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ABSTRACT The tremendous success of machine learning algorithms at image recognition tasks in recent

years intersects with a time of dramatically increased use of electronic medical records and diagnostic

imaging. This review introduces the machine learning algorithms as applied to medical image analysis,

focusing on convolutional neural networks, and emphasizing clinical aspects of the field. The advantage

of machine learning in an era of medical big data is that significant hierarchal relationships within the

data can be discovered algorithmically without laborious hand-crafting of features. We cover key research

areas and applications ofmedical image classification, localization, detection, segmentation, and registration.

We conclude by discussing research obstacles, emerging trends, and possible future directions.

INDEX TERMS Convolutional neural networks, medical image analysis, machine learning, deep learning.

I. INTRODUCTION

Machine learning algorithms have the potential to be

invested deeply in all fields of medicine, from drug dis-

covery to clinical decision making, significantly altering the

way medicine is practiced. The success of machine learning

algorithms at computer vision tasks in recent years comes

at an opportune time when medical records are increasingly

digitalized. The use of electronic health records (EHR)

quadrupled from 11.8% to 39.6% amongst office-based

physicians in the US from 2007 to 2012 [1]. Medical images

are an integral part of a patient’s EHR and are currently

analyzed by human radiologists, who are limited by speed,

fatigue, and experience. It takes years and great financial cost

to train a qualified radiologist, and some health-care systems

outsource radiology reporting to lower-cost countries such as

India via tele-radiology. A delayed or erroneous diagnosis

causes harm to the patient. Therefore, it is ideal for medical

image analysis to be carried out by an automated, accurate

and efficient machine learning algorithm.

Medical image analysis is an active field of research for

machine learning, partly because the data is relatively struc-

tured and labelled, and it is likely that this will be the

area where patients first interact with functioning, practical

artificial in- telligence systems. This is significant for two

reasons. Firstly, in terms of actual patient metrics, medi-

cal image analysis is a litmus test as to whether artificial

intelligence systems will actually improve patient outcomes

and survival. Secondly, it provides a testbed for human-AI

interaction, of how receptive patients will be towards health-

altering choices being made, or assisted by a non-human

actor.

A. TYPES OF MEDICAL IMAGING

There is a myriad of imaging modalities, and the frequency

of their use is increasing. Smith-Bindman et al. [2] looked

at imaging use from 1996 to 2010 across six large inte-

grated healthcare systems in the United States, involving

30.9 million imaging examinations. The authors found that

over the study period, CT, MRI and PET usage increased

7.8%, 10% and 57% respectively.

Modalities of digital medical images include ultra-

sound (US), X-ray, computed tomography (CT) scans and

magnetic- resonance imaging (MRI) scans, positron emis-

sion tomography (PET) scans, retinal photography, histology

slides, and dermoscopy images. Fig. 1. shows some example

medical images. Some of these modalities examine multiple

organs (such as CT, MRI) while others are organ specific

(retinal photography, dermoscopy). The amount of data gen-

erated from each study also varies. A histology slide is an

image file of a few megabytes while a single MRI may be

a few hundred megabytes. This has technical implications

on the way the data is pre-processed, and on the design of
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FIGURE 1. A collage of images depicting medical images, from left to right, top to bottom:
an axial CT brain scan with a left-sided hemorrhagic stroke, an axial MRI brain scan with a
left-sided brain tumor, a normal chest X-ray, a normal axial CT lung scan, and a histology
slide with high grade glioma (a brain tumor).

an algorithm’s architecture, in the context of processor and

memory limitations.

B. HISTORY OF MEDICAL IMAGE ANALYSIS

The symbolic AI paradigm of the 1970s led to the develop-

ment of rule-based, expert systems. One early implementa-

tion in medicine was the MYCIN system by Shortliffe [3],

which suggested different regimes of antibiotic therapies

for patients. Parallel to these developments, AI algorithms

moved from heuristics-based techniques to manual, hand-

crafted feature extraction techniques. and then to supervised

learning techniques. Unsupervisedmachine learningmethods

are also being researched, but the majority of the algorithms

from 2015-2017 in the published literature have employed

supervised learning methods, namely Convolutional Neural

Networks (CNN) [4]. Aside from the availability of large

labelled data sets being available, hardware advancements in

Graphical Processing Units (GPUs) have also led to improve-

ments in CNN performance, and their widespread use in

medical image analysis.

McCulloch and Pitts [5] described the first artificial neu-

ron in 1943, which developed into the perceptron posited

by Rosenblatt [6] in 1958. In essence, an artificial neural

network is a layer of connected perceptrons linking inputs

and outputs, and deep neural networks are multiple layers

of artificial neural networks. The advantage of a deep neural

network is its ability to automatically learn significant low

level features (such as lines or edges), and amalgamate them

to higher level features (such as shapes) in the subsequent

layers. Interestingly, this is how the mammalian and human

visual cortices are thought to process visual information and

recognize objects [7]. CNNs may have their origins in the

Neocognitron concept proposed by Fukushima [8] in 1982,

but it was Lecun et al. [9] who formalized CNNs and used

the error backpropagation described by Rumelhart et al. [10],

to successfully perform the automatic recognition of hand-

written digits. The widespread use of CNNs in image

recognition came about after Krizhevsky et al. [11] won

the 2012 Imagenet Large Scale Visual Recognition Chal-

lenge (ILSVRC) with a CNN that had a 15% error rate.

The runner up had almost double the error rate at 26%.

Krizhevsky et al. introduced significant concepts that are

used in CNNs today, including the use of Rectified Linear

Unit (RELU) functions in CNNs, data augmentation and

dropout. Since then, CNNs have featured as the most used

architecture in every ILSVRC competition, surpassing human

performance at recognizing images in 2015. Correspond-

ingly, there has been a dramatic increase in the number of

research papers published on CNN architecture and applica-

tions, such that CNNs have become the dominant architecture

in medical image analysis.

C. CONVOLUTIONAL NEURAL NETWORKS

Both the 2-dimensional and 3-dimensional structures of an

organ being studied are crucial in order to identify what is

normal versus abnormal. By maintaining these local spa-

tial relationships, CNNs are well-suited to perform image

recognition tasks. CNNs have been put to work in many

ways, including image classification, localization, detection,

segmentation and registration. CNNs are the most popular

machine learning algorithm in image recognition and visual
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TABLE 1. Review articles and books in deep learning for medical image analysis.

learning tasks, due to its unique characteristic of preserv-

ing local image relations, while performing dimensionality

reduction. This captures important feature relationships in an

image (such as how pixels on an edge join to form a line),

and reduces the number of parameters the algorithm has to

compute, increasing computational efficiency. CNNs are able

to take as inputs and process both 2-dimensional images,

as well as 3-dimensional images with minor modifications.

This is a useful advantage in designing a system for hospital

use, as some modalities like X-rays are 2-dimensional while

others like CT or MRI scans are 3-dimensional volumes.

CNNs and Recurrent Neural Networks (RNNs) are exam-

ples of supervised machine learning algorithms, which

require significant amounts of training data. Unsuper-

vised learning algorithms have also been studied for

use in medical image analysis. These include Autoen-

coders, Restricted Boltzmann Machines (RBMs), Deep

Belief Networks (DBNs), and Generative Adversarial

Networks (GANs).

D. RESOURCES

Four reviews are highly recommended; Litjens et al. [4]

provides a thorough list of papers published in the field,

Shen et al. [12] and Suzuki [13] summarize many of the

advances, while Greenspan et al. [14] gives a succinct

overview of recent important papers. These review articles

and a list of relevant books can be found in Table 1. This

was collated by searching for books in the Elsevier, IEEE

Xplore and Springer databases. We generated a list of the

200 most highly-cited papers from Google Scholar, using the

query terms ’deep learning’ and ’medical image analysis’ in

October 2017 using citation software [15]. These were man-

ually vetted to ensure that the returned results were relevant

and significant in the field. We limited the papers to those

published or prepublished in the last 3 years, although older

significant papers are mentioned in this article. Table 2 shows

the top 20 papers from this list, and the full list of 200 papers

can be found in the Supplementary Data as Table S1.

Where available, the datasets used by the authors of

various papers in this article are described. The web-

site Grand Challenges in Biomedical Image Analysis

(https://grand-challenge.org/all_challenges) aggregates and

links to numerous competitions and their respective image

datasets. The Cancer Imaging Archive [16] contains numer-

ous datasets across many organ systems, and the National

Institute of Health recently released a tranche of over

100,000 anonymized chest x-rays for research use [17] called

‘‘ChestX-ray 8’’. Of note, Nifty-Net (www.niftynet.io) [18] is

a useful open source framework that contains many machine

learning algorithms, released under an Apache License.

It allows researchers to explore CNNs and published machine

algorithms, such as V- net, U-net, DeepMedic [19]–[21], and

to share pretrained models.

The aim of this report is to provide an overview on the

state of machine learning algorithms as applied to medical

imaging, with an emphasis on which aspects are most useful

to the clinician, as some of the authors are practicing sur-

geons and radiologists. It is hoped that this perspective aids

researchers in moving from being trapped in the local minima

of speculative research, to designing implementable systems

that will impact medical science and patient care.

Section II describes various machine learning architec-

tures used in medical image analysis, with an emphasis on

CNNs. Machine learning is broadly classified into Super-

vised, Unsupervised, Semi-supervised and Reinforcement

learning methods; it is the first two which are currently most

applicable to image analysis. Section III dives into different

application areas. Section IV concludes with obstacles that

the field of medical image analysis faces, and some of the

future possible directions.
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J. Ker et al.: Deep Learning Applications in Medical Image Analysis

TABLE 2. Highly-cited articles in deep learning for medical image analysis.

II. MACHINE LEARNING ARCHITECTURES

A. SUPERVISED LEARNING MODELS

1) CONVOLUTIONAL NEURAL NETWORKS

Currently, CNNs are the most researched machine learning

algorithms in medical image analysis [4]. The reason for this

is that CNNs preserve spatial relationships when filtering

input images. As mentioned, spatial relationships are of cru-

cial importance in radiology, for example, in how the edge

of a bone joins with muscle, or where normal lung tissue

interfaces with cancerous tissue. As shown in Fig. 2., a CNN

takes an input image of raw pixels, and transforms it via

Convolutional Layers, Rectified Linear Unit (RELU) Layers

and Pooling Layers. This feeds into a final Fully Connected

Layer which assigns class scores or probabilities, thus classi-

fying the input into the class with the highest probability.

a: CONVOLUTION LAYER

A convolution is defined as an operation on two functions.

In image analysis, one function consists of input values

(e.g. pixel values) at a position in the image, and the second

function is a filter (or kernel); each can be represented as

array of numbers. Computing the dot product between the

two functions gives an output. The filter is then shifted to

the next position in the image as defined by the stride length.

The computation is repeated until the entire image is covered,

producing a feature (or activation) map. This is a map of

where the filter is strongly activated and ‘sees’ a feature such

as a straight line, a dot, or a curved edge. If a photograph of a

face was fed into a CNN, initially low-level features such as

lines and edges are discovered by the filters. These build up

to progressively higher features in subsequent layers, such as

a nose, eye or ear, as the feature maps become inputs for the

next layer in the CNN architecture.

Convolution exploits three ideas intrinsic to perform

com- putationally efficient machine learning: sparse connec-

tions, parameter sharing (or weights sharing) and equivariant

(or invariant) representation [22]. Unlike some neural net-

works where every input neuron is connected to every output

neuron in the subsequent layer, CNN neurons have sparse

connections, meaning that only some inputs are connected

to the next layer. By having a small, local receptive field

(i.e., the area covered by the filter per stride), meaningful

features can be gradually learnt, and the number of weights

to be calculated can be drastically reduced, increasing the

algorithm’s efficiency. In using each filter with its fixed

weights across different positions of the entire image, CNNs

reduce memory storage requirements. This is known as

parameter sharing. This is in contrast to a fully connected

neural network where the weights between layers are more

numerous, used once and then discarded. Parameter sharing

results in the quality of equivariant representation to arise.

This means that input translations result in a correspond-

ing feature map translation. The convolution operation is

defined by the ∗ symbol. An output (or feature map) s(t) is

defined below when input I (t) is convolved with a filter or

kernel K (a).

s(t) = (I ∗ K )(t). (1)

If t can only take integer values, the discretized convolution

is given by:

s(t) =

∑

a

I (a) · K (t − a) . (2)

The above assumes a one-dimensional convolutional

opera- tion. A two dimension convolution operation with

9378 VOLUME 6, 2018
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FIGURE 2. In this example disease classification task, an input image of an abnormal axial slice of a T2-weighted MRI brain is run through a
schematic depiction of a CNN. Feature extraction of the input image is performed via the Convolution, RELU and pooling layers, before classification
by the fully connected layer.

input I (m, n) and a kernel K (a, b) is defined as:

s(t) =

∑

a

∑

b

I (a, b) · K (m− a, n− b). (3)

By the commutative law, the kernel is flipped and the above

is equivalent to:

s(t) =

∑

a

∑

b

I (m− a, n− b) · K (a, b). (4)

Neural networks implement the cross-correlation function,

which is the same as convolution but without flipping the

kernel.

s(t) =

∑

a

∑

b

I (m+ a, n+ b) · K (a, b). (5)

b: RECTIFIED LINEAR UNIT (RELU) LAYER

The RELU layer is an activation function that sets negative

input values to zero. This simplifies and accelerates calcula-

tions and training, and helps to avoid the vanishing gradient

problem. Mathematically it is defined as:

f (x) = max(0, x). (6)

where x is the input to the neuron. Other activation func-

tions include the sigmoid, tanh, leaky RELUs, Randomized

RELUs and parametric RELUs.

c: POOLING LAYER

The Pooling layer is inserted between the Convolution and

RELU layers to reduce the number of parameters to be cal-

culated, as well as the size of the image (width and height,

but not depth). Max-pooling is most commonly used; other

pooling layers includeAverage pooling and L2-normalization

pooling. Max-pooling simply takes the largest input value

within a filter and discards the other values; effectively it sum-

marizes the strongest activations over a neighborhood. The

rationale is that the relative location of a strongly activated

feature to another is more important than its exact location.

d: FULLY CONNECTED LAYER

The final layer in a CNN is the Fully Connected Layer,

meaning that every neuron in the preceding layer is con-

nected to every neuron in the Fully Connected Layer. Like

the convolution, RELU and pooling layers, there can be

1 or more fully connected layers depending on the level of

feature abstraction desired. This layer takes the output from

the preceding layer (Convolutional, RELU or Pooling) as its

input, and computes a probability score for classification into

the different available classes. In essence, this layer looks

at the combination of the most strongly activated features

that would indicate the image belongs to a particular class.

For example, on histology glass slides, cancer cells have

a high DNA to cytoplasm ratio compared to normal cells.

If features of DNAwere strongly detected from the preceding

layer, the CNN would be more likely to predict the presence

of cancer cells. Standard neural network training methods

with backpropagation [10] and stochastic gradient descent

help the CNN learn important associations from training

images.

2) TRANSFER LEARNING WITH CNNs

Unlike general natural image recognition tasks, medical

image analysis lacks large labelled training datasets. As a

comparison, the Kaggle 2017 Data Science Bowl to detect

tumors in CT lung scans had a dataset of approximately

2000 patient scans, while ILSVRC 2017 had over 1 million

images across 1000 object classes [23]. Transfer learning

involves training a machine learning algorithm on a partially-

related or un-related dataset, as well as a labelled training

dataset, to circumvent the obstacle of insufficient training

data. Essentially the weights learned or pre-trained during

the training of a CNN on one (partiallyrelated or un-related)

dataset are transferred to a second CNN, which is then trained

on labelledmedical data using these weights. Theweights can

be applied to some or all layers of the CNN, except the last

fully connected layer. Although transfer learning techniques

are commonly used inmedical image analysis in conjunctions

VOLUME 6, 2018 9379
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with CNNs, it is worth noting that they can be applied to other

general machine learning algorithms as well.

Shin et al. [24] explored the impact of CNN architectures

and transfer learning on detecting the presence of enlarged

thoraco-abdominal lymph nodes, and in classifying inter-

stitial lung disease on CT scans, and found transfer learn-

ing to be beneficial, despite natural images being disparate

from medical images. Ravishankar et al. [25] looked at the

task of automatically localizing the presence of a kidney on

ultrasound images. Using a CNN pre-trained on Imagenet,

they showed that the greater the degree of transfer learn-

ing, the better the CNN performed. Tajbakhsh et al. [26]

studied the effectiveness of transfer learning in 4 different

applications across 3 imaging modalities: polyp detection

on colonoscopy videos, colonoscopy video frame classi-

fication, pulmonary embolus detection on CT pulmonary

angiograms, and segmentation of the layers of the walls

of the carotid artery on ultrasound scans. They transferred

pre-trained weights from Krizhevsky et al. [11] to either a

few (’shallow tuning’) or many (’deep tuning’) layers in a

CNN. Overall, they found that transfer learning more layers

improved the CNNperformance, compared to training a CNN

from scratch. In contrast tomany computer vision taskswhere

shallow tuning of the last few layers is adequate, medical

image analysis requires a deep tuning of more layers. They

also noted that the number of optimal layers trained varied

between different applications.

3) RECURRENT NEURAL NETWORKS (RNNs)

RNNs have traditionally been used in analyzing sequential

data, such as the words in a sentence. Due to their ability

to generate text [27], RNNs have been employed in text

analysis tasks, like machine translation, speech recogni-

tion, language modelling, text prediction and image caption

generation [28]. In a plain RNN, the output of a layer is added

to the next input, and this is fed back into the layer, resulting

in a capacity for contextual ‘memory’. To avoid vanishing

gradient problems with backpropagation through time, plain

RNNs have evolved into Long Short Term Memory (LSTM)

networks and GatedRecurrent Units (GRUs). These are mod-

ifications of RNNs to hold long term dependencies, and to

discard or forget some of the accumulated information.

In the medical image analysis space, RNNs have been used

mainly in segmentation. Chen et al. [29] combined CNN

and RNN to segment neuronal and fungal structures from

three-dimensional electron microscope images. Using a mul-

tidimensional LSTM, Stollenga et al. [30] segmented both

three-dimensional electron microscope images of neurons as

well as MRI brain scans. Shin et al. [31] describe annotating

X-ray images with captions trained on radiology reports.

B. UNSUPERVISED LEARNING MODELS

1) AUTOENCODERS

Autoencoders learn feature representations of input data

(called codings) in an unsupervised manner without labelled

data. It is a model that takes input data, gleans codings from

this, and then uses these codings to reconstruct output data

(called reconstructions). The rationale behind autoencoders

is that the output data must be as similar to the input data

as possible, i.e., autoencoder models contain a cost function

which penalizes themodel when inputs and outputs are differ-

ent. Autoencoders have several useful features. Firstly, they

are employed as feature detectors that can learn codings in an

unsupervised manner, without training labels. Secondly, they

reduce the model dimensionality and complexity as codings

often exist in a lower dimension. Thirdly, by having to recon-

struct outputs, autoencoders generate new data that is similar

to the input training data. These features are an advantage

in medical image analysis, where labelled training data is

scarce. Various network architectures are depicted in Fig. 3.

The unique architectural feature of autoencoders is that the

number of neurons in the input and output layers must be

equal. Autoencoders have hidden layers that can be stacked,

like CNNs. Stacked autoencoders (SAEs) have a typically

symmetrical architecture, with a line of reflection through

the middle = hidden layer. Some techniques for optimiz-

ing autoencoder performance include tying weights of the

decoder layer to the encoder layer, training different subsets

of autoen- coders separately before stacking them together,

and transfer learning [32]. Simply stacking more layers may

not aid in the accuracy of the model, as the model may end

up performing the trivial task of simply copying the input to

the output. That is, the model performs well during training

but it has not learned any useful feature representations that

allow the model to be generalized and applied outside of the

training data.

To force models to learn useful representations, con-

straints need to be added. One example is the Denoising

Autoencoder reported by Vincent et al. [32], where Gaussian

noise is added to the early hidden layers. Applying dropout

i.e., randomly turning off some of the neurons in the early

hidden layers, accomplishes the same goal, by forcing the

model to learn useful codings to generate back the noise-

free inputs in the output layer. A second example are Sparse

Autoencoders [33], whereby a defined proportion of the

neurons in the hidden layers are deactivated or set to zero.

This is accomplished by having a cost function that penalizes

the model when there are active neurons beyond a defined

threshold. The rationale behind this, is as Bengio states, for a

given observation, only a small fraction of the possible factors

are relevant, meaning that much of the features extracted

from the data could be represented by being set to zero [34].

Kallenberg et al. [35] combined unsupervised convolution

layers trained as autoencoders, and supervised layers to clas-

sify mammograms into different densities and textures. The

texture classifica- tion task was used to impute if a mam-

mogram was normal or depicted breast cancer. They used

2700 mammograms from the Dutch Breast Cancer Screening

Program, the Dutch Breast Cancer Screening dataset, and the

Mayo Mammography Health Study. Interestingly, they used

a sparse autoencoder to learn the parameters of the feature-

extracting convolution layers, before this input was fed into
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FIGURE 3. Various neural network architectures. A. Recurrent neural network, B. Autoencoder, C. Restricted Boltzmann Machine, D. Deep Belief
Network, E. Generative Adversarial Network. x, y, h represent input, output and hidden layers respectively.

a softmax classifier. For the cancer classification task, this

Convolution stacked autoencoder (CSAE) model obtained an

AUC score of 0.57, which the authors reported as state of

the art.

Variational Autoencoders (VAEs) are an emerging and

popular unsupervised learning architecture described by

Kingma and Welling [36]. VAEs are a generative model,

consisting of a Bayesian inference encoder network and a

decoder network, that can be trained with stochastic gradi-

ent descent. The encoder network projects input data into

latent space variables, whose true distribution is approxi-

mated using a Gaussian distribution. The decoder network

then maps the latent space back into output data, trained and

guided by two cost functions: a reconstruction loss function

and the Kullback–Leibler divergence.

2) RESTRICTED BOLTZMANN MACHINES AND DEEP

BELIEF NET-WORKS

Boltzmann machines were invented by Ackley et al. [37]

in 1985, and were modified as Restricted Boltzmann

Machines (RBMs) a year later by Smolensky [38]. RBMs

are generative, stochastic, probabilistic, bidirectional graph-

ical models consisting of visible and hidden layers [22].

These layers are connected to each other but there are no

connections within the layers themselves. RBMs use the

backward pass of input data to generate a reconstruction,

and estimate the probability distribution of the original input.

van Tulder et al. [39] modified RBMs into what they

described as convolutional RBMs to classify lung tissue into

normal, emphysematous, fibrosed, micronodular, or ground

glass tissue. For this task, they used the CT chest scans

of 128 patients with interstitial lung disease from the

ILD database. Convolutional RBMs were trained with

either purely discriminative, purely generative, or mixed-

discriminative and generative learning objectives to learn

filters. These filters were then used to perform feature

extraction and create feature activation maps, before clas-

sification using a random forest classifier. Classification

accuracies of between 41% to 68% were obtained, depend-

ing on the proportion of generative learning and the input

patch size. They also found that filters generated from

mixed-discriminative and generative learning performed the

best, concluding that discriminative learning could help

unsupervised feature extractors learn filters optimized for

classification tasks.

RBMs can be efficiently trained with Contrast-Divergence

algorithms [40] and stacked into Deep Belief Networks

(DBNs), where the hidden layer output of a RBM becomes

the input for the visible layer of a second RBM stacked on

it. DBNs were described by Hinton et al. [41] in 2006 in

a seminal paper, which was largely responsible for the

renaissance in deep learning. The insight from Hinton et al.

was that DBNs could be trained in a greedy, layerby-layer

fashion [42], with lower layers learning low level features,

and progressively higher layers learning high level features,

mirroring real world data hierarchy. DBNs can also be cou-

pled to layers of supervised RBMs to produce a semisuper-

vised deep learning architecture. An application of RBMs

was reported by Khatami et al. [43], who used DBNs to

classify x-ray images into 5 classes of anatomic areas and

orientations.

3) GENERATIVE ADVERSARIAL NETWORKS

Generative Adversarial Networks (GANs) [44] represent a

type of unsupervised learning which holds promise for med-

ical image analysis tasks. As its name suggests, a GAN is

a generative model, and is similar to a VAE in that respect.
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GANs comprise of two simultaneously-trained, competing

models, which may be multilayer perceptrons such as CNNs.

The models may be described as two players competing in a

zero-sum game. One CNN is a generator that generates artifi-

cial training images. The other CNN is called a discriminator,

which classifies if images are real training images or artifi-

cial ones from the generator. The desired end-point of this

adversarial arrangement is one where the discriminator is

unable to tell the difference between a real and a generated

image i.e., the probability of assigning an image to either

data distribution is 1/2. An advantage is that both generator

and discriminator can be trained with backpropagation and

dropout, without unwieldly inference and Markov chains.

GANs are relatively new but some applications in brain

MRI segmentation and synthetic medical data generation are

discussed in Section 4.1 below.

III. APPLICATIONS IN MEDICAL IMAGE ANALYSIS

To the researcher, CNNs have been put to task for classifi-

cation, localization, detection, segmentation and registra-

tion in image analysis. Machine learning research draws

a distinction between localization (draw a bounding box

around a single object in the image), and detection (draw

bounding boxes around multiple objects, which may be from

different classes). Segmentation draws outlines around the

edges of target objects, and labels them (semantic segmenta-

tion). Registration refers to fitting one image (which may be

2 or 3 dimensional) onto another. This separation of tasks

is based on different machine learning techniques and is

maintained below.

To the clinician this separation of tasks is not that cru-

cial, and it is the authors’ opinion that a pragmatic machine

learning system will incorporate some or all of the tasks into

a unified system. It would be ideal to, in a single workflow,

detect a lung tumor on a CT chest scan, and then localize

and segment it away from normal tissue, and to prognosticate

various treatment options, such as chemotherapy or surgery.

Indeed, some of these tasks blur into one another in the papers

discussed here. From the clinician’s perspective, classifica-

tion ascertains if a disease state is present or not, i.e., is

blood present on this MRI brain scan signifying a hem-

orrhagic stroke? Localization implies the identification of

normal anatomy, for example, where is the kidney in this

ultrasound image? This is in contrast to detection, which

implies an abnormal, pathological state, for example, where

are all the lung tumors in this CT scan of the lung? Segment-

ing the outline of a lung tumor helps the clinician determine

its distance from major anatomical structures, and helps to

answer a question such as, should this patient be operated on,

and if so, what should be the extent of resection?

A. CLASSIFICATION

Classification is sometimes also known as Computer-Aided

Diagnosis (CADx). Lo et al. described a CNN to detect lung

nodules on chest X-rays as far back as 1995 [45]. They used

55 chest x-rays and a CNN with 2 hidden layers to output

whether or not a region had a lung nodule. The relative

availability of chest x-ray images has likely accelerated deep

learning progress in this modality. Rajkomar et al. [46] aug-

mented 1850 chest x-ray images into 150,000 training sam-

ples. Using a modified pre-trained GoogLeNet CNN [47],

they classified the orientation of the images into frontal or lat-

eral views with near 100% accuracy. Although this task

of identifying the orientation of the chest x-ray is of lim-

ited clinical use, it does demonstrate the effectiveness of

pre-training, and data augmentation in learning the relevant

image metadata, as part of an eventually fully-automated

diagnostic work-flow. Pneumonia or chest infection is a com-

mon health-problem world-wide that is eminently treatable.

Rajpurkar et al. [48] employed a modified DenseNet [49]

with 121 convolutional layers called CheXNet to clas-

sify 14 different diseases seen on the chest x-rays, using

112,000 images from the ChestXray14 [17] dataset. CheXNet

achieved state of the art performance in classifying the 14 dis-

eases; pneumonia classification in particular achieved an

Area Under Curve (AUC) score of 0.7632 with Receiver

Operating Characteristics (ROC) analysis. Moreover, on a

test set of 420 images, CheXNet matched or bettered the

performance of 4 individual radiologists, and also the perfor-

mance of a panel comprising of 3 radiologists. Shen et al. [50]

used CNNs combined with Support Vector Machine (SVM)

and Random Forest (RF) classifiers to classify lung nod-

ules into benign or malignant, based on 1010 labelled CT

lung scans from the Lung Image Database Consortium

(LIDC-IDRI) dataset. They used 3 parallel CNNs with 2 con-

volution layers each, with each CNN taking image patches

at different scales to extract features. The learned features

were used to construct an output feature vector, which was

then classified using either a SVM with radial basis func-

tion (RBF) filter or RF classifier into benign or malignant.

Their method classified nodules with 86% accuracy and they

also found that it was robust against different levels of noise

inputs. Li et al. [51] used 3-dimensional CNNs to interpo-

late missing imaging data between MRI and PET images.

830 patients with MRI and PET scans from the Alzheimer

Disease Neuroimaging Initiative (ADNI) database were stud-

ied. 3-D CNNs were trained with MRI and PET images as

input and output respectively, and used to reconstruct PET

images from patients who did not have them. Their recon-

structed PET images almost matched ground truth results

of disease classification, but one caveat is that issues of

overfitting were not addressed, limiting the potential general-

izability of their technique. Hosseini-Asl et al. [52] achieved

state of the art results in diagnosing patients with Alzheimer’s

Disease versus normal, with an accuracy of 99%. They

employed 3-D CNNs in an autoencoder architecture, pre-

trained on the CADDementia dataset to learn generic brain

structural features. The learned feature outputs were then

connected to higher layers where deep supervision techniques

fine-tuned the algorithm’s ability to discriminate between

scans of patients with normal brains, mild cognitive impair-

ment, or Alzheimer’s Disease from the ADNI database.
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Korolev et al. [53] evaluated the performance of their

VOXCNN and ResNet, which was based on the VGGNet [54]

and Residual neural network architectures [55] respectively.

They also used the ADNI database to discriminate between

normal and Alzheimer Disease patients. Although their accu-

racy of 79% for Voxnet and 80% for ResNet was lower

than what Hosseini-Asl achieved, Korolev states that their

algorithms did not need hand-crafting of features and were

simpler to implement.

Diabetic retinopathy (DR) can also be diagnosed using

CNNs. Using digital photographs of the fundus of the eye,

Pratt et al. [56] trained a CNN with 10 convolutional layers

and 3 fully connected layers on approximately 90,000 fundus

images. They classified DR into 5 clinically used classifica-

tions of DR severity, with 75% accuracy. Abramoff et al. [57]

evaluated a commercial device, the IDx-DR version X2.1

(IDx LLC, Iowa City, Iowa, USA) to detect DR. The author

does not disclose the CNN architectures but states they

are inspired by Alexnet and VGGNet. The device, trained

on up to 1.2 million DR images, obtained an AUC score

of 0.98.

Unsupervised learning methods are also an active area of

research. Plis et al. [58] used Deep Belief Networks to extract

features from functional fMRI (fMRI) images, and MRI

scans of patients with HuntingtonDisease and Schizophrenia.

Suk et al. [59] classified fMRI images into diagnoses of

Healthy orMild Cognitive Impairment, using a stacked archi-

tecture of RBMs to learn hierarchal functional relationships

between different brain regions. Looking outside the usual

CNN models, Kumar et al. [60] compared the performance

of the well-known CNNs Alexnet and VGGNet to other

techniques, namely Bag of Visual Words (BOVV) and Local

Binary Patterns (LBP). Interestingly, the BOVV technique

performed the best at classifying histopathological images

into 20 different tissue types.

B. LOCALIZATION

Localization of normal anatomy is less likely to interest

the practicing clinician although applications may arise in

anatomy education. Alternatively, localization may find use

in fully automated end-to-end applications, whereby the

radiological image is autonomously analyzed and reported

without any human intervention. Yan et al. [61] looked at

transverse CT image slices and constructed a two stage CNN

where the first stage identified local patches, and the second

stage discriminated the local patches by various body organs,

achieving better results than a standard CNN. Roth et al. [62]

trained a CNN with 5 convolution layers to discriminate

approximately 4000 transverse axial CT images into one of

5 categories: neck, lung, liver, pelvis, legs. He was able to

achieve a 5.9% classification error rate and an AUC score

of 0.998, after data augmentation techniques. Shin et al. [63]

used stacked autoencoders on 78 contrast-enhanced MRI

scans of the abdominal region containing liver or kidney

metastatic tumors, to detect the locations of the liver, heart,

kidney and spleen. Hierarchal features were learned over the

spatial and temporal domains, giving detection accuracies of

between 62% and 79%, depending on the organ.

C. DETECTION

Detection, sometimes known as Computer-Aided Detection

(CADe) is a keen area of study as missing a lesion on a

scan can have drastic consequences for both the patient and

the clinician. The task for the Kaggle Data Science Bowl

of 2017 [64] involved the detection of cancerous lung nod-

ules on CT lung scans. Approximately 2000 CT scans were

released for the competition and the winner Fangzhou [65]

achieved a logarithmic loss score of 0.399. Their solution

used a 3-DCNN inspired byU-Net architecture [19] to isolate

local patches first for nodule detection. Then this output was

fed into a second stage consisting of 2 fully connected layers

for classification of cancer probability. Shin et al. [24] evalu-

ated fivewell-knownCNN architectures in detecting thoraco-

abdominal lymph nodes and Interstitial lung disease on CT

scans. Detecting lymph nodes is important as they can be a

marker of infection or cancer. They achieved a mediastinal

lymph node detection AUC score of 0.95 with a sensitivity

of 85% using GoogLeNet, which was state of the art. They

also documented the benefits of transfer learning, and the use

of deep learning architectures of up to 22 layers, as opposed to

fewer layers which was the norm in medical image analysis.

Overfeat was a CNN pre-trained on natural images that won

the ILSVRC 2013 localization task [66]. Ciompi et al. [67]

applied Overfeat to 2-dimensional slices of CT lung scans

oriented in the coronal, axial and sagittal planes, to predict

the presence of nodules within and around lung fissures. They

combined this approach with simple SVM and RF binary

classifiers, as well as a Bag of Frequencies [68], a novel

3-dimensional descriptor of their own invention.

Other than lung lesions, there are also a myriad of

other applications, including detecting malignant skin cells.

Esteva et al. [69] used 130,000 dermatological photographs

and dermoscopic images to train a GoogLeNet Inception

V3 CNN, with no hand-crafting of features. The CNN out-

performed human dermatologists in classifying the images

as benign, malignant or non-neoplastic lesions, reaching an

accuracy of 72% compared to the 65% and 66% accuracies

obtained by 2 human dermatologists. The CNN again bettered

21 human dermatologists at deciding treatment plans for two

types of skins cancers: carcinoma and melanoma. This task

involved 376 biopsy-proven images, and the CNN achieved

AUC scores of between 0.91 to 0.96.

Histopathological images are increasingly digitized and

this has led to numerous papers in this field. Currently these

images are laboriously read by human pathologists who look

for markers of malignancy such as: increased nucleus to

cytoplasm ratios, increased numbers of mitotic figures indi-

cating increased cell replication, atypical cellular architec-

ture, signs of cellular necrosis, high cell proliferation index

from molecular markers like Ki-67. A histopathological slide

can contain hundreds to thousands of cells, and wading

through them at high magnification carries the risk of missing
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aberrant neoplastic areas. Ciresan et al. [70] used 11-13 layer

CNNs to identify mitotic figures in 50 breast histology

images from the MITOS dataset. Their approach achieved

precision and recall scores of 0.88 and 0.70 respectively.

More recently, Yang et al [71]. achieved accuracies of

97-98% in classifying kidney cancer histopathological

images into tumor or non- tumor, using CNNs that were

5-7 layers deep. Sirinukunwattana et al. [72] also used CNNs,

but to detect cell nuclei in 100 colorectal adenocarcinoma

histology images. For training, almost 30,000 nuclei had

to be hand-labelled. The novelty in their approach was the

use of their Spatially-Constrained CNN, which used spatial

regression and the surrounding spatial context to identify the

centers of nuclei. Nuclei in breast cancer histological slides

were also identified by Xu et al. [73], although he used a

Stacked Sparse Autoencoder (SSAE) instead. Their model

obtained precision and recall scores of 0.89 and 0.83 respec-

tively, showing that unsupervised learning methods can also

be successfully employed in this field. Albarquoni et al. [74],

deal with the issue of insufficient labelling of medical images,

by ‘‘crowd-sourcing’’ the ground-truth labelling of mitoses

in breast cancer histology images to non-experts on the inter-

net. The crowd-sourced input labels were fed into a CNN,

and this represents an interesting proof-of-concept work that

may solve the perennial problem of insufficient labelling in

medical image analysis.

D. SEGMENTATION

CT and MRI mage segmentation research covers a variety of

organs such as liver, prostate and knee cartilage, but a large

amount of work has focused on brain segmentation, including

tumor segmentation. The latter is especially important in

surgical planning to determine the exact boundaries of the

tumor in order to direct surgical resection. Sacrificing too

much of eloquent brain areas during surgery would cause

neurological deficits such as limb weakness, numbness and

cognitive impairment. Traditionally, medical anatomical seg-

mentation was done by hand, with a clinician drawing out-

lines slice by slice through an entireMRI or CT volume stack,

therefore it is ideal to implement a solution that automates

this laborious task. An excellent review of brain MRI seg-

mentation was written by Akkus et al. [75], who reviewed

various CNN architectures and metrics used in segmentation.

Additionally, he also detailed the numerous competitions and

their datasets, such as Brain Tumor Segmentation (BRATS),

Mild traumatic brain injury outcome prediction (MTOP) and

Ischemic Stroke Lesion Segmentation (ISLES).

Moeskops et al. [76] used 3 CNNs, each with a different

2-dimensional input patch size, running in parallel to classify

and segment MRI brain images of 22 pre-term infants and

35 adults into different tissue classes such as white matter,

grey matter and cerebrospinal fluid. The advantage of using

3 different input patch sizes is that each focuses on capturing

different aspects of the image, with the smallest patch focused

on local textures while the larger patch sizes assimilated spa-

tial features. Overall, the algorithm achieved good accuracy,

with Dice coefficients between 0.82 and 0.87. Most segmen-

tation research has been on 2-dimensional image slices, but

Milleterai et al. [20] applied 3-dimensional CNN to segment

MRI prostate images from the PROMISE2012 challenge

dataset. Their proposed V-net was inspired by Ronnerberger’s

U-Net architecture [19], and was trained on 50 MRI prostate

scans and tested on 30 similar scans. V-net achieved a dice

similarity coefficient score of 0.869, which was similar to that

of the top placed teams in the challenge. Pereira et al. [77]

applied deliberately small filters of 3 x 3 size, to allow

the design of a deeper 11 convolution layer CNN, and to

reduce overfitting. Their CNN was trained on 274 MRI

brain tumor scans of gliomas, a type of brain tumor with

significant malignant potential, obtaining first place in the

BRATS 2013 and second place in the BRATS 2015 challenge.

Havaei et al. [78] also looked at gliomas, and explored

various 2-dimensional CNN architectures on the BRATS

2013 dataset. Their algorithm performed better than the

BRATS 2013 winner, and took 3 minutes to run, compared

to 100 minutes. Their InputCascadeCNN had a cascaded

architecture, with the output of a first CNN being fed into

a second CNN. Chen et al. [79] proposed using up-sampled

filters, atrous spatial pyramid pooling, and fully connected

Conditional Random Fields (CRFs). These aid in enlarg-

ing the field of each filter’s view at multiple scales and

improve localization accuracy. With this architecture which

they called DeepLab, Chen et al. achieved state-of-the-art

performance in the PASCALVOC-2012 Image segmentation

task, reaching 79.7% mean Intersection over Union (mIOU).

There is some overlap with Moeskops’ [76] use of input

patches at different scales, and it would be interesting to

see how this work in image segmentation can be advanced

further. A more recent study by Casamitjana et al. [80],

compared various 3-dimensional CNN architectures. Train-

ing on the BRATS 2015 brain tumor dataset, they found

that their 3D-CNN, modified from the DeepMedic CNN by

Kamnitsas et al. [21], performed the best, and advocated

using smaller receptive fields with multi-scale architecture.

Brosch et al. [81] also exploited the analysis of multi-scale

architecture, in segmenting MRI brain lesions of multiple

sclerosis. They employed a novel approach but using both

an encoder convolutional pathway consisting of pre-trained

RBMs, and a deconvolutional pathway similar to a U-Net

architecture.

E. REGISTRATION

Although the registration of medical images has many

potential applications, which were reviewed by

El-Gamal et al. [82], their actual clinical use is encountered in

niche areas. Image registration is employed in neurosurgery

or spinal surgery, to localize a tumor or spinal bony landmark,

in order to facilitate surgical tumor removal or spinal screw

implant placement. A reference image is aligned to a second

image, called a sense image and various similarity measures

and reference points are calculated to align the images, which

can be 2 or 3-dimensional. The reference image may be
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a pre-operative MRI brain scan and the sense image may

be an intraoperative MRI brain scan done after a first-pass

resection, to determine if there is remnant tumor and if

further resection is required. Using MRI brain scans from

the OASIS dataset, Yang et al. [83] stacked convolution

layers in an encoder-decoder fashion, to predict how an

input pixel would morph into its final configuration. They

invoked the use of a Large deformation diffeomorphic metric

mapping (LDDMM) registration model and achieved dra-

matic improvements in computational time. Miao et al. [84]

trained a 5 layer CNN on synthetic X-ray images in order

to register 3-dimensional models of a knee implant, a hand

implant, and a trans-esophageal probe onto 2-dimensional

X-ray images, in order to estimate their pose. Their method

obtained successful registrations 79-99% of the time, and

took 0.1 seconds, a significant improvement over traditional

intensity-based registration methods.

IV. CONCLUSION

A. CHALLENGES

A recurring theme inmachine learning is the limit imposed by

the lack of labelled datasets, which hampers training and task

performance. Conversely, it is acknowledged that more data

improves performance, as Sun et al. [85] shows using an inter-

nal Google dataset of 300 million images. In general com-

puter vision tasks, attempts have been made to circumvent

limited data by using smaller filters on deeper layers [47],

with novel CNN architecture combinations [86], or hyperpa-

rameter optimization [87].

In medical image analysis, the lack of data is two-fold

and more acute: there is general lack of publicly available

data, and high quality labelled data is even more scarce.

Most of the datasets presented in this review involve fewer

than 100 patients. Yet the situation may not be as dire as

it seems, as despite the small training datasets, the papers

in this review report relatively satisfactory performance in

the various tasks. The question of how many images are

necessary for training in medical image analysis was partially

answered by Cho et al. [88]. He ascertained the accuracy

of a CNN with GoogLeNet architecture in classifying indi-

vidual axial CT images into one of 6 body regions: brain,

neck, shoulder, chest, abdomen, pelvis. With 200 training

images, accuracies of 88-98% were achieved on a test set of

6000 images. While categorization into various body regions

is not a realistic medical image analysis task, his report does

suggest that the problem may be surmountable. Being able to

accomplish classification with a small dataset is possibly due

to the general intrinsic image homogeneity across different

patients, as opposed to the near-infinite variety of natural

images, such as a dog in various breeds, colors and poses.

VAEs and GANS, being generative models, may sidestep

the data paucity problem, by creating synthetic medical data.

This was done by Guibas and Virdi, who used a 2 stage

GAN to segment and then generate retinal fundus images

successfully [89]. Their work was built on the research of

Costa et al. [90], which first described using GANs to

generate retinal fundus images. Aside from synthetic data

generation, GANs have been used in brainMRI segmentation

as well by Moeskops et al. [91], Kamnitsas et al. [92] and

Alex et al. [93].

Data or class imbalance in the training set is also a sig-

nificant issue in medical image analysis [94]. This refers

to the number of images in the training data being skewed

towards normal and non-pathological images. Rare diseases

are an extreme example of this and can be missed without

adequate training examples. This data imbalance effect can

be ameliorated by using data augmentation to generate more

training images of rare or abnormal data, though there is risk

of overfitting. Aside from data-level strategies, algorithmic

modification strategies and cost sensitive learning have also

been studied [95], [96].

An important, non-technical challenge is the public

reception towards their health results being studied by a non-

human actor. This situation is not helped by the apocalyptic

artificial intelligence scenarios painted by some. Machine

learning algorithms have surpassed human performance in

image recognition tasks, and it is likely that they will perform

better than humans in medical image analysis as well. Indeed,

some of the papers in this review report that dermatologists

and radiologists have already been bested by machine learn-

ing. Yet the question regarding legal and moral culpability

arises when a patient is misdiagnosed, or suffers morbidity

as a result of AI or AI-assisted medical management. This is

accentuated by our inability to fully explain how the black-

box of machine algorithmswork. However, it is likely that our

relationship will continue evolve and recalibrate as AI-based

technologies mature and inexorably permeate different facets

of our lives.

B. FUTURE APPLICATIONS

The traditional applications for medical image analysis were

discussed in Section 3. New areas of research include prog-

nostication [97], content-based image retrieval [98], [99],

image report or caption generation [100], [101], and manip-

ulation of physical objects with LSTMs and reinforcement

learning [102], [103] involving surgical robots [104], [105].

A few innovative applications that span across traditional

medical image analysis categories are described below.

An interesting application was reported by

Nie et al. [106], [107], in which GANs were used to generate

CT brain images from MRI images. This is remarkable, as it

means that patients can potentially avoid the ionizing radia-

tion from a CT scanner altogether, lowering cost and improv-

ing patient safety. Nie also exploited the ability of GANs

to generate improved, higher resolution images from native

images [108] and reduced the blurriness in the CT images.

A useful extension of resolution improvement techniques

would be applying them to generate MRI images of higher

quality. High quality MRI images require high tesla (and

correspondingly costlier) MRI scanners. Algorithmically-

generated high quality MRI images on a lower field-strength

scanner would thus lower healthcare costs.
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Chang [109] demonstrated a novel application in the

nascent area of radio-genomics, which uses radiological

images to predict the underlying molecular origin of a tissue.

He first used an autoencoder to learn latent features from

MRI images of glioblastomamultiforme (GBM), a malignant

brain tumor, from The Cancer Genome Atlas Glioblastoma

Multiforme (TCGA-GBM) data collection [110]. The learned

features were then fed into a fully connected classifier layer to

classify a MRI scan into one of 4 known molecular sub-types

of GBM. Although still early, Chang’s work could potentially

diagnose a GBM sub-type and obviate the need for surgical

biopsy and molecular assays. The generalizability of this

technique to tumors elsewhere in the body is also promising.

Coudray et al. [111] accomplished an analogous task, but

used histopathological images to classify lung cancer sub-

types, and to predict common genetic mutations. Knowing

the genetic mutations is helpful in prognosticating length

of survival and guiding the choice of chemotherapy. Their

method outperforms a human pathologist, and the prediction

of genetic mutations had AUC scores of between 0.73 to 0.86.

Tsochatzidis et al. [112] described an original work com-

bining content-based image retrieval (CBIR) and comput-

eraided diagnosis (CADx). In essence, their model segmented

a lesion on a query image, and compared this to the segmented

lesions in their database, consisting of 400 Regions of interest

derived from the Digital Database for Screening Mammogra-

phy (DDSM). The basis of comparison were the Euclidean

distances between the representation vectors of the query

lesion and database lesions. The model then outputs both

reference images and a likelihood of a lesion being benign

or malignant. They reported that their combined CBIR and

CADx method resulted in state of the art prediction accuracy

of 81%. These examples highlight how the field of machine

learning in medical image analysis is changing rapidly, and

that there may still be numerous applications which have not

been conceived of yet.
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