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We propose an artifact classi	cation scheme based on a combined deep and convolutional neural network (DCNN) model, to
automatically identify cardiac and ocular artifacts from neuromagnetic data, without the need for additional electrocardiogram
(ECG) and electrooculogram (EOG) recordings. From independent components, the model uses both the spatial and temporal
information of the decomposed magnetoencephalography (MEG) data. In total, 7122 samples were used a
er data augmentation,
in which task and nontask related MEG recordings from 48 subjects served as the database for this study. Artifact rejection was
applied using the combinedmodel, which achieved a sensitivity and speci	city of 91.8% and 97.4%, respectively.�eoverall accuracy
of the model was validated using a cross-validation test and revealed a median accuracy of 94.4%, indicating high reliability of the
DCNN-based artifact removal in task and nontask related MEG experiments. �e major advantages of the proposed method are
as follows: (1) it is a fully automated and user independent work�ow of artifact classi	cation in MEG data; (2) once the model
is trained there is no need for auxiliary signal recordings; (3) the �exibility in the model design and training allows for various
modalities (MEG/EEG) and various sensor types.

1. Introduction

Inmagnetoencephalography (MEG) recordings, electrophys-
iological brain activity is measured noninvasively by means
of detecting small magnetic 	eld changes of the electrical
activity within the human brain. In addition to environ-
mental noise, in MEG recordings the neuromagnetic brain
signals interfere with strongmagnetic 	eld components from
ocular and cardiac activities. As the signal strength of these
biological artifacts is relatively large compared to the brain
signal, the arti	cial signals need to be separated and removed
prior to analysis.

For successful isolation of ocular and cardiac artifacts
from MEG and electroencephalography (EEG) recordings
independent component analysis (ICA) has been extensively
and successfully used over the last ten years [1–8]. Semi-
and fully automatic ICA-based approaches use di�erent
strategies to identify ocular and cardiac activities from a

set of independent components. To tackle this problem, a
variety of time-series-, frequency-, and topographical-based
models have been proposed [1, 3, 7, 9, 10]. In time-series
based models, a statistical evaluation on the decomposed
signals [3, 11, 12] is typically performed, while spatial-based
approaches o
en perform a linear transformation to the
sensor space [9, 13] to localize or estimate the origin of the
source [14]. In many of these approaches a reference signal is
needed, such as recordings from electrocardiography (ECG)
and electrooculography (EOG), which is used to identify
the features of interest. �e signal quality of such recordings
strongly in�uences the reliability of the artifact rejection
method applied. In particular, poor electrode conductivities,
positioning of the electrodes, and even slight arm or chest
movements will have a large impact on the ECG and EOG
signal quality. In only a few studies, the artifact rejection
methods applied have not relied on additional reference
signals [3, 15–17].
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In recent years, statisticalmachine learningmethods have
been introduced into the 	eld of neuroimaging [18, 19].�ese
methods have been increasingly used for feature extraction,
classi	cation, and decoding in MEG and EEG [20–22].
�e di�erent approaches can be organized into supervised,
unsupervised, semisupervised, or reinforcement learning
based on the desired outcome of the algorithm. As pointed
out by the authors in [18, 20] supervised machine learning
methods can be used in decoding or encoding settings to
relate brain images to behavioral or clinical observations [18]
or identi	cation of artifacts [20].

Another deep learning based multilayer technique is
the so-called convolutional neural network (CNN) [23]. In
machine learning, CNN refers to a type of feed-forwardDNN
and is comprised of one or more convolution-pooling layers.
CNN-based approaches typically require some preprocess-
ing steps where feature vectors are extracted, for example,
using independent component analysis (ICA) on which a
classi	er is then applied [19, 20, 24]. Recently, CNN has
been successfully applied to EEG recordings to classify motor
imaginary signals [21], mental load [25] and artifact rejection
[20]; CNNs, however, are o
en applied to classify image-types
of input data, while di�erent approaches have been suggested
for the classi	cation of time-series data [26].

In this paper we aim to introduce a combined deep
learning approach for the classi	cation of ocular and car-
diac artifacts in MEG recordings without using reference
signals. To achieve this, a deep convolutional neural network
(DCNN) approach is applied to decomposed MEG signals,
in which the spatial and temporal signatures are combined
to construct an appropriate feature space that could increase
the linear separability of the initial data. �is way, the overall
classi	cation process is greatly simpli	ed and allows for a fast
and robust classi	cation with high accuracies.

�e main contributions of this study are twofold: (1) we
will demonstrate that the DCNNmodel introduced here can
successfully be used in the context of ocular and cardiac
artifact rejection using MEG and (2) we describe a fully
automatic artifact rejection work�ow which can be set up for
MEG/EEG without the need for EOG and ECG recordings.

2. Materials and Methods

2.1. MEG Dataset. In order to obtain a dataset of su�cient
size for the classi	cation task we used a total of 132 MEG
recordings from 48 subjects. �e neuromagnetic data were
recorded using a whole-head magnetometer system with 248
channels (MAGNES-3600WH MEG) from 4D Neuroimag-
ing. To avoid possible bias due to di�erent experimental
paradigms the dataset includes task (auditory, visual, and
motor tasks) and nontask (resting state) related experiments.
�e dataset consists of three blocks of experiments or data
types, in which the heart rate and ocular activity are expected
to vary and where the number of recordings used was almost
equally balanced for each subject. �e 	rst block (40 experi-
ments) includes data from task related experiments, while the
second and third blocks consist of data recorded in rest, where

the subject was asked to have their eyes open (43 experi-
ments) or closed (49 experiments), respectively. Participation
in all experiments was in accordance with the ethics com-
mittee of the Medical Faculty of the Rheinisch-Westfälische
TechnischeHochschule Aachen (RWTHAachenUniversity),
Germany. All volunteers gave their informed written consent
a
er explanation of the procedure and the purpose of the
experiment. �e acquisition was performed continuously
with a duration varying across experiments from 3 minutes
(resting state) to 10 minutes (task related experiment) and
a sampling rate of either 1017.25 or 678.17Hz, depending on
the experimental paradigm. For the task related experiments,
the central 3 minutes of recordings were extracted for further
analysis. ECGandEOGsignalswere recorded simultaneously
with the MEG signals. Both types of ocular activities were
recorded measuring horizontal and vertical eye movements
(eye blinks).

2.2. Data Preprocessing. A
er acquisition, the MEG raw
signals were visually inspected for unusual large noise or
artifacts. Upon occurrence, these channels were removed and
replaced by an interpolated signal using information from the
surrounding channels and employing routines provided by
MNE-Python [27]. Environmental noise was removed by the
subtraction of appropriate weighted reference signals from
the MEG signals [28]. �e method is capable of removing
environmental noise as well as interference from the power
line by taking the 11 reference channels from the MEG
system into account. In addition, the signal quality of the
auxiliary channels (ECG and EOG) was checked using visual
inspection to ensure su�cient data quality of the ECG and
EOG signals in the dataset used.

ICA has been applied to separate brain signals from
ocular and cardiac activities. �e method is well known to
provide good results on both MEG and EEG recordings
[3, 8, 11, 14, 29–32].

Since multiple recordings from di�erent experimental
paradigms are used, they consist of di�erent sampling rates
and durations. In order to prepare a uniform dataset, only
three minutes of data from each measurement were consid-
ered, where all data were sampled down to 250Hz and band
pass 	ltered from 1 to 45Hz.

To further increase the sample size data augmentation
has been applied to each measurement of around 3 minutes
duration by means of a sliding window of 60 s with an o�set
of 10 s. In this way, we were able to obtain a set of additional
data segments of oneminute length to serve as new input data
for ICAdecomposition.�e total number of all data segments
used for analysis is 1112.

Prior to the application of ICA, the continuous data
were chopped into segments of one-minute durations. �e
FastICA algorithm, as implemented in MNE-Python [27],
was applied to each of the data segments. To estimate the
number of components used in ICA, we used the minimum
description length (MDL) method to compute the model
order to be used for decomposition [33]. In order not to
include any bias fromdi�erent dimension reduction results in
the DCNNmodel, the median model order of 34 was chosen
and 	xed for all ICA decomposition.
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Figure 1: Work�ow of the DCNN-based model for cardiac and ocular artifact removal in MEG data.

2.3. Labeling Features. A prerequisite for supervised learning
strategies is to label the features adequately. For building
a labeled dataset, the components were initially classi	ed
using some reference methods. Components re�ecting car-
diac activity were identi	ed using cross-trials phase statistics
(CTPS), a method which is implemented in MNE-Python
[27] and is known to reliably identify weak and strong cardiac
activity from independent components [11, 34]. Ocular activ-
ity was identi	ed by correlating the decomposed signals with
both EOG channels as implemented in MNE-Python [27].
�e performance of artifact removal was visually inspected
by plotting the rejection performance as described in [11].
�e results of this artifact identi	cation scheme served as a
reference and thus provides the labels for the DCNNmodel.

To prepare the dataset for training, all ocular and cardiac
components were labeled and grouped as artifact compo-
nents, while the same amounts of nonartefactual components
were randomly extracted from the remaining set of inde-
pendent components and labeled as nonartifact components.
�e total number of samples �, which were fed into the

model, is � = ∑��=1(�� + ��), with � and � being the
number of artifacts and nonartifacts (i.e., other components),
respectively, and � = � and � being the number of data
segments used. For example, if two components are labeled
as cardiac activity and two components were found to be
highly correlated with ocular activity, we will achieve a set
of 8 components from which 4 nonartifact components have
been randomly selected from the pool of 30 nonartifact
components. Given a dataset of 1112 one minute ICA chops,
we end up with a training sample size of 7122 components, of
these approximately artifact and nonartifact components are
equally balanced.

To further increase the data variability during training, all
samples were �ipped (i.e., multiplied by −1). �is e�ectively
doubles the number of data used for training.�e dataset was
then split into a training and validation dataset.

2.4. A Combined Deep Convolution Neural Network (DCNN)
Model. We developed a combined neural network archi-
tecture speci	cally for the classi	cation task at hand. �e
work�ow of the proposed combined DCNN model includes
four stages which can be summarized as follows: (1) data
preprocessing, (2) ICA decomposition, (3) DCNN-based
classi	cation of artifact components, and 	nally (4) artifact
removal and back transformation. An overview of the work-
�ow is illustrated in Figure 1.

Utilizing a supervised learning strategy, the model
parameters are learned by training the deep network using
a backpropagation learning technique. Training in which
backpropagation is used mainly involves two steps, the feed-
forward and the backpropagation steps. In the 	rst step, the

labeled training set is fed to the network from the input
layers, through the hidden layers, to the output layer. During
backpropagation, a 	tting error (i.e., the error of the output
layer) is computed by 	nding the di�erence between the
network output and the desired output, before it is propagated
back through the network.�e training dataset is fed through
the model over multiple iterations, known as epochs. �e
number of epochs is decided based on an early stopping
method, where the model converges before it su�ers from
over	tting. Finally, the trained network is used to perform the
classi	cation process using new samples from the validation
set.

In order to build a fully �edged classi	er that is able
to identify cardiac and ocular activity from independent
components without using additional information fromEOG
and ECG, we have developed a combined neural network
model, in which temporal and spatial information is incor-
porated. To accomplish a spatiotemporal classi	cation task,
we are taking advantage of two di�erent deep learning
strategies. �e neural network model consists of two input
branches or pathways, through which each of the indepen-
dent components passes in order to extract the temporal
(time course) and spatial (topography projected on the sensor
array) information (cf. Figure 2) as extracted by ICA. In
the temporal branch, time-series are passed through a pair
of convolution-pooling layers, while in the spatial branch
the information is passed through a fully connected layer
(Figure 2). Finally, the two branches are then concatenated
and fed into a two neuron, classi	cation layer.

In the temporal branch, we use two 1D-convolutional
layers, each followed by a max pooling operation. In this
branch, we use 15 and 10 	lter kernels of sizes 24 and 28
and a pool size of 24 and 14 for the 	rst and second layer,
respectively (Figure 2).�e temporal signal is thus convolved
using multiple kernels using shared weights, while the pool-
ing layers are used to reduce the size of the input signal
and at the same time preserve the contained information. In
this step, the initial input signal with sample size of 15000 is
reduced to a 156 × 10 feature matrix, which is fully connected
to 12 neurons in the concatenation layer. �e spatial branch
consists of a fully connected layer with 150 neurons, where
its output is fed into the concatenation layer using 12 fully
connected neurons to combine the temporal and spatial
information.

Hyperparameters in the proposed DCNN model have
been optimized for both branches separately. In particular,
the structure of the network, the number of neurons, activa-
tion and loss functions, and parameters used for convolution,
such as the dropout rate to reduce early over	tting [35], have
been varied through testing. �e 	nal network architecture,
as depicted in Figure 2, uses the recti	ed linear unit (ReLU)
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Figure 2: Architecture of the neural network model with an example of a typical ocular artifact component. �e model is trained using
the temporal (a) and spatial (b) information simultaneously, passing it through the di�erent input branches (c) and (d). Features from both
domains are extracted (e) and passed into a 2-node layer (f) for classi	cation.

�(�) = max(0, �), as an activation function in all layers
except for the output layer, where the so
max function is
used [36].�e loss function is de	ned as the categorical cross
entropy between the output vector and the target label vector
(o
en called one-hot encoded vector) [37]. Backpropagation
with a minibatch size of 32 is performed utilizing the ADAM
optimizer [38] with the following parameter: the learning rate
(alpha) was set to 0.001, the two exponential decays for the
	rst (beta1) and second-ordermoment estimates (beta2) were
set to 0.9 and 0.999, respectively, and epsilonwas set to 10−8 to
prevent any division by zero. A 50-fold cross-validation was
performed using the shu�e-split technique described in [39]
with a ratio of 80% and 20% of training and validation data,
respectively.

�e neural network was built using the open source Keras
so
ware (version 2.0.2) [40] with a Tensor�ow (version 1.2.1)
backend [41] for Python 2.7.

3. Results

Neuromagnetic recordings from 48 subjects were divided
into 30 and 18 datasets for training and validation, respec-
tively. �e data selection for the training and validation set
was performed randomly. �e training dataset consists of
26 task related and 58 resting state data, respectively. For
validation, 14 task related and 34 resting state experiments
were included in the dataset. In both types of datasets, for
half of the resting state experiments the subjects were asked
to have their eyes open.

�e average accuracy and loss function were computed
as a function of epochs during the training and validation
in order to monitor the training progress and convergence
of the model (Figure 3). Figure 3 illustrates the e�ect of
the signi	cant amount of dropout applied during training in
comparison to the validation, which is performed without
dropout. �e 	nal model was selected utilizing the early

stopping technique, by selecting the model at epoch 32,
yielding a peak validation accuracy of 94.6%.

�e training accuracy is typically lower than the vali-
dation accuracy due to the high dropout rate used when
computing the training accuracy.�emodel is exposed to the
training dataset with 50% dropout when computing either
accuracy or loss while the validation is performed without
any dropout of any form.

�e 	nal result is illustrated in the confusion matrix,
where the accuracy of the classi	cation for the two classes,
“artifact” and “other” component, is shown (Figure 4). �e
result is illustrated using the confusion matrix shown in
Figure 4, which is based on a total of 2494 samples originating
from the validation set, with about half of the samples labeled
as “artifact” and the other half labeled as “other.” �e model
achieved a sensitivity of 91.8% and a speci	city of 97.4%.
�e area under the curve (AUC) of the receiver operating
characteristic (ROC) is 98.2%. To avoid possible bias in terms
of the small validation set, we further con	rmed the overall
accuracy of the model by performing a 50-fold shu�e-split
cross-validation. �e best median accuracy was encountered
at epoch 63 yielding 94.2%,with the lower andupper quartiles
at 93.4%, and 94.5%, respectively.

Figure 5 illustrates one example of classi	cation results
for an ICA decomposition in comparison to the reference
(i.e., CTPS and Pearson’s correlation) scores. In Figure 5, four
components are labeled as artifact and are highlighted in
red, while nonartifact components are highlighted in black.
�is is con	rmed by the DCNN classi	cation with a very
high and low probability for the artifact and nonartifact
components, respectively. �e values from the reference
method in Figure 5 cannot directly be compared to the
model scores, as they refer to the actual correlation and CTPS
values, de	ning ocular and cardiac activities, respectively.
In this example, all ICs with correlation and CTPS values
above the thresholds (dashed vertical lines) were correctly
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the twodi�erent classes artifact and other (nonartifact). Sensitivity is
smaller in comparison to speci	city, indicating that themodel is less
prone to rejecting artifact components compared to the reference
method.

identi	ed by the DCNN model, which is shown by the high
model probability values (orange bars) shown in Figure 5.
For comparison, the correspondingEOGandECGsignals are
plotted in green and blue, respectively.

In order to evaluate the performance of the classi	cation
process within the artifact rejection scheme, a so-called
performance plot is shown in Figure 6 [1, 11, 12, 42, 43].
In this 	gure, results from artifact removal using data from
a representative subject are shown by averages aligned to
peak onsets from the ECG and EOG signal, before and a
er
artifact removal. Figure 6 nicely illustrates that the applied the
classi	cation scheme works.

Table 1: In section A, the parameters to train the model are
summarized. Section B shows the performance parameters of the
DCNNmodel when applied to the validation dataset.

A

Number of samples (training) 4628

Number of samples (validation) 2494

Minibatch size 32

Learning rate 0.001

B

Epoch number (best model) 32

True positive rate (sensitivity) 91.8%

True negative rate (speci	city) 97.4%

A summary of the most important parameters used for
training and the results obtained by the DCNN model are
given in Table 1.

�e DCNN model introduced here consists of two
branches, the temporal and spatial branch (cf. Figure 2). To
test and show that the model pro	ts from both branches
the spatial and temporal branch were trained as individual
models to investigate their contribution to the combined
model (i.e., the DCNN model). Receiver operating charac-
teristic (ROC) analysis have then been applied to all models
in order to compare the performance with the DCNNmodel.
�e validation accuracy of the spatial and temporal branch
peaked at 93.7% and 93.5% at epoch 31 and 42, respectively.
Figure 7 illustrates that the model improves when both,
the temporal and spatial branches, are combined. �is is
indicated by a larger area under the curve (AUC) in Figure 7.
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4. Discussion

In this study, we introduce a fully automated deep learning
approach for the classi	cation and removal of ocular and
cardiac artifact components for neuromagnetic recordings.
�is is done without both the need for human intervention
and the need for additional EOG and ECG recordings. �e
method presented here uses both spatial and temporal infor-
mation to classify and separate artifacts from other source
contributions. As input data, the model uses independent
components, where ICA separates the multivariate signal
into its additive components. ICA is well known and widely
applied for artifact rejection in the 	eld of MEG and EEG
[1, 11, 12]. However, a
er ICA decomposition, the challenge
is to correctly identify the artifact components from a set
of decomposed signals. Most of the existing methods rely
on auxiliary recordings, such as EOG and ECG. �ese are
typically recorded in synchrony with theMEG data and serve
as a reference signal and thus may introduce an additional
source of error depending on the data quality of the auxiliary
signals. Moreover, the use of auxiliary recordings increases
the preparation time necessary for measurements.

Currently there are very few approaches in literature that
address a fully automated artifact rejection work�ow using

neural networks on MEG/EEG data. Winkler and colleagues
presented an artifact rejection method using EEG [32]. �e
authors used a manually predetermined set of parameters to
classify components.�emethod has been shown to be quite
robust when dealing with EEG data, but translation to MEG
maybe more di�cult and time consuming. More recently,
Garg et al. presented a method using multilayered CNNs
to classify artifact components from MEG data [44, 45].
In their work, the neural networks are trained to classify
ECG and EOG related artifact components from the time-
series of the ICs. In a related study, the same authors showed
automatic detection of EOG related components using a
spatial representation of the independent components [44].
As a part of their conclusions they suggest a neural network
which combines both temporal and spatial information,
which is ideal. In this paper, we show how the spatiotemporal
information of the two di�erent types of artifacts can be easily
combined to construct a DCNN model that achieves a very
high accuracy rate of 94.4%.

In comparison to [45], our training dataset also consists of
data from task and nontask related experiments, which allows
the model to be applied to both types of experiments.

To introducemore variability to the model, we used short
data segments of 1-minute length and data augmentation for
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Figure 6: Plot showing ECG/EOG artifact removal on averaged MEG data for a representative subject before (a, c) and a
er (b, d) artifact
removal. Averages were aligned based on peak onsets from the ECG (a, b) or EOG (c, d) signal, which is superimposed in gray.

which we (i) randomly extracted di�erent time windows for
ICAdecomposition and (ii) we �ipped the time courses of the
decomposed signals (i.e., components are multiplied by −1).
It is possible to use longer time windows for ICA analysis as
long as one can assume stationarity within the time segment
to be analyzed.

�e results obtained from our model are comparable
to recently published work of [44–46]. However, we have
demonstrated that when temporal and spatial information
are combined into one model the artifact rejection perfor-
mance is increased (Figure 7). Further, a source of variability

in results of machine learning based artifact rejection uti-
lizing ICA is not only derived from the di�erent types of
networks and parameters used, but also from the number
of components used for ICA decomposition. �e number
of components used, however, is o
en 	xed to either the
full number of sensors or an arbitrarily 	xed number [47].
In this approach, we also used a 	xed number of compo-
nents for ICA decomposition, but for this, the minimum
description length (MDL) method was applied to estimate
the optimal number of components [33]. From a total of
248 components, the median number of 34 components, as
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thresholds. (a) Total view on the ROC curves in comparison to a totally random classi	cation (dashed line). (b) �e close-up of the ROC
curves highlights the di�erences in model performance.

determined by MDL, was used and 	xed throughout the
training.

�e parameters used for training the DCNN model are
summarized in Table 1. We noticed that using larger or
smaller learning rates did not change or a�ect the 	nal
classi	cation rates too much. However, we did 	nd that it
speeds up or slows down the convergence of the network.
Over	tting was further reduced by including dropout layers,
as shown in Figure 2. Moreover, the use of the ReLU
activation function largely speeds up the training process as
suggested in [48].

Another critical issue in a supervised machine learning
approach is that the model requires exact labeling of the
features to be learned. In [48] labeling was performed by
experts making decisions from visual inspection of the ICA
decomposed signals. In contrast, we used statistical measures
to identify the set of reference components [20, 32, 44,
45]. �is choice of labeling cannot be considered as the
ground truth either.However, it is well reproducible andmore
practical and does not rely on the results of experts.

�e DCNNmodel introduced here is capable of learning
ocular and cardiac activities from independent components
and can e�ectively work with data from di�erent MEG
systems, as long as the model is trained (once) on the decom-
posed MEG data. For MEG systems using either the magne-
tometer or the axial gradiometer as pickup coils, retraining
themodel may not be necessary but is recommended.Within
themodel the data is normalized; thus the temporal dynamics
and the topographies will not di�er qualitatively. �e only
requirement here is that, for the spatial branch of the DCNN

model, the topographies have to be interpolated to a 	xed
number of sensors, in order to cope with di�erent numbers
of MEG channels used by di�erent vendors. If MEG data are
recorded using planar gradiometer and magnetometer (e.g.,
using theVectorview or Triux system fromElektaNeuromag)
the topographies for the spatial branch will di�er, but the
topographies from the magnetometer could be used instead,
but retraining the model would be the best method of choice.

In summary, key novel aspects of this work are as follows.
(1) CombinedDCNNmodel is applied using time-series from
ECG related components and �attened spatial information
from EOG related components to classify both artifacts
simultaneously. (2) To train the model, the data are not
manually labeled with the help of experts; instead statistical
measures are used which will ensure more reproducible
results. (3) Compared to previous work, in our dataset,
a larger variability is ensured by using a large variety of
di�erent paradigms in the task-based experiments (auditory
and visual stimuli, motor response) and data from resting
state with and without eyes open.

5. Conclusions

A fully automated machine learning-based artifact classi	-
cation scheme is introduced to classify cardiac and ocular
artifacts from an MEG dataset. �is method is simple
and accurate and does not require user intervention. Once
trained, no additional ECG and EOG recordings are needed
within the work�ow of artifact rejection. �e model was
validated using a leave-one-out cross-validation test and
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revealed a median accuracy of about 94.4% indicating high
reliability of artifact removal in all of our task and non-
task related MEG experiments. While we have shown the
results from a magnetometer sensor-based MEG system, the
approach should translate seamlessly to other types of sensor
con	gurations including EEG.
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