splitting the infected 

population into separate differential equations. �e authors integrate undocumented 

infected and recovered cases, separate compartments for hospitalized, ICU and venti-

lator patients, re-infection rate. �is more fine-grained population model is shown in 

Fig. 20. �is introduces many more modeling parameters to be optimized with a Deep 

Neural Network.

Contact Tracing

Contact Tracing is another example of an application where we refer readers to our dis-

cussion of Data Privacy. �e idea of Contact Tracing, more particularly Digital Contact 

Fig. 19 The Neural Network takes an input vector of the Susceptible, Infected, Recovered, and Quarantined 
Population (estimated from the previous time step) to model the quarantine strength (Image taken from 
Dandekar and Barabastathis [135])

Fig. 20 Further differentiation within populations in the SIR model (Image taken from Arik et al. [136])
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Tracing, is to use cell phone interaction data through sensors to track contact between 

individuals. Users could also register for contact tracing by downloading a phone appli-

cation. However, this would require everyone downloading the app to work effectively. 

�is is especially important due to the phenomena of peak infectiousness preceding the 

onset of symptoms. Contact Tracing data would enable individuals to know if they have 

been exposed to someone carrying the virus, if they have visited a hotspot where the 

virus had been and might still be on surfaces, and thus quantify their risk of contract-

ing it themselves. �is quantification would improve over time as more data is collected 

about how these interactions actually lead to infections. �is would also dramatically 

improve the infection rate parameter of the SIR models. �ere are no such public data-

sets that track individuals, however the Google Mobility Reports [78] do provide infor-

mation about travel and contact between individuals at the city level.

Imagining we had this kind of data, Meirom et al. [137] present a promising strategy 

to control the spread using reinforcement learning and graph neural networks. Figure 21 

highlights a way of viewing this graph in the lens of SEIR labels. Meirom et  al. struc-

ture this as a sequential decision problem over a graph. Who should be tested? Who 

should quarantine themselves? �ese are the kind of decisions the model must make for 

individuals based on their contact. Meirom et al. use social network graph construction 

methods such as community-structured, preferential attachment, and statistics derived 

from real cellular tracking. �ese describe techniques for constructing an adjacency 

matrix with different features such as power-law or uniform connectivity. �ey simulate 

interactions and use graph neural networks to rank the candidates that should be pri-

oritized for testing. In simulations this increases the number of healthy people by 25% 

and contains the epidemic 30% more often than supervised approaches. For real contact 

tracing datasets, these graph neural networks would become necessary to process a large 

population and large interaction data.

Limitations of Deep Learning

Earlier, we discussed the current state of Deep Learning and how it fits into the broader 

context of Artificial Intelligence. In this section, we detail where Deep Learning falls 

short and how this can be problematic for the COVID-19 applications explored. In this 

Fig. 21 Graph-structured SIR models (Image taken from Meirom et al. [137])
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section we explore Interpretability, Performance Evaluation, Learning from Limited 

Labeled Data, and Data Privacy. �ese limitations of Deep Learning each make up their 

own field of research. �ey raise important questions about practicality. Can we trust 

the predictions of Deep Learning models? Do we even have enough data and computing 

power to use Deep Learning?

�e limitations of Deep Learning described in this survey are framed in the context 

of Human-AI Interaction. Topol [83] describes the absurdity of narrating Deep Learn-

ing applications in healthcare without this context, “this pitting of clinicians versus a 

machine is the antithesis of clinical practice, which invariably keeps humans in the loop”. 

�is is most extremely illustrated in the case of automated diagnosis with life-or-death 

decision making. However, it is also extremely important to have painless user interfaces 

to Deep Learning models for Literature Mining, Misinformation Detection, or Drug 

Discovery.

We need new guidelines for user-interface design because when Deep Learning fails, 

it fails differently from traditional software. Amershi et al. [84] present detailed guide-

lines for Human-AI Interaction design based on these failures. �ey include 18 gener-

ally applicable design guidelines for deploying Deep Learning systems such as: make 

clear how well the system can do what it can do, make clear why the system did what it 

did, and learn from user behavior, to name a few. �is section includes a presentation of 

Interpretability and Generalization Metrics. �ese are two of the most common failure 

modes for Deep Learning systems.

Interpretability

Deep Learning achieves strong performance in the surveyed COVID-19 applications. 

However, it operates as a sort of black-box, and it is challenging to understand what 

caused it to make a certain prediction. �is can be limiting to use Deep Learning for 

safety-critical applications. What will it take for a doctor to trust an automated diag-

nosis? Even outside of life and death situations, do we trust the model is correct? Will 

research scientists trust that BERT has correctly summarized the latest biomedical 

paper? Do we trust a Deep Learning model to identify the right protein target before 

spending millions of dollars developing a drug to attack it?

Our surveyed Deep Learning applications for COVID-19 require collaboration with 

humans. �is branch of research is known as Human-AI interaction. Interpretability, 

also termed Explainability, is one of the key problems to solve in this field. Cambru high-

lights many benefits of explainability. �ese include justification of decisions to end-

users, understanding and trusting the limitations of the system, providing insight for 

knowledge discovery, and diagnosing and improving Deep Learning systems.

Each of our surveyed applications in COVID-19 will benefit from these goals. Applica-

tions in Literature Mining can utilize explanations for the sake of knowledge discovery. 

As described previously, many of these Question Answering systems doubly implement 

Information Retrieval. �is Information Retrieval reveals the most relevant documents 

that influenced the predicted answer. We view this as a similar motivation to providing 

explanations for knowledge discovery. However, we may further want to implement the 

tests we will describe next to probe for explanations in the retrieval system as well.
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A user whose social media post has been flagged as “misinformation” may be irritated 

by the tagging and request justification. Sociologists relying on Public Sentiment Analy-

sis systems would want to know words or phrases the model is most activated by. Medi-

cal Image Diagnosis is the surveyed application where we believe interpretability is the 

most important. Imagine a doctor is confident a patient has COVID based on reported 

symptoms, but the neural network classifies a non-COVID pneumonia. �e doctor 

would like to have more than a logit score to judge this classification.

Under the scope of Ambient Intelligence applications, we imagined Computer Vision 

systems that perform tasks such as evaluating the performance of a surgeon. If the sur-

geon receives a poor mark, an explanation may be demanded in a similar vein as the 

irritated social media user with a flagged post. A Vision-based Robotics system tasked 

with sorting bottles may have been left unattended and performed a series of incorrect 

classifications. Here we need interpretability to help debug the system. Precision Diag-

nostics need interpretability similar to the emphasized importance of interpretability for 

Medical Image Diagnosis. We note that the multi-modal nature of Precision Diagnostics 

that combine genetic information with electronic health records and RT-PCR testing or 

medical images as well, could make this especially challenging.

We have a similar view of the role of interpretability in Protein Structure Prediction as 

Literature Mining for question answering. We imagine a nearest-neighbor style analysis 

would be very useful to understand why a certain structure was predicted. Drug repur-

posing candidates selected by querying knowledge graphs are very easily interpreted. 

However, once we start embedding nodes and edges and mining candidates with graph 

neural networks, interpretability is much more challenging. Interpretability with black-

box or SIR-structured forecasting models may be one of the most important applica-

tions of these models altogether. We are not just interested in how many COVID-19 

cases there will be in the next month, we want to know why the model has decided on 

this number.

Having motivated the application of explainability for Deep Learning applications, we 

describe cutting-edge approaches to interpretability. Cambru describes major research 

directions to achieve this. �ese are post-hoc explanatory methods and self-explanatory 

neural models that generate natural language explanations. Post-hoc explanatory meth-

ods refer to probing trained neural network models. We will describe looking at what 

part of the input caused a prediction, what activates certain neurons, and representation 

analysis.

�e first question we explore is: what part of the input caused the network to make 

this decision? Clark et al. [138] explores what BERT looks at. �is paper reports the rela-

tionship between the attention weights and their inputs at early layers of the network. 

�is becomes more challenging to decode at deeper layers of the network. Tang et al. 

[139] explicitly limit the attention of a vision-based Reinforcement Learning agent, such 

that there is no ambiguity about where the model might be looking at.

Another question explored under the interpretability is, what activates certain neu-

rons? Some researchers have looked at optimizing an image map to maximize the acti-

vations of an individual or set of neurons [140]. Yin et  al. [141] generate images from 

activations for the sake of providing a knowledge distillation [142] set for compressing 
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the network. Riberio et al. [143] propose the LIME framework to sample around a data 

point to provide analysis of what caused the prediction.

Another question we explore under interpretability is, what is captured in the repre-

sentations? �is area of research is also referred to as representation analysis. A com-

mon approach to this is to compress the high-dimensional representations into 2- or 

3-dimensional space for visualization. Some common approaches to this are t-SNE [15] 

or UMAP [16]. �ese algorithms have recently been implemented in CUDA to run on 

GPUs and made accessible through libraries such as RAPIDS [144]. Chan et  al. [145] 

describe using t-SNE-CUDA to embed datasets as large as ImageNet. Chan et al. note 

that “t-SNE-CUDA significantly outperforms existing methods with a 50–700x speedup 

without significantly impacting cluster quality” [145].

In WT5 [146], Narange et al. train a model to state why it made a certain prediction. 

�e authors describe how the text input-text output unifying framework of NLP tasks 

facilitates this idea. Notably, the text-to-text task setup enables multi-task learning with 

a small labeled set of answers and explanations and a much larger set of answers only.

Generalization metrics

Deep Learning models are typically evaluated by reporting performance metrics on a 

held-out test set. �ese performance metrics include accuracy, area under the true 

positive, false positive rate curve (AUC), and precision-recall, to name a few. Metrics 

other than accuracy are usually reported in instances of class imbalance, or to highlight 

performance on a particular class of interest. However, this performance reporting is 

insufficient for many of the surveyed applications. We are interested in how the model 

will generalize to distribution shift that may be encountered once the model has been 

deployed.

We define generalization as the performance difference on data sampled from a dif-

ferent distribution than the training set. When dividing data into train and test splits, 

the phenomena of overfitting has been a proxy for measuring generalization. We define 

overfitting as a test that says as long as the test error continues to decrease with the train 

error, generalization ability is intact. However, Nakkiran et al. illustrate the phenomena 

of “Deep Double Descent” where there is an empirically observed trend from overfit-

ting to an interpolation threshold. With respect to model size or training duration, deep 

models appear to be overfitting, but then achieve generalization ability. We present dou-

ble descent to highlight that overfitting, as we have defined it, is a poorly understood test 

for generalization in Deep Learning.

Our surveyed applications for COVID-19 need generalization ability for reliable 

deployment. We are not only interested in mining the existing literature on COVID-19, 

but we want to deploy these systems to adapt to new papers and provide new insights. 

Deployed Misinformation Detection models may need to generalize to new language 

used by spreaders as they try to game the system. Similarly, Public Sentiment Analy-

sis models may need to adjust to new styles of using language. Generalization in Med-

ical Image Analysis is extremely important due to the inherent variation in lung sizes 

and existing conditions. Ambient Intelligence systems need to be able to generalize to 

patients of all different heights, skin colors, or clothing. Our discussion of Vision-based 
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Robotics is self-evident in the need for generalization. A disinfecting robot that can 

enter any room to locate and disinfect surfaces needs a massive generalization ability. 

Even robots used for sorting objects in manufacturing must be robust to rotations and 

lighting changes.

Our surveyed approaches to Precision Diagnostics rely heavily on generalization abil-

ity as well. �is include generalizing to novel patient histories, genetic profiles, or RT-

PCR testing results. Protein Structure Prediction models need to generalize in order 

to reliably predict the coronavirus shell proteins as soon as it was encountered. Drug 

Repurposing approaches need to generalize to explore new connections in the network. 

Forecasting models cannot be thrown off by anomalies in the data and need to react 

to novel configurations of quarantine protocol or neighboring regions’ infection spread. 

Having briefly motivated the need for generalization in these applications, we will fur-

ther describe weaknesses of these models and directions for solutions.

An alarming moment for Deep Learning was the success of adversarial examples. 

Goodfellow et al. [147] showed that you could add an optimized noise map to a panda 

image such that it was classified as a gibbon with 99.3% confidence (Fig. 10). �is image 

has become the poster for skeptics of Deep Learning. Within the scope of interpretabil-

ity, we described how we could optimize an image to maximally activate certain neurons, 

such as DeepDream. �is results in high-frequency, static-like features, similar to the 

noise map added to the panda image. Under the scope of generalization metrics, adver-

sarial examples highlight that we need better tests for generalization. Within this issue, 

we define and explore two subsets of generalization metrics and human-constructed 

behavior tests.

As mentioned previously, most Deep and Machine Learning workflows take a dataset 

and randomly split it into training, validation, and test sets. Hyperparameters are fine-

tuned using the validation set as a proxy and then test set performance is supposed to 

be a good proxy for generalization. However, real-world test distributions rarely overlap 

with this training set in this way. Measuring the distribution shift that occurs in a real 

training set is one of the most challenging areas of Deep Learning research. Winkens 

et  al. [148] look at how contrastive learning can improve the ability to detect out-of-

distribution inputs. At least with this functionality the model will output that an input is 

out-of-distribution, rather than a confident misclassification.

In addition to failure with respect to adversarially optimized noise maps, some models 

fail on simple, commonsense reasoning tasks. Ribeiro et  al. [149] propose the Check-

List evaluation system to test language models on linguistic capabilities such as negation 

and vocabulary. A solution to these behavior tests, and adversarial examples would be to 

simply train the model on this task data. Clark et al. [150] show that Transformers can 

chain facts together if they are explicitly trained to do so. �is sounds like a great idea, 

but in practice a phenomenon referred to as catastrophic forgetting occurs. As neural 

networks optimize themselves to the latest batch of data and loss function, they “forget” 

previously learned examples.

We additionally highlight the problem of updating the knowledge contained in a neu-

ral network, particularly language models, when presented with new information. �is 

is very important for our applications on Literature Mining and Misinformation. For 

example, correcting when an event occurred. We have discussed the representational 
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difference between knowledge implicitly stored in the weights of a neural network and 

explicitly structured in knowledge graphs. When presented with a new fact, a knowledge 

graph can re-arrange edges and instantly integrate this new information. However, neu-

ral networks cannot be updated as easily. Stepping a language model through masked 

language modeling with the new fact will not completely integrate the knowledge into 

all of its predictions. A promising approach to this is the emphasis on evidence retrieval 

such as Retrieval-Augmented Generation [151].

Learning from limited labeled datasets

�e performance of Deep Learning improves with increasing amounts of data [152]. 

Even if the data is not labeled, such as how GPT-3 [4] learns language representations, 

it improves the success of Deep Learning. Further, these models improve dramatically 

with data that is more in-domain for the downstream task [23]. An additional million 

images from Instagram would not be as useful as 1000 lung CT scans for COVID-19 

detection. Many areas of Deep Learning research cite that they are looking for the “Ima-

geNet” moment in the given field. �is references the success of a large labeled dataset to 

facilitate supervised representation learning. �e current state of Deep Learning relies 

on these large datasets for improved performance. �is is problematic for a pandemic 

response situation where quick response is crucial. Creating large datasets for many of 

our surveyed healthcare applications such as Medical Image Analysis or Precision Diag-

nostics is extremely challenging due to the data privacy issues we discuss in the next sec-

tion. Nearly every COVID-19 application we surveyed would benefit from more labeled 

data.

Deep Learning problems usually have a small labeled dataset and a large unlabeled 

dataset. �is is where we can turn to semi- and self-supervised learning. Self-supervised 

learning describes constructing a supervised learning task automatically from unlabeled 

data. For example, we can algorithmically rotate images and derive the rotation label 

from the pre-processing. Training the models on these kinds of tasks leads to useful rep-

resentations that can be transferred to our supervised learning problem. Semi-super-

vised learning describes a similar idea, alternating between self-supervised learning on 

the unlabeled dataset and supervised learning with the labeled set. Of core importance 

here is that the unlabeled data is at least somewhat in-domain with the downstream task. 

For example, in COVID-19 diagnosis from radiographs, unlabeled chest radiographs are 

much more useful than ImageNet or landscape images.

In some cases, we can inject priors in the dataset that simultaneously increase the size 

of the dataset to prevent overfitting and inform the model which features it should be 

invariant to. �is process is known as Data Augmentation. In the image domain, these 

priors refer to rotation or translational invariance. �is is done by rotating the images 

algorithmically while preserving the label and applying the supervised loss on the aug-

mented image. In text, this can be done by swapping out words with synonyms. �is has 

mostly been explored in image data, with growing interest in text as well.

Another approach to learning from limited labeled data is meta-learning. We define 

“meta-learning” as learning from a few demonstrations, or leveraging information from 

k tasks to learn task k + 1. �is is opposed to meta-learning to describe outer-inner loop 

optimization more generally and areas of research such as Neural Architecture Search. 
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GPT-3 [4] demonstrates an impressive few-shot learning ability where the task is dem-

onstrated in the input context window, such as “example 1: label 1; · · · , test example: label 

?”. Outer, inner-loop optimization for few-shot learning has advanced considerably with 

models such as MAML [153].

Data privacy

Our previous section described that Deep Learning models performance better with 

larger datasets. In our coverage of Medical Image Analysis, we looked at Transfusion 

from Raghu et  al. [83], which shows that out-of-domain data like ImageNet has little 

benefit for medical imaging tasks. �e question is clear, how do we build large medical 

image datasets?

An issue with constructing these datasets is privacy. Imagining the role of Deep Learn-

ing in precision, tailor-made medicine and diagnostics, we would expect performance 

to improve by looking a massive collection of patients’ EHRs, genomes, blood testing 

results, family history, etc. However, most patients would not feel comfortable revealing 

such intimate data to a potentially hackable centralized database. �e question as data 

scientists is, “can we answer questions using data we cannot see?” [85]. �is introduces 

the first solution to privacy-preserving Deep Learning, Federated Learning.

�e core idea of Federated Learning is that there is no massive, centralized database. 

Copies of the model are sent to train on a locally stored database and then they are sent 

back to a centralized model weight database. �is is a great first step, but some studies 

have shown that you can still recover the data from the model’s weights. Fredrikson et al. 

[86] use adversarial attacking to recover face images from a facial recognition given only 

black-box access to a person’s name and the confidence scores from the model. Stronger 

systems have been developed in response. �ese systems aim to guarantee a quantitative 

level of privacy through Differential Privacy. We refer interested readers to the privacy 

preserving Deep Learning framework developed by Ryffel et  al. [87]. We additionally 

refer interested readers to Fig. 22 for an overview of privacy techniques used in Ambient 

Intelligence, developed by Haque et al. [10].

We note that data privacy is especially problematic when the patient can be identi-

fied from the data. �is is not much of an issue with chest radiographs alone, but can 

be problematic with metadata associated with it, or stored in electronic health records. 

We additionally refer readers to a survey the use of recurrent neural networks for de-

identification of Electronic Health Records (EHR) from Leevy et al. [154]. �is survey 

describes the use of Deep Learning to identify and remove patient identification infor-

mation from free text information.

Discussion

�e integration of Deep Learning with Biology and Healthcare is an exciting path for-

ward in advancing technology. �is survey highlights many ground-breaking applica-

tions to make this trend apparent. We encourage Deep Learning researchers to think 

about broad applications, and participate in the exercise of identifying problems in 

a given domain, such as COVID-19 or pandemic response. Composing this survey 

required taking an all-encompassing view of Deep Learning research. It is extremely 
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difficult to acquire expertise across applications as diverse as Information Retrieval, 

Image Classification, or Protein Structure Prediction. However, we believe that the 

unifying reduction of data into input tensors, and tasks into learning variants, poses a 

common framework for many advancements in Deep Learning to disperse across appli-

cations. Improvements on the supervised learning process or on different limitations 

of Deep Learning from Data Privacy to better Generalization Metrics have a massive 

downstream result.

One of the goals of this survey was to help readers think about how their data is input-

ted to Deep Neural Networks and how they can construct a learning task. Data such 

as images are inputted as pixel grids, whereas categorical variables are embedded into 

dense representation tables [155]. With respect to learning, we have primarily focused 

on supervised, semi-supervised, and self-supervised learning. We have only briefly men-

tioned learning algorithms such as multi-task training or reinforcement learning. We 

encourage readers to explore these areas as well. In our literature review, we found that 

most Deep Learning research in COVID-19 focuses on novel combinations of learning 

tasks or on building new datasets and annotation protocols.

Fig. 22 Privacy-preserving techniques explored in applications of Ambient Intelligence (Image taken from 
Haque et al. [10])
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Given the current trend in Deep Learning research, emerging applications in Natural 

Language Processing are very compelling. NLP, powered by Deep Learning, is under-

going an evolution. GPT-3, a 175 billion parameter transformer language model, dem-

onstrates a remarkable ability to complete fill-in-the-blank text prompts. �is survey 

presents many downstream applications that benefit from the success of these language 

models. On the near horizon, we expect dramatic improvements in text classification, 

information retrieval, question answering, and summarization.

Our literature review has inspired further investigation in Literature Mining sys-

tems. Language Models are getting better and better at generating text that is coher-

ent and factually accurate [37]. What would it require to ask GPT-3, “How is protein 

structure prediction formulated as a Deep Learning problem?” �e application of 

this is very clear, although it may be a bit of a moonshot project. However, recent 

advances in neural information retrieval, efficient transformer design, new datasets, 

and self-supervised learning tasks hint that NLP-powered Literature Mining may just 

be scratching the surface.

�ese recent advances will also dramatically improve the ability to automate knowl-

edge graph construction. �is survey explored the construction of the CoV-KGE 

graph with 15 million edges collected across 24 million PubMed publications. Apply-

ing Deep Learning for graph representation learning at scale is still a relatively new 

and under-explored area of research. We expect the integration with biologists to 

seed Deep Learning systems with prior knowledge of virus-host interactomes and 

other kinds of interaction networks such as Protein-Protein Interactions (PPIs), to 

transform the capability of these algorithms. �e discovery of new relations between 

entities as a link prediction problem on knowledge graph embeddings looks very 

promising.

�e growth of Computer Vision will require an adjustment for society at large. Will 

patients trust an automated radiograph diagnosis? Will patients feel comfortable hav-

ing their ICU activity monitored every minute of the day? Vision-powered robotics 

range on this scale. It is hard to imagine someone would object to a robotic disinfec-

tion sprayer, but robotic surgery is a more uncomfortable idea. �is transformation 

will require further investment in safety and education.

Many papers report the success of Transfer Learning from models pre-trained on 

ImageNet. �is is done despite findings from Raghu et al. [83] that challenge the ben-

efit of this. �is observation highlights the need for Literature Mining systems. How 

many of these researchers discovered Raghu et al.’s paper in their search for related 

works? Machine Learning researchers need search engines where they can send que-

ries such as “What is the benefit of ImageNet Transfer Learning for Medical Image 

Analysis?”. We also note that this technique is likely so popular due to the ease of 

use. Deep Learning frameworks such as TensorFlow, Keras, and PyTorch provide very 

accessible interfaces to models with ImageNet trained weights. �ere is no need for 

the researchers to pre-train on ImageNet themselves.

�e trend in Medical Image Analysis is to find new ways of annotating data or 

assembling tasks for representation learning. We surveyed interesting developments 

in image-text contrastive learning with text reports, human-in-the-loop annota-

tion, and weak supervision. We are very excited about the image-text contrastive 
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learning research explored by Zhang et  al. [97]. �roughout this survey, we have 

mostly explored applications in a single domain. �is describes only processing text 

or only processing image data. Vision-language representation learning at the same 

time is a promising step towards “grounded language learning”. We refer interested 

readers in this research direction to Brisk et  al. [156]. Vision-language learning has 

recently improved GLUE benchmark performance [157]. ConVIRT [97] is an interest-

ing direction to bring a language “grounding” to medical image processing.

Realizing the potential of Precision Diagnostics is one of the most important techno-

logical challenges of the 21st century. �is begins with structured clinical data [158], 

and graduates to Deep Learning models processing structured and unstructured, 

multi-modal data. Integrating structured and unstructured data is challenging, but 

unstructured text data, such as clinical notes [159], can improve diagnosis. Blending 

multi-modal data, such as blood tests with CT scans, is another challenge suitable for 

Deep Learning. We note that there are not many public datasets of this type for develop-

ment. One of the best open-source datasets is MIMIC-III [160], but even this dataset 

only contains about 60,000 records at the time of this publication. We again emphasize 

the importance of developing algorithms for Data Privacy that aids in developing these 

datasets.

Protein structure prediction has an interesting analogy with Information Retrieval 

problems. Similar amino acid sequences with experimentally verified structures are 

found through Multiple Sequence Alignment (MSA) and concatenated to the input 

representation for systems such as AlphaFold. MSA is a similarity algorithm based on 

dynamic programming which has a quadratic running time. Vector space similarity 

search can be dramatically sped up by computing centroids in the index. A representa-

tive centroid index can approach the constant running time of a hash function. As more 

amino acid sequences are verified and added to this database, currently containing 158 K 

instances, this search will become more important.

We also highlight the limitations of Deep Learning. Firstly, the current generation of 

Deep Learning systems must be designed with Human-AI interaction in mind. We do 

not expect these systems to operate entire autonomously. �ese models should have 

some degree of interpretability, some sense of expected out-of-distribution examples, 

and they should be able to learn without millions of labeled examples. Labeled or not, 

these models need data. �e data that helps solve truly consequential problems such as 

Precision Diagnostics requires careful consideration of Data Privacy.

Conclusion

In conclusion, we have presented many applications of Deep Learning to fight COVID-

19. SARS-CoV-2 and COVID-19 have brought about many new problems for human-

ity to solve. Our survey provides a description of how some of these problems can be 

solved with Deep Learning. We have described how different data types are inputted 

to Deep Neural Networks and how tasks are constructed as learning problems. �ese 

applications are explored across data domains in Natural Language Processing, Com-

puter Vision, Life Sciences, and Epidemiology.

We have also covered some of the most pressing limitations of Deep Learning. �is 

includes challenges of Interpretability, Performance Metrics, Learning from Limited 
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Labeled Data, and Data Privacy. We have covered some potential solutions to these limi-

tations as well. We are optimistic in the transformative potential of these applications 

and believe their core limitations can be overcome. We hope this introduction will help 

readers narrow their interest and pursue these applications.
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