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Abstract: This paper presents an automatic solution to the problem of detecting and counting cars

in unmanned aerial vehicle (UAV) images. This is a challenging task given the very high spatial

resolution of UAV images (on the order of a few centimetres) and the extremely high level of detail,

which require suitable automatic analysis methods. Our proposed method begins by segmenting

the input image into small homogeneous regions, which can be used as candidate locations for car

detection. Next, a window is extracted around each region, and deep learning is used to mine highly

descriptive features from these windows. We use a deep convolutional neural network (CNN) system

that is already pre-trained on huge auxiliary data as a feature extraction tool, combined with a linear

support vector machine (SVM) classifier to classify regions into “car” and “no-car” classes. The final

step is devoted to a fine-tuning procedure which performs morphological dilation to smooth the

detected regions and fill any holes. In addition, small isolated regions are analysed further using a few

sliding rectangular windows to locate cars more accurately and remove false positives. To evaluate

our method, experiments were conducted on a challenging set of real UAV images acquired over

an urban area. The experimental results have proven that the proposed method outperforms the

state-of-the-art methods, both in terms of accuracy and computational time.

Keywords: UAV imagery; car counting; deep learning; convolutional neural networks (CNNs);

support vector machines (SVM); mean-shift segmentation

1. Introduction

Unmanned aerial vehicles (UAV) are now increasingly used as a cost effective and timely method

of capturing remote sensing (RS) images. The advantages of UAV technology include low cost, small

size, safety, ecological operation, and most of all, the fast and on-demand acquisition of images [1].

The advance of UAV technology has reached the stage of being able to provide extremely high

resolution remote sensing images encompassing abundant spatial and contextual information. This has

enabled studies proposing many novel applications for UAV image analysis, including vegetation

monitoring [2,3], urban site analysis [4,5], disaster management, oil and gas pipeline monitoring,

detection and mapping of archaeological sites [6], and object detection [7–10].

One area of active research in the field of object detection since 2001 is car detection and

counting [7–9,11–17]. This is an important prerequisite for various applications, such as traffic

management, parking lot utilization, and urban planning. For instance, Zhao and Nevatia [11]

developed a car detection method based on shadow exploiting, color intensities, and a Bayesian network.

In Reference [12], the authors proposed a technique based on an operator to highlight edges for car

detection. Another work, described in Reference [13], used online boosting on Haar-like features, locale

binary patterns, and orientation histograms for car detection. The work in Reference [14] focused on the
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detection of parked vehicles in very high resolution (VHR) images using a supervised sliding window

search. The authors in Reference [15] gathered multiple features, histograms of gradient (HOG), local

binary patterns (LBP), and opponent histograms for car detection.

In the case of UAV imagery, the car detection problem introduces new challenges due to the

extremely high resolution of the images. Recently, Moranduzzo and Melagni [7,8] used scale-invariant

feature transform (SIFT) to detect the interest points of cars before using a support vector machine

(SVM) to classify these interest points into car and no-car classes based on the SIFT descriptors. Finally,

they merged SIFT points that belonged to the same car. In Reference [9], the same authors proposed

a method that employed a sliding-window search, where filtering operations in horizontal and vertical

directions were performed to extract HOG features. Cars were detected after the computation of a

similarity measure using a catalog of cars as the reference. Then, in Reference [10], they presented a

method for object detection and applied it to the problem of car detection and also the detection of

solar panels in an urban environment. The method is based on higher-order gradients and Gaussian

process (GP) regression. More recently, in Reference [18], the authors worked on car detection in UAV

street videos and proposed a combination of the Viola–Jones + SVM algorithm and a HOG + SVM

algorithm using a detector switching strategy based the different descending trends of detection speed

of both algorithms to improve detection efficiency.

The above shallow methods mainly rely on handcrafted features for building the classification system.

However, handcrafted features have recently been significantly outperformed by other types of methods

based on deep learning. Deep learning—also known as feature learning—is based on automatically

learning good feature representation from the input data. Typical deep learning architectures include

deep belief networks (DBNs) [19], stacked autoencoder (SAE) [20], and convolutional neural networks

(CNNs) [21], which are now perceived as the most effective methods for image classification. In the

context of remote sensing, recent works have developed methods solely for standard very high

resolution (VHR) images acquired by satellite sensors. In the case of vehicle detection, Chen et al. [16]

proposed a method based on sliding windows and deep CNN called the hybrid deep neural network

(HDNN). The idea behind HDNN is to replicate the convolution layers at different scales, allowing

the deep network to detect cars at different scales. HDNN requires several days to be trained for

car detection using a graphics processing unit (GPU). To find cars in a test scenario, a modified

sliding-window search was employed that tried to center sliding-windows around cars.

Due to its effectiveness in discrimination and sampling simplicity, sliding-window has been

the most popular approach used in the past few years for object detection, recognition, and

localization [22,23]. A bounding box is used to scan the whole image, thus extracting an image patch

every step of the scan. Each image patch is assigned a confidence score, which quantifies the likelihood

of the presence of the object of interest in the window area. Nevertheless, the sliding-window approach

also has several drawbacks. First, it is a time-consuming process and tends to obtain a possible location

for entire non-rigid or non-canonical posed objects. Furthermore, window bounding the object may

also cover much of the background area, which may corrupt the evaluation. Recent advances in

computer vision indicate that state-of-the art methods for object detection are moving away from

the use of sliding-window to search for possible object locations [24–27]. Instead, they are relying

on segmentation in a pre-processing step for region proposal, as was the case for the two winning

algorithms for object detection in the ImageNet 2013 detection challenge [25,26].

For these reasons, we propose a novel car detection framework in UAV images that is based

on an effective combination of segmentation techniques and deep learning approaches to achieve

higher detection rates and lower computational times. In particular, we will investigate the Mean-shift

segmentation algorithm for its ability to extract regions of variable sizes [28,29]. The Mean-shift

algorithm allows for a significant reduction in the search space compared to sliding window.

As for the deep learning approach, we exploit the power of convolutional neural networks

(CNNs), which can learn highly descriptive features. To make use of pre-trained CNNs, two strategies

could be considered. We can either fine-tune the pre-trained CNN by training it again using the
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training set for this particular problem, or we can use the pre-trained CNN as a feature extraction tool

and then employ an external classifier such as SVM to perform classification. For our application and

according to preliminary results on one of the test images, we did not find any significant difference

in detection results between the two approaches. However, the first approach was computationally

demanding.Thus, in this paper, we have opted for the second approach, where we exploit the deep

learning already embedded in a pre-trained CNN to extract highly descriptive features and then use

them to train an SVM classifier. A CNN can be divided into two parts: the first part extracts features

hierarchically using convolutional layers and max-pooling layers. The second part is a multilayer

perceptron (MLP) classifier, which classifies the data by the extracted features. A literature review has

shown that using the results of the first part (before the MLP layers) as feature descriptors can yield

good image classification results without the need for large training data or computational time.

As cars are usually parked in groups, detected car regions will be joined together in larger regions

that contain several cars. To detect each car separately, further study and analysis is required. Therefore,

it remains outside the scope of this paper. This study only focuses on finding the areas where cars are

located and their approximate number. To find the estimated number of cars, we simply divide the

size of the detected region (in pixels) over the average pixel area of one car in the tested image, and the

average car size can be easily deduced from prior information related to the height of the UAV and its

camera parameters.

2. Methodology

The proposed method is illustrated in Figure 1, and is based on the four main steps. First, the

image is over-segmented into a set of regions by means of the Mean-shift algorithm. These regions

are taken as the likely locations to inspect for cars since one region—or a small group of them—may

represent a car. The second step is devoted to the feature extraction process, where a window around

the candidate region is given as input to a pre-trained CNN for feature extraction. Third, a linear SVM

classifier is trained to classify regions into either a “car” or “no-car” class. The result is a binary map

representing a segmentation of the UAV image into “car” and “no car” classes. Finally, the binary map

is fine-tuned by morphological operations and the further inspection of isolated cars.

 

Figure 1. Flowchart of the proposed car counting method. CNN: convolutional neural network; SVM:

support vector machine.

2.1. Over-Segmentation of the UAV Image

As mentioned previously, the segmentation approach is now preferred over the sliding-window

for object categorization and recognition, as it decreases the amount of analysis of candidate locations

from tens of thousands of windows to thousands or even hundreds of windows. Segmentation has

attracted increased attention in the computer vision community, and a wide range of segmentation



Remote Sens. 2017, 9, 312 4 of 15

algorithms have been developed. These methods can be roughly categorized into graph-based

segmentation algorithms such as the graph cut approach [30] and the normalized cut approach [31],

and gradient-ascent-based segmentation algorithms such as Mean-shift [28,29], Quick-shift [32],

Watershed [33], and Turbopixels [34].

We considered the Mean-shift algorithm in our study, as it is a robust feature-space analysis

approach that can be applied to discontinuity preservation, smoothing, clustering, visual tracking,

mode seeking, and image segmentation problems. The theoretical framework of the Mean-shift is

based on the Parzen window kernel density estimation technique, where for a given set of data samples

{xi}
n
i = 1 in the d-dimensional space, the kernel density estimator at sample x is given by:

f̂h,K(x) =
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where ck,d is a normalization constant, h is the bandwidth, and k(·) is the profile of the kernel K.

The main step in the analysis of a feature space is to find the modes of the density f (x), which are

located among the zeros of the gradient (i.e., ∇ f (x) = 0). The Mean-shift procedure is an efficient way

of locating these zeros without estimating the density, since images are represented as a spatial range

joint feature space. The spatial domain denotes the locations for different pixels, whereas the range

domain represents the spectral signals for different spectral channels. Thus, a multivariate kernel can

be defined for joint density estimation:
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where ρ is a normalization parameter and h = [hs, hr] is the kernel bandwidth. Segmentation is

essentially a merging process performed on a region that is produced by Mean-shift filtering. The use

of the Mean-shift segmentation algorithm requires the selection of the bandwidth parameter h, which

(by controlling the size of the kernel) determines the resolution of the mode detection. It can be noted

that the Mean-shift algorithm cannot segment very large resolution images; however, we can divide

the large image into smaller parts, apply the Mean-shift algorithm to each part separately, and combine

the result (which is the method used to get the results in Figure 2b). Applying the Mean-shift algorithm

in this way does not have any negative side effects on the final results.

{ } 	 	
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Figure 2. Cont.
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(c)

Figure 2. (a) Original image; (b) Mean-shift algorithm result with parameters hr = 1, hs = 2, with

a minimum region size of 50 pixels; and (c) Regions obtained after the filtering step.

Nevertheless, one advantage of the Mean-shift algorithm is that it provides an opportunity for the

early elimination of large areas of the image based on the size of large regions. For example, as shown

in Figure 2b, most of the asphalt regions (like roads and parking lots) are segmented in large regions,

which can be easily removed from the search space automatically by including only regions that have

a width or height close to the average car size in the image. By applying this simple technique, only

the regions shown in Figure 2c needed to be included in the search space.

2.2. Feature Extraction with Pre-Trained CNNs

Deep CNNs are composed of several layers of processing—each containing linear as well as

non-linear operators—which are jointly learnt in an end-to-end way to solve specific tasks [35,36].

Specifically, deep CNNs are commonly made up of convolutional, normalization, pooling, and fully

connected layers. The convolutional layer is the main building block of the CNN, and its parameters

consist of a set of learnable filters. Each filter is spatially small (along width and height), but extends

through the full depth of the input image. The feature maps produced via convolving these filters

across the input image are then fed into a non-linear gating function such as the rectified linear unit

(ReLU) [37]. Next, the output of this activation function can be further subjected to normalization (i.e.,

local response normalization) to help in generalization.

The pooling layer takes small rectangular blocks from the convolutional layer and subsamples it

to produce a single output from each block. The literature conveys several ways to perform pooling, such

as taking the average, the maximum, or a learned linear combination of the values in the block. This layer

allows control of over-fitting and reduces the amount of parameters and computation in the network.

After several convolutional and pooling layers, the high-level reasoning in the neural network

is done via fully connected layers. A fully connected layer takes all neurons in the previous layer

and connects it to every single neuron it has. In the case of classification, a softmax layer is added

at the end of this network, where the number of neurons is equal to the number of classes. Finally,

the weights of a CNN are learned using back-propagation techniques.

Usually, deep CNNs perform well with sufficient training data. However, they may lead to

over-fitting problems for applications with limited training images. One possible solution is to

transfer knowledge to CNNs (pre-trained on other domains) with very large sets of training images.

Possible knowledge transfer solutions include fine-tuning the network on the new training images

through back-propagation or feeding the images to pre-trained CNNs for feature generation. In the

case of the latter, these extracted features can be used to train an external classifier (e.g., SVM). For the

purpose of our study, we took the output of the hidden fully connected layer (before the softmax layer)

of the VGG16 CNN as the feature descriptor for the training and test images (Figure 3).
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The VGG16 CNN is a 16-layer network proposed by the VGG team in the ILSVRC 2014

competition [38]. This network is mainly composed of 13 convolutional layers, 5 pooling layers,

and 3 fully connected layers. The network was trained on 1.2 million RGB images of 224 × 224 pixel

size belonging to 1000 classes related to general images such as beaches, dogs, cats, cars, shopping

carts, minivans, etc., and this auxiliary domain is completely different from the UAV datasets used in

our experiments. The image regions identified by the Mean-shift algorithm were first resized to be of

size 224 × 224 pixels, and they were then fed into the pre-trained CNN, yielding features of dimension

4096, as shown in Figure 3.

 

Figure 3. Overview of the architecture of the VGG-16 pre-trained CNN and its use for feature extraction.

ReLU: rectified linear unit.

2.3. Region Classification with a Linear SVM

During this step, we went through all regions in the image and checked if they represented a car.

To do this, we extracted a window surrounding the concerned region and passed it to a pre-trained

CNN for feature extraction. Next, the feature descriptor was classified as either a “car” or “no-car”

using an SVM classifier. This last step was trained on a collection of image samples for both classes.

The set of positive samples was manually annotated in the training images, while the set of negative

samples was randomly selected from the remaining areas of the training images.

The window surrounding the concerned region could be defined in two ways: (1) as the bounding

box of the region, or (2) as a window centered at the centroid of the region with a given size.

By inspecting the regions in Figure 4a, we could clearly see that for many small regions that represented

parts of the car (like the roof or the front windshield), taking the bounding box may not have contained

sufficient car features for high quality detection. The second option should yield better results.

Furthermore, cars in images can have any direction; thus, if rectangular windows are used,

several window angles must be inspected. This significantly increases computational costs; however,

in practice it was found that a square window of a reasonable size could capture features from a car

in any direction sufficiently for successful detection. The size of this window must be neither too

small nor too large: if the region is part of a car and the window size is too small, then not enough car

features are captured and therefore miss detection. If the region is not part of car and the window size

is too large, there is a risk of including parts of close-by cars and increasing false alarms. Thus, care

should be taken to set this parameter to a suitable value, based on a sensitivity analysis experiment.
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(a) 

 
(b) 

Figure 4. A small region can be any part of a car, like the roof or the windshield. (a) Examples of true

positives; and (b) examples of false positives.

2.4. Fine-Tuning the Detection Result

The result of Step 3 was a binary map showing all regions that were classified as car regions

(Figure 5b). In this last fine-tuning step, we cleaned up the final map by applying three extra

operations: (1) applying a morphological dilation operation on the detection map to smooth out region

boundaries and merge close-by regions; (2) filling holes that may have appeared in detected regions;

and (3) inspecting small isolated regions to improve the detection of isolated cars and potentially

reduce false alarms.

As observed in Figure 5d, the results show that the method achieved a high true positive (TP)

rate; however, there was also a relatively high false positive (FP) rate. This was due to some small

isolated regions of the image containing car-like signatures. First, it was noted that cars were usually

parked in groups close to each other, and most regions detected as cars were next to each other. Hence,

such regions merged into larger regions in the final mask, and only a few isolated regions remained

spread across the image. Some examples of these small isolated regions are shown in Figure 6, where

it is clear that some of them indicate a real parked car in an isolated area, and that there were many

false positives. To remove some of these false positives, we propose some further analysis.

Our basic idea was to use small rectangular sliding windows around each of these isolated regions

and pick the rectangular window that provided the highest detection score given by the SVM classifier.

A total of six rectangular sliding windows were checked: three horizontal and three vertical (Figure 7),

which used one of the wrongly detected regions shown in Figure 6 as an example. This example

contained what looked like a motor bike parked in the street. As cars are rectangular in shape, using

horizontal and vertical rectangular windows should further fine-tune the location of the car in isolated

regions which do contain cars. For regions that do not contain a car (i.e., false positives), using such

windows may break the car-like signature and remove the false positive.

Finally, to estimate the number of cars in an UAV image, we followed the approaches given

in References [7,9], where the total area A of each detected region in the final map was divided by

the average car size Savg; i.e., number of cars = round (A/Savg). More details about the method of

assessment are given in Section 3.1.
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(a) (b) 

(c) (d) 

Figure 5. Detection results of Test Image 3. (a) Original image; (b) positively classified regions;

(c) detection mask results after morphological operation; and (d) detection mask superimposed on image.

 

Figure 6. Samples of small isolated regions where some are isolated parked cars (true positive) while

others are false positives.

 
(a) (b) (c)

Figure 7. Six rectangular sliding windows were further inspected for each small isolated window.

(a) The small isolated positive region; (b) vertical sliding windows; and (c) horizontal sliding windows.
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3. Results

3.1. Dataset Description and Experiment Setup

To evaluate the effectiveness of the proposed car detection method, we used a set of real images

acquired by a UAV equipped with imaging sensors spanning the visible range. Nadir acquisitions

were performed with a camera (Canon EOS 550D), characterized by a CMOS APS-C sensor with

18 megapixels. The images were acquired over the Faculty of Science, University of Trento, Trento,

Italy, on 3 October 2011, at 12:00 p.m. The images were characterized by three channels (RGB) with

8 bits of radiometric resolution and a spatial resolution of 2 cm ground sample distance (GSD).

As per Reference [9], we used the same images as training and testing sets to be able to compare

our results. A total of eight images were selected: three for training and five for testing. The training

images are shown in Figure 8 with the car locations annotated with colored boxes.

A total of 136 positive (car) training images (Figure 9a) were detected from these training images

by including the annotated patches. In addition, 1864 negative (no-car) images (Figure 9b) were

extracted from random locations in the remaining background areas. The size of the training patches

was set to be equal to the average bounding boxes of the annotated cars. To increase the number of

positive training images, we augmented the data by flipping the car images horizontally and vertically.

This had the effect of multiplying the number of positive training images by three and allowed an

increase in the generalization ability of the network.

  

(a) (b)

 

(c)

Figure 8. Training images (a–c) with a total of 136 cars annotated. Training patches for the “no car”

class were selected randomly from the remaining background.
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(a) (b) 

−

Figure 9. Training samples images collected: (a) 136 car samples; and (b) 1863 no car samples.

For testing purposes, five images (Figure 10) were used to test the robustness of the detection

technique. Two images representing a large number of cars (Test Images 1 and 2) were of large parking

lots with 56 and 31 cars, respectively; two images (Test Images 3 and 4) representing a medium number

of cars were two standard urban areas with 19 and 16 cars, respectively; and Test Image 5 had only

five cars to assess the method in the presence of a small number of isolated cars.

In Step 1, each test image was over-segmented into homogenous regions using the Mean-shift

algorithm. The minimum region size used to run the Mean-shift algorithm was set to a tenth of the

average car size. This was reasonable, given that we did not expect one car to be segmented to more

than 10 regions. As the extracted regions have variable sizes, and given that the known average car

appearing in our test images was approximately 200 × 90 pixels, there was no point in inspecting

regions larger than 200 × 200 pixels. Therefore, all regions that had a bounding box whose width

or length was greater than 200 were eliminated beforehand. For the remaining regions within the

size limitations, a window with a size of 160 × 160 pixels was grabbed around each region (then

normalized to 224 × 224 pixels) and fed to CNN for feature extraction. Step 2 of the algorithm was to

classify each grabbed window using SVM with a linear kernel. The related regularization parameter C

was estimate using a three-fold cross-validation technique within the range [10−3, 103].

The detection map was constructed by simply setting all pixels that belong to the regions that

are classified as “car” to 1. All other pixels that belong to regions that are classified as “no-car” are

set to 0. Obviously, the neighboring regions which are set to 1 will merge into one large region in

the detection map. We then apply morphological dilation with a circular structure element of size

15 pixels. We found that using a larger size for the structure element increased the areas to points

where it overestimated the final car count. Finally, a hole filling algorithm was applied, and each small

isolated region was further inspected using rectangular sliding windows (as explained in Section 2.4).
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Figure 10. Detection results of the proposed algorithm for Test Images 1–5 together with their ground

truths. Particularly difficult cars that were detected by the proposed algorithm are highlighted with

yellow boxes.

3.2. Assessment Method

To assess the capability of our methodology for correct identification, we considered the accuracy

measures of the producers and users, defined as follows:
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Pacc =
TP

N
(3)

Uacc =
TP

TP + FP
(4)

where TP are the true positives (i.e., the number of cars correctly identified), FP are the false positives

(i.e., the number of cars incorrectly identified), and N is the real number of cars present in the image.

To compute these values, we needed a method to estimate the number of cars in the detection map.

As mentioned previously, this was accomplished by dividing the total area of every detected region by

the average car size:

Ni = round

(

Ai

Savg

)

; i : 1 . . . Rn (5)

where Rn is the total number of detected regions, Ai is the area in pixels for each region, Savg is the

average car size, and Ni is the estimated number of cars in that region. However, for small isolated

cars, Ni may be rounded to zero, in which case we simply set Ni = Ni + 1. As for the average car size

in pixels Savg, given that the UAV images at hand have a resolution of 2 cm GSD, then Savg can be

estimated as 200 × 90 pixels (which corresponds to an average real car size of 400 cm × 180 cm).

Finally, the FPi value for each region was computed as the difference between the number Ni of

detected cars in that region and the true number of cars present in the same region. The total FP for

the whole image is computed as:

FP =
Rn

∑
i=1

FPi (6)

3.3. Detection Results

Figure 10 shows the final detection map for all test images, as well as the estimated number of

cars for each detection area, and Table 1 reports the quantitative detection results. We can also report

that our method even detected cars that were hidden by shadows or partially occluded by buildings or

trees that had not been initially included in the ground truth by human observers due to their high

difficulty. These newly detected cars are highlighted by the yellow boxes in Figure 10. In particular,

the extra cars that are present in the test images are as follows: five extra cars in Image 1, one extra car

in Image 4, and two extra cars in Image 5. Thus, the new number of cars present in Images 1–5 are

now 56, 31, 19, 16, and 5, respectively. The accuracy results shown in Table 1 were calculated based on

the new number of cars present.

Table 1. Detection results for the test images. FP: false positive; TP: true positive.

Test Image Size Regions Within Range Cars Present TP FP Pacc Uacc Acc

Image 1 2626 × 4680 4666 4006 56 47 4 83.9% 92.2% 88.0%
Image 2 2424 × 3896 3114 2483 31 26 10 83.9% 72.2% 78.0%
Image 3 3456 × 5184 4623 1282 19 14 7 73.7% 66.7% 70.2%
Image 4 3456 × 5184 6473 2165 16 13 0 81.3% 100.0% 90.6%
Image 5 3456 × 5184 6666 1994 5 4 2 80.0% 66.7% 73.3%

4. Discussions

4.1. Sensitivity Analysis with Respect to the Window Size

As previously mentioned, the size of the window fed to the pre-trained CNN must be carefully

selected. In this section, we conducted an experiment to analyze the sensitivity of the detection results

with respect to the window size. Table 2 presents the results of the sensitivity analysis for one test

image using different window sizes. From the sensitivity analysis experiment, we concluded that

a window size of 160 × 160 pixels (i.e., 80% of the average car size—200 × 200 pixels) provided the

best total accuracy (93.6%).
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Table 2. Example of sensitivity analysis with respect to the window size parameter for Test Image 2.

Window Size in Pixels % of Average Car Size TP FP Pacc Uacc Acc Cars Present

60 × 60 30% 18 2 60.0% 90.0% 75.0% 30
80 × 80 40% 24 1 80.0% 96.0% 88.0% 30

100 × 100 50% 25 1 83.3% 96.2% 89.7% 30
120 × 120 60% 26 3 86.7% 89.7% 88.2% 30
140 × 140 70% 27 3 90.0% 90.0% 90.0% 30
160 × 160 80% 29 3 96.7% 90.6% 93.6% 30
180 × 180 90% 26 5 86.7% 83.9% 85.3% 30
200 × 200 100% 27 8 90.0% 77.1% 83.6% 30

4.2. Comparison with State-of-the-Art

Table 3 presents a comparison of our results to a recent method based on handcrafted features

presented in Reference [9]. This is a method which aims at detecting cars and estimating their number

under different conditions, including shadows, partial occlusions, and different orientations. First,

note that we compared our method to the scenario in Reference [9] that did not include pre-screening

of the image using GIS software to remove all non-asphalt regions (where cars are not expected to

be present). For the set of scenarios that did not include pre-screening, we compared our results to

the one based on the normalized cross-correlation similarity measure, as it produced the best result.

Additionally, for a fair comparison, we did not include the extra cars that were detected by our method

but were not included in the ground truth shared by Reference [9].

Table 3. Comparison to state-of-the art methods.

Proposed Method Method in [9]

Test
Image

Size Cars Present TP FP Acc Time (s) Cars Present TP FP Acc

Image 1 2626 × 4680 51 43 4 87.9% 1592 51 35 10 73.2%
Image 2 2424 × 3896 31 26 10 78.0% 815 31 20 15 60.8%
Image 3 3456 × 5184 19 14 7 70.2% 416 19 16 30 59.5%
Image 4 3456 × 5184 15 12 0 90.0% 726 15 14 17 69.2%
Image 5 3456 × 5184 3 2 2 58.3% 657 3 2 39 35.8%

Total 119 97 23 119 87 111

Our proposed method was not only superior in terms of detection accuracy, but was also much

faster. The method in Reference [9] was reported to take an average of 3.9 h to process each test

image, compared to the times shown in Table 3, which shows computational times between 11–30 min,

depending on the complexity of image.

5. Conclusions

In our study, we developed an efficient method for the detection and counting of cars in UAV

images, which has the following novel features: (1) reducing the search space significantly compared

to the sliding-window approach by using the Mean-shift algorithm; and (2) the use of deep learning

approaches to extract highly descriptive features without the need for huge amounts of training data

through the use of pre-trained deep CNN combined with a linear SVM classifier. The experimental

results on five UAV images show that our method outperformed state-of-the-art methods, both in terms

of accuracy and computational time. However, despite the high capability of the method to detect car

presence and numbers, it still has a high FP rate. Thus, future work is required to investigate ways to

remove these false positives, perhaps through a “detection by parts” method or others. Another future

direction is to investigate how to detect each car separately to increase accuracy in the car count.
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