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Deep learning approach 
towards accurate state of charge 
estimation for lithium‑ion batteries 
using self‑supervised transformer 
model
M. A. Hannan1*, D. N. T. How1*, M. S. Hossain Lipu2, M. Mansor1, Pin Jern Ker3, Z. Y. Dong4, 
K. S. M. Sahari5, S. K. Tiong3, K. M. Muttaqi6, T. M. Indra Mahlia3,7 & F. Blaabjerg8

Accurate state of charge (SOC) estimation of lithium‑ion (Li‑ion) batteries is crucial in prolonging 
cell lifespan and ensuring its safe operation for electric vehicle applications. In this article, we 
propose the deep learning‑based transformer model trained with self‑supervised learning (SSL) for 
end‑to‑end SOC estimation without the requirements of feature engineering or adaptive filtering. 
We demonstrate that with the SSL framework, the proposed deep learning transformer model 
achieves the lowest root‑mean‑square‑error (RMSE) of 0.90% and a mean‑absolute‑error (MAE) of 
0.44% at constant ambient temperature, and RMSE of 1.19% and a MAE of 0.7% at varying ambient 
temperature. With SSL, the proposed model can be trained with as few as 5 epochs using only 20% 
of the total training data and still achieves less than 1.9% RMSE on the test data. Finally, we also 
demonstrate that the learning weights during the SSL training can be transferred to a new Li‑ion cell 
with different chemistry and still achieve on‑par performance compared to the models trained from 
scratch on the new cell.

�e transportation and electricity production sectors account for more than 50% of total green-house gas 
 emissions1 as both rely on fossil fuels as the energy source. Promising solutions include the electri�cation of the 
transportation industry and the decarbonization of electrical  grids2,3. However, the mass adoption of electric 
vehicles and renewable energy remains low due to the high adoption cost which can be attributed to the Li-ion 
 batteries4. A major challenge in Li-ion batteries research is the state of charge (SOC) estimation which signi�es 
the amount of charge le� in a Li-ion battery  cell5. Accurate SOC estimation allows the Li-ion battery cells to be 
used to its maximum potential before disposal, resulting in tremendous cost savings in the manufacturing and 
adoption  costs6. Nevertheless, it is a notoriously hard to quantify SOC as it cannot be practically measured by 
sensors outside laboratory environment with existing sensor  technologies7.

Two most common approaches used in SOC estimation are the model-based and data-driven  approaches8. 
Model-based approach leverages on an in-depth understanding of domain knowledge such as the internal chemi-
cal reaction in the cell, electrical properties of the components used to model them and complex mathemati-
cal equations to model the  SOC9. Prominent model-based techniques include the Sliding Mode  Observer10, 
Luenberger  Observer11, Kalman  �lters12 Electrochemical  Model13, Equivalent Circuit  Model14, Electrochemical 
Impedance  Model15. While model-based approach can result in reliable and accurate models, it requires an 
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extensive domain knowledge, rigorous feature engineering, and relatively long development  time16. Apart from 
that, model-based approach also does not scale well across battery cells di�erent chemistry. As a result, altera-
tions in cell chemistry requires a re-development of the  model17. Additionally, model-based approach also does 
not account for anomalies in cells such as manufacturing inconsistencies, unpredictable operating conditions, 
cell degradation, and so  forth18. Due to these shortcomings, more researchers are shi�ing their attention to 
using the data-driven approach for SOC estimation. In this approach, the SOC is directly modeled from observ-
able signals such as voltage, current and temperature of the Li-ion battery cell sampled over diverse operating 
conditions across di�erent cell chemistry and  manufacturers19. �ere are various methods in data-driven SOC 
estimation such as arti�cial neural  network20, support vector  machine21, extreme learning  machine22 Gaussian 
process  regression23, wavelet neural  network24, nonlinear autoregressive with exogenous input neural  network25, 
optimized neural  network26 and fuzzy  logic27 to name a few. One method that has been gaining traction lately 
is the use of a data-driven technique known as deep learning (DL)28. DL has great potential for SOC estimation 
due to its powerful capability to learn any function given the right data according to the universal approxima-
tion  theorem29. In essence, DL can be used to directly approximate the relationship between the measurable cell 
signals (voltage, current, temperature) and the SOC with no additional processing such as using adaptive  �lters30. 
�is eliminates the needs of manual feature engineering which can take a considerable amount of time and 
expert domain knowledge and still produce accurate SOC estimation  results31. Pioneering works by  authors32,33 
introduce long short-term memory (LSTM) and deep neural network DNN to directly estimate SOC from cell 
voltage, current and temperature with no additional �lters. �e proposed model achieved lowest MAE of 2.17% 
over a varying ambient temperature dataset. Authors  in34,35 proposed the utilization of gated recurrent unit (GRU) 
model to directly estimate SOC over a wide ambient temperature range with a RMSE of 3.5% under untrained 
temperature. �ere are also authors who proposed deep convolutional models such as  in36,37 with approximately 
less than 3% MAE on untrained data. Nonetheless, there are works on hybridizing convolutional and recurrent 
models such  as35,38 with under 2% RMSE on varying ambient temperature.

However, there are several research gaps with the existing DL methods for SOC estimation. �ese research 
gaps are the primary motivations of the proposal in this article. Firstly, all the cited works uses the supervised 
learning (SL) scheme to train the models which is known to require massive amount of data to  accomplish39. 
Even in the scenarios where adequate data is available the training time for DL models typically takes many 
hours or days to  complete32. Secondly, the models that are trained on one cell chemistry do not apply to other 
cell chemistry. Even though preliminary work indicates that transfer learning is  possible40, further tests are still 
required to verify its accuracy if it applies to more cells with di�ering chemistry. In most cases a model that is 
trained on one Li-ion battery cell data does not generalize well across another cell and may require re-training 
of the model from scratch. �irdly, most DL models use the recurrent DL architecture which may prove to 
work well with sequence data such as the SOC but are hard and slow to  train41. Recurrent models also do not 
leverage on the parallel GPU computation that could signi�cantly improve training  time25. Lastly, even though 
recurrent architectures such as the LSTM or GRU can handle long sequences well, they are still susceptible to 
vanishing gradient for longer  sequences42. Due to these limitations, recurrent models are generally superseded by 
another architecture known as the Transformer in many domains such as computer  vision43 and natural language 
 processing44,45. In short, the primary motivations for the proposal in this article are (i) shortcomings of the SL 
training framework, (ii) Inadequate validation and testing of transfer learning capabilities in DL models, (iii) 
shortcomings of the DL recurrent architectures and (iv) Emergence and success of the Transformer DL model 
in other domains.

In this article, we introduce a new DL architecture for SOC estimation known as the Transformer. Apart from 
that, we propose a training framework that leverages on self-supervised learning (SSL)39,46 and make it possible 
to train the Transformer on scarce amounts of Li-ion data in a short time and achieve higher estimation accuracy 
compared to models trained with conventional fully-supervised method. With the proposed framework, we 
demonstrate that the learned parameters from one cell can be transferred to another by �ne-tuning the model 
on little data with very short training time (approximately 30 min on a GPU). �is proposed framework also 
incorporates various recent DL techniques such as using Ranger optimizer with learning rate �nder, time series 
data augmentation, and Log-Cosh loss function to boost the accuracy of the Transformer. Finally, we conclude 
the study by comparing and validating the performance of our proposed model to other recent DL architectures 
for SOC estimation. �e key contributions of this study are as follows:

• We introduce the transformer DL architecture for end-to-end SOC estimation with no feature engineering 
or adaptive �ltering.

• We propose the SSL training framework to train the proposed architecture in a very short amount of time 
and achieves improved estimation accuracy compared to conventional training framework.

• �e proposed model’s parameters are transferable to a di�erent cell type and requires only �ve training epochs 
to achieve RMSE ≤ 2.5%.

• �e SSL training framework enables the proposed model to be re-trained with as few as 20% of the total 
training data and still achieve lower error compared to the models that do not use the SSL framework.

• We evaluate and validate the performance of the proposed model to other state-of-the-art DL architectures 
for SOC estimation.

Results
In the �rst two subsections, we highlight the estimation accuracy of the proposed model trained at room tem-
perature and varying ambient temperatures and compare the estimation robustness against other DL models. In 
the subsequent sections, we study the in�uence of pre-training on the model and show that the pre-trained model 
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outperforms the non-pre-trained models in estimation accuracy and convergence time. Next, we highlight that 
the learned weights of the pre-trained model can be transferred to perform estimation on a di�erent cell with 
di�erent chemistry with short re-training or �ne-tuning. In all experiments, the proposed Transformer model 
was benchmarked against other widely used DL models for SOC estimation of various architecture types. �e 
hyperparameter combinations of all comparison models were chosen to be as close as possible to the original 
publication. If that is infeasible, we adopted the hyperparameter con�gurations that is widely accepted or used 
and has proven to work well on many occasions. All common hyperparameters such as sliding window value, 
input output units, learning rate, batch size, training epochs were held constant. All comparison models were 
trained with the SL training framework and only the proposed Transformer model was trained with the SSL 
training framework under the same battery materials and EV drive cycle dataset.

Estimation accuracy under constant ambient temperature. In this section, we demonstrate the 
estimation accuracy and e�cacy of the proposed model based on data sampled at room temperature. �e error 
metrics of all models are tabulated in Table 1, sorted in ascending order of the test error. We found that the pro-
posed model performance on SOC estimation accuracy of the RMSE in terms of training, validation and testing 
are 1.1087%, 0.8661%, 0.9056% and the MAE are 0.3289%, 0.4059%, and 0.4459%, respectively. It is observed 
that the proposed model outperforms all other models on the test dataset of RMSE and MAE tabulated in 
Table 1. For comparison, a baseline Transformer model that was trained using conventional training framework 
is included. Results indicate that the baseline model only scores abysmally compared to other models except the 
DNN, suggesting that the training framework plays a pivotal role in the robust performance of the proposed 
model. We observe that the recurrent models (GRU and LSTM) outperformed their convolutional and hybrid 
counterpart, which is not surprising as the recurrent models are speci�cally designed to handle sequence data 
well. Both the GRU and LSTM were con�gured to use single hidden layer with 100 neurons. Despite the com-
promise in estimation accuracy, convolutional models may be advantageous in training complexity compared 
to the recurrent models, as they are relatively easier to train and could better utilize GPU parallelization. �e 
Resnet model is based on the Residual Network  architecture47 adapted to work sequential  data48. Inception Time 
is based on the implementation  in49 which has shown superior benchmark performance in sequential data. 
ResCNN consist of convolutional neural network with Residual blocks as inputs. FCN consist of only convolu-
tion operation with no pooling operations has shown promising performance  in50. GRU-FCN and LSTM-FCN 
are the hybrid models combining recurrent and convolutional models to obtain the advantages of both. �e 
estimation plot on the test dataset consisting of US06, LS92 and UDDS drive cycle is shown in Fig. 1.

Estimation accuracy under varying ambient temperatures. In this subsection, we compare the esti-
mation accuracy of the proposed model to other widely used DL models of various architectures. Among all DL 
architectures compared in the study, the proposed transformer model achieved the lowest RMSE of 1.1075%, 
1.3139% and 1.1914% and MAE of 0.4441%, 0.5680% and 0.6502% on the test drive cycles outperforming even 
the recurrent models which has been widely used for SOC estimation as shown in Table 2. We also note that the 
convolutional models such as the  Resnet40 and the Inception  Time51 also outperformed the conventional GRU 
41 and  LSTM52 model. �e baseline Transformer model that is not trained with the proposed training frame-
work scores poorly along with the feedforward DNN. Figure 2 and Fig. 3 illustrate the SOC estimation plots of 
the proposed model across all test drive cycles at above and below zero ◦C ambient temperature, respectively. 
Traditionally, SOC estimation under low ambient temperature settings are extremely challenging due to the dif-
ference in the dynamics of chemical reactions in the  cell53. However, observation in the estimated SOC by the 
proposed Transformer model shows promising results indicating its robustness in estimating SOC at extreme 
cold temperatures up to − 20 °C.

Table 1.  SOC estimation accuracy comparison on various DL models on the train, validation, and test dataset 
at constant ambient temperature.

Name Arch. type

Train error (%) Valid. error (%) Test error (%)

RMSE MAE RMSE MAE RMSE MAE

Proposed Transformer 1.1087 0.3289 0.8661 0.4059 0.9056 0.4459

GRU Recurrent 1.5028 0.4461 0.9852 0.3624 1.0686 0.4877

LSTM Recurrent 1.6951 0.5404 1.0699 0.4370 1.1381 0.5341

Resnet Convolutional 1.5523 0.5647 1.1395 0.5924 1.3349 0.7859

ResCNN Convolutional 1.6121 0.6134 1.1879 0.6548 1.3454 0.8031

InceptionTime Convolutional 1.8177 0.7538 1.3079 0.7259 1.4404 0.8202

GRU-FCN Hybrid 1.7138 0.5978 1.3405 0.6939 1.4477 0.8228

FCN Convolutional 1.8635 0.7685 1.2912 0.6732 1.5555 0.9642

LSTM-FCN Hybrid 1.7619 0.7611 1.4123 0.8218 1.7771 1.1954

Baseline Transformer 3.8265 2.2195 2.4050 1.2735 3.6116 2.7453

DNN Feedforward 11.0576 8.6442 10.4213 8.5476 10.1347 8.2181
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Influence of pre‑training. Size of training data. In this section, we investigate the in�uence of unsuper-
vised pre-training on the amount of required data to train the proposed model with a low error rate. We divided 
the experiment into three scenarios. In the �rst scenario, we pre-trained and re-trained/�ne-tuned the model 
with all (100%) available training data. �e second and third scenarios were with 50% and 20% of the training 
data, respectively. In all scenarios, we noted the training time and error metrics. All training in this section was 
only performed for only 5 epochs to illustrate the short amount of training time required to achieve low error 
rates. �ere were three modes of training used in this setup namely the pre-training (PT), re-training (RT), 
�ne-tuning (FT), and full training (T). In PT, the model was trained on unlabeled dataset with unsupervised 
learning. In RT, the mode was trained on a labeled dataset with supervised learning. In FT, the all the weights of 
the model were frozen except for the last layer and trained with supervised learning. In T, the model was trained 
from scratch with supervised learning.

Table 3 shows the results obtained. We observe that when we pre-trained and re-trained the model on all 
available data (row 1), the error metric is lower compared to the model that was not pre-trained (row 3). Both 
took approximately the same duration of training time. We observe that in the event where we pre-trained and 
�ne-tuned the model (row 2), even though the model only updates the weights of the �nal layer, it still scores 
a respectable 2.10% test RMSE with a reduction of about 10 min training time compared to the previous two 
modes. �e e�ect of pre-training is even more pronounced in the second scenario where we only re-trained and 
�ne-tuned the models on 20% of train data. At approximately the same amount of training time, the pre-trained 
model (row 7) scores lower on the non-pre-trained model (row 9). In this section we show that pre-training 
helps in reducing the test error with approximately same amount of training time especially when there is very 
little training data.

Transfer learning. In this section we investigate the role of unsupervised pre-training in helping the model 
to generalize its estimation capacity across di�erent cell chemistry. We pre-trained the model on the LG 18650 
 LiNiMnCoO2 cell and tested the model’s estimation capacity on a Panasonic 18650  LiNiCoAlO2 cell, similar to 
the cells used in some Tesla vehicles. Table 4 shows the performance of the proposed model with no changes in 
the model architecture.

Figure 1.  SOC estimation at room temperature. (a) LA92 drive cycle at 25 °C. (b) UDDS drive cycle at 25 °C. 
(c) US06 drive cycle at 25 °C.

Table 2.  Cross-comparison of the SOC estimation accuracy on the train, validation, and test dataset at varying 
ambient temperatures.

Name Arch. type

Train error (%) Valid. error (%) Test error (%)

RMSE MAE RMSE MAE RMSE MAE

Proposed Transformer 1.1075 0.4441 1.3139 0.5680 1.1914 0.6502

Resnet Convolutional 1.2510 0.5077 1.5736 0.8058 1.3636 0.7771

InceptionTime Convolutional 1.2112 0.4967 1.2573 0.5985 1.3792 0.8152

GRU Recurrent 1.4183 0.3505 1.5989 0.4901 1.3856 0.5847

LSTM Recurrent 1.5549 0.5681 1.5121 0.5961 1.4498 0.7300

ResCNN Convolutional 1.5803 0.7712 1.8668 0.9860 1.5860 0.9048

GRU-FCN Hybrid 1.5903 0.7695 2.0070 0.9893 1.6215 0.9269

FCN Convolutional 1.7358 0.8879 2.1282 1.1033 1.7808 1.0810

LSTM-FCN Hybrid 1.9962 1.0561 2.2292 1.1804 1.9248 1.1552

Baseline Transformer 3.7466 2.4466 4.4805 3.4827 3.6958 2.8129

DNN Feedforward 8.9848 6.8349 8.1916 6.1570 7.7789 6.1567
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We divided the experiment into four scenarios. In the �rst scenario, we pre-trained and re-trained/�ne-tuned 
the model with all (100%) available training data. �e second and third scenarios were with 50% and 20% of 
the training data, respectively. In the fourth scenario we pre-trained and re-trained the model on the same cell 
type with all available data shown in the last two rows of Table 4. Unsurprisingly, the best performing mode is 
when the model pre-trained and re-trained on the Panasonic cell and the worst performing model is when the 
model was pre-trained and re-trained on the LG cell. However, when the model was pre-trained on the LG cell 
and re-trained on the Panasonic cell, the test error rate is almost on par with the best performing model. �is 
suggests that the pre-training helps in downstream re-training despite the di�erence in cell type. In the scenario 
when the model was trained on less data (20% of the training data), we observe that without pre-training (row 
9) the model yields high test errors. In rows 7 and 8, we observe that the error rate is reduced by pre-training 
the model, even on a di�erent cell. �is once again is evidence that pre-training contributes to minimizing the 
test set error regardless of the cell type. Supplementary Fig. 2 illustrates the estimation of the worst performing 
mode. Despite being trained on a di�erent cell type, the model still can capture the trend of the ground truth 
SOC value. With pre-training on the LG cell and re-training on the Panasonic cell, model can estimate the SOC 
more accurately as shown in Fig. 4.

In this section, we showed that the weights of the model that is learned during the unsupervised pre-training 
phase can be reused in re-training or �ne-tuning across di�erent cell types. �is opens the possibilities of transfer 
learning which is extremely helpful especially when data and computational resource is scarce. On a side note, 
all re-training and �ne-tuning in this and the previous section was only performed for 5 epochs to showcase the 
learning capability of the model despite a small training epoch. Re-training and �ne-tuning the model for more 
epochs will likely yield better performance.

Discussion
In this work, a Transformer-based SOC estimation model in combination with the SSL framework was developed 
to address the challenges on Li-ion cell data availability, transfer learning, training speed and model accuracy. 
We show that the proposed model can achieve the lowest RMSE and MAE on the test set at various ambient 

Figure 2.  SOC estimation at above zero ambient temperatures. (a) LA92 drive cycle at 10 °C. (b) UDDS drive 
cycle at 10 °C. (c) US06 drive cycle at 10 °C. (d) LA92 drive cycle at 25 °C. (e) UDDS drive cycle at 25 °C. (f) 
US06 drive cycle at 25 °C. (g) LA92 drive cycle at 40 °C. (h) UDDS drive cycle at 40 °C. (i) US06 drive cycle at 
40 °C.
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temperature settings. �e proposed technique also enables the Transformer model to be trained in a relatively 
short amount of time. �e �rst contribution of this work is the introduction of a novel Transformer DL archi-
tecture that is capable of accurately estimating the SOC of a Li-ion cell under constant and varying ambient 
temperatures. Based on the provided dataset, the model can accurately estimate the SOC up to RMSE ≤ 1.19% 
and MAE ≤ 0.65% (at varying ambient temperatures) and RMSE ≤ 0.9% and MAE ≤ 0.44% (at constant ambient 
temperature) with no feature engineering or any type of �ltering. �is also shows that the transformer can self-
learn the model parameters and map the voltage, current and temperature input data directly to SOC.

�e second contribution is the self-supervised learning (SSL) training scheme to e�ectively train the proposed 
model. Even though the conventional supervised learning (SL) scheme can train the proposed model up to a 

Figure 3.  SOC estimation at below zero ambient temperatures. (a) LA92 drive cycle at 0 °C. (b) UDDS drive 
cycle at 0 °C. (c) US06 drive cycle at 0 °C. (d) LA92 drive cycle at − 10 °C. (e) UDDS drive cycle at − 10 °C. (f) 
US06 drive cycle at − 10 °C. (g) LA92 drive cycle at − 20 °C. (h) UDDS drive cycle at − 20 °C. (i) US06 drive 
cycle at − 20 °C.

Table 3.  �e in�uence of pre-training on the training time, training data amount, and cross-dataset 
generalization. *PT Pre-training, RT Re-training, FT Fine-tuning, T Training.

Mode* Train time (mins) Train data (%)

Train error (%) Valid. error (%) Test error (%)

RMSE MAE RMSE MAE RMSE MAE

PT + RT 33.1 100 1.4378 0.7229 1.6207 0.8074 1.4257 0.8384

PT + FT 20.8 100 2.2281 1.4314 2.5211 1.4666 2.1042 1.4907

T 32.0 100 1.6981 0.9980 1.8448 1.1185 1.6367 1.0675

PT + RT 15.3 50 1.4318 0.6980 1.6749 0.9305 1.6578 1.0609

PT + FT 10.0 50 2.4540 1.6110 2.8765 1.7509 2.3893 1.7097

T 15.3 50 2.6117 1.7230 2.5167 1.5975 2.3953 1.7047

PT + RT 6.7 20 1.3072 0.6778 2.7138 1.3145 1.8993 1.1944

PT + FT 5.3 20 2.1391 1.4582 3.0693 1.8374 2.7173 1.9036

T 6.8 20 2.4656 1.5721 2.8898 1.7170 2.5900 1.7833
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reasonably low error (RMSE ≤ 1.63% at varying ambient temperatures), this work highlights that the SSL training 
framework is advantageous in further reduction of error rate (RMSE ≤ 1.42% at varying ambient temperatures) 
at approximately the same amount of training time. �is suggests that the SSL framework proposed to train the 
Transformer contributes to lowering the RMSE.

�e third contribution of this work is to demonstrate that the weights from the encoder layers of the Trans-
former learned using the unsupervised pre-training phase can be readily transferred to another cell type of a 

Table 4.  Cross dataset performance. *PT Pre-training, RT Re-training, FT Fine-tuning, T Training.

Mode* PT dataset RT/FT dataset Train data (%)

Train error (%) Valid. error (%) Test error (%)

RMSE MAE RMSE MAE RMSE MAE

PT + RT LG Panasonic 100 1.3128 0.7948 1.4245 0.8266 2.3558 1.5477

PT + FT LG Panasonic 100 1.9400 1.2514 2.4220 1.4254 3.3119 2.3490

T – Panasonic 100 1.2744 0.8086 1.4597 0.9165 2.7054 2.0383

PT + RT LG Panasonic 50 1.1674 0.6602 1.5817 0.9911 3.0465 2.1906

PT + FT LG Panasonic 50 2.0930 1.3643 2.9021 1.7583 3.8216 2.6578

T – Panasonic 50 1.4121 0.9128 1.8295 1.1583 3.1793 2.3900

PT + RT LG Panasonic 20 1.2377 0.7689 2.6921 2.0752 3.7735 2.8997

PT + FT LG Panasonic 20 1.9597 1.2957 3.4970 2.4140 3.8079 2.6289

T – Panasonic 20 1.5928 1.0598 3.1262 2.0098 4.3440 2.6932

PT + RT LG LG 100 9.4881 8.6845 9.7792 8.9473 11.3084 10.4053

PT + RT Panasonic Panasonic 100 1.0752 0.5757 1.3006 0.7778 2.3462 1.6941

Figure 4.  Estimation plot on the test drive cycles of the Panasonic cell with various training combinations. (a) 
HWFET cycle at 0 °C. (b) US06 cycle at 0 °C. (c) HWFET cycle at 10 °C. (d) US06 cycle at 10 °C. (e) HWFET 
cycle at 25 °C. (f) US06 cycle at 25 °C.



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:19541  | https://doi.org/10.1038/s41598-021-98915-8

www.nature.com/scientificreports/

di�erent chemistry. Additionally, with only �ve epochs of re-training, the model can achieve RMSE ≤ 2.5% on 
the test set. Extending the training time further likely leads to further reduction in RMSE. However, this work 
shows that even with lightweight re-training, the weights transferred from pre-training signi�cantly contribute 
to the short training time with signi�cantly less data. �is opens the possibility of adapting the Transformer 
model to other types of Li-ion cell with only a fraction of the training data.

�e fourth contribution highlights the SSL training framework that enables the proposed model to be re-
trained with as few as 20% of the total training data and still achieve lower error compared to the models that do 
not use the SSL framework. Despite the reduced amount of training data, the model still generalizes well across 
di�erent cell chemistry. �is further accentuates the important role of unsupervised pretraining in allowing the 
model to be more data e�cient.

�e ��h contribution compares and validates the performance of the model against recent state-of-the-art 
DL models on SOC estimation. It is shown that the model clearly outperforms all other models in the RMSE 
and MAE metric on the test dataset. Given the e�cacy of the model in SOC estimation accuracy, transfer learn-
ing capability, data-e�ciency and training speed, the proposed Transformer model and framework is evidently 
advantageous over other DL models.

Methods
Dataset. In this study, we utilized raw data sampled from a brand-new cylindrical 18,650 LiNiMnCoO2 cell 
by LG which was made available by the McMaster University in Hamilton, Ontario,  Canada54. �e speci�cation 
of the cell is given in Supplementary Table 1. �e data was collected by subjecting the battery cell to various EV 
standard drive cycles such as UDDS, HWFET, LA92, US06 at varying ambient temperatures ranging from − 20 
to 40 °C. In addition, to simulate the dynamics of driving conditions, the cell was also subjected to a random 
mix of the standard drive cycles. �e division of train, validation and test dataset used in this study is speci�ed 
in Supplementary Table 3. Figure 5a illustrates a sample plot of the UDDS drive cycle from the test dataset at 
− 20 °C ambient temperature. For DL models to work well, careful consideration is put in preprocessing the raw 
data samples. Firstly, the raw data is normalized into a range of 0 to 1 using Eq. (1).

(1)x̃ =
x − min(x)

max(x) − min(x)

Figure 5.  Data preprocessing pipeline from raw values to positional encoding. (a) Raw data sample plot from 
the UDDS drive cycle at − 20 °C ambient temperature. (b) Input-label pairs constructed by sliding a �x width 
window across the train, validation, and test dataset. (c) Dataset converted into positional encoding to be 
ingested into Transformer.
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Next, the raw data was divided into three separate sets namely train, validation, and test set. �e train set was 
used to train the model, validation set to check the generalization of the model during training and the test set 
was only used to evaluate the model at the end of training. �e division of the train, valid and test set is tabulated 
in Supplementary Table 3.

Using supervised learning requires the dataset to be formatted into input-label pairs. In this study the input 
was the normalized values of voltage, current, and temperature while the label corresponds to the SOC value. 
�e input-label pairs were constructed by running a sliding window across the time axis over the train, valida-
tion, and test set as illustrated Fig. 5. Voltage, current and temperature values that resides in the green window 
corresponds to the input and SOC value that resides in the purple window corresponds to the label. Note that 
the width of the window, k was kept at k = 400 timesteps.

Having massive amounts of data is a crucial component in training the proposed model without which the 
model will fail to generalize  well55. Although the raw data already consists of hundreds of thousands of timesteps, 
it is still insu�cient for the proposed model to work. Hence, the original dataset was augmented in various way 
by injecting random noise (µ = 0, σ = 0.33) onto the training and validation dataset. �e types of noise injected 
includes additive and multiplicative Gaussian noise on the magnitude and random frequency noise generated 
with the wavelet decomposition method. Figure 5b shows a sample of the original and the augmented version 
of the plot.

Transformer model architecture. �e original Transformer proposed  in56 uses the encoder-decoder 
arrangement in the architecture. �e model proposed in this work only adopts the encoder portion and not the 
decoder as detailed  in57 to work better with multivariate time-series data. Figure 6 illustrates the block diagrams 
of the proposed model depending on the training stage which will be detailed more in the next section. Observe 
that in Stage 1 and Stage 2 there are several common blocks namely, input, x positional encoding, encoder stack, 
and linear layer. �e input data to the model consists of the input vector of X = [Vk, Ik, Tk] representing the cell 
voltage, current and temperature at timestep, k. To give the input data contextual information, the input vec-
tor is then added to the positional encoding. �ere are various choices of positional encodings according  to58. 
However, in this work we use the learned positional encoding with the sine and cosine functions as shown in 
Eqs. (2) and (3).

(2)PE(pos,2i) = sin

(

pos

100002i/dmodel

)

Figure 6.  Framework and architecture of the proposed transformer model.
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where pos and i correspond to the position and dimension, respectively. �e reasoning behind using both func-
tions has been previously detailed  in56. Once tagged with the positional encodings, the input vector is passed 
through a series of encoder blocks. Core to the Transformer architecture is the multi-headed self-attention 
(MHSA) module inside the encoder block. �e MHSA module applies self-attention to the input sequence with 
respect to the output sequence. As shown in the �gure, the input to the multi-headed self- attention module 
are the key, K, value, V and query, Q. In the MHSA block, it attempts to map the query to a set key-value pairs 
with respect to an output to produce the attention matrix. �e operation consists of a dot product of the query, 
Q with all keys and a division by dk and applying a so�max function over the result as given in Eq. (4) where dk 
is the dimension of the keys.

Instead of performing the operation in Eq. (4) once to produce a single matrix, the operation can be repeated 
multiple times in parallel and the resulting matrices can be concatenated into a larger matrix as show in Eq. (5).

In this work we use the number of parallel attention heads, h = 16. Each head uses dmodel = 128. Also used in 
the encoder module is the residual connection and residual dropout, which was set at dropout probability, p = 0.1.

�e remaining model hyperparameter values are in Supplementary Table 4. Since Transformer models pro-
cesses the entire sequence and does not account for the order of the input, a positional encoder is required to 
add contextual information. �e positional encoder generates a unique encoding for each data point in the input 
vector and can generalize to longer sequences. Shown in Fig. 5c is the learned positional encoding generated for 
the input dataset in this study which consists of voltage, current and temperature of the Li-ion cell. �e x-axis 
corresponds to the lag window in the input dataset which is used generate the dataset.

Training framework. Instantiating a DL model involves various stochastic processes. To ensure the repro-
ducibility and consistency of the results obtained, all experiments were conducted using a preset seed value. 
Referring to Fig. 6, model training was divided into two distinct phases, namely the unsupervised pre-training 
and downstream �ne-tuning. In the unsupervised pre-training  stage59, unlabeled vectors of input sequence, X 
was used to train the model. Part of each input sequence values were randomly set to 0 by performing element-
wise multiplication with a binary mask, M. �e corrupted input, X˜ was generated with the X˜ = M 0 X. �e 
model was then required to reconstruct the masked input with a modi�ed MSE loss function, as given in Eq. (6).

where x̂ is the predicted input vector values and x is the un-corrupted input vector values. Note that the loss does 
not require the model to reconstruct the entire input sequence but only elements in the mask, M. Upon comple-
tion of the unsupervised pre-training phase, the weights of the model save were transferred for the downstream 
�ne-tuning phase. In this phase, the model was re-trained on a labeled dataset with supervised learning. �e loss 
function, used in this phase is the hyperbolic cosine (Log-cosh) loss function as given in Eq. (7).

where y is the ground truth and yˆ is the predicted value by the model. �e RMSE [Eq. (8)] and MAE [Eq. (9)] 
error metric was used to evaluate all models.

One of the most important hyperparameter used in training DL models is the learning rate, α (LR)60. To 
search for the optimal LR range of values, we employ the use of LR �nder introduced  in61. �e optimal LR 
found with the LR �nder is α = 1e3 as depicted in Supplementary Fig. 2. �e LR value was used in conjunction 
with the Ranger optimizer which is a synergistic combination of Recti�ed Adam (RAdam)62 and Lookahead 
 optimizer63. RAdam has been shown to stabilize the training at the start and Ranger stabilizes the convergence 
in the remaining  steps64. �e Ranger optimizer is con�gured with momentum = 0.95, weight decay = 0.01 and 
epsilon of  1e−6. �is combination has been shown to achieve state-of-the-art results on many  datasets65,66. As 
the training approaches the end, the LR is decayed to a lower value to further facilitate convergence to a global 
 minimum67. �e LR is decayed for each batch as follows,

(3)PE(pos,2i+1) = cos

(

pos

100002i/dmodel

)

(4)Attention(Q,K ,V) = softmax

(

QKT

√
dk

)

V

(5)MultiHead(Q,K ,V) = Concat(Attention1,Attention2 . . .Attentionn)W
O

(6)L
(
x, x̂

)
=

1

|M|

∑
(t,i)

∑
∈M

(
x̂(t, i) − x(t, i)

)2

(7)L
(
y, ŷ

)
=
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i=1
log

(
cosh

(
ŷ − y
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(8)RMSE =

√
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η is the maximum and minimum LR values, and Tcurrent is the number of epochs since the last restart. Figure 
shows the LR values throughout the training. �e training hyperparameter values of the proposed Transformer 
model is concisely summarized in Supplementary Table 5.

Implementation. All models studied were trained on an Ubuntu 20.04.02 LTS Linux operating system 
with Intel Core i7-4790 K CPU at 4.00 GHz clock frequency, 32 GB of RAM and a Nvidia GeForce RTX3090 
graphic processing unit. All DL models were built using the open source Pytorch 1.7.168 framework in tandem 
with the TSAI  library69. �e implementation of the proposed Transformer model and SSL training framework 
was divided into several steps. In Step 1, two distinct datasets from the LG LiNiMnCoO2 cell (Supplementary 
Table 1) and Panasonic LiNoCoAlO2 cell (Supplementary Table 2) were downloaded. Both dataset consist of data 
sampled from respective cells over a diverse range of temperature and drive cycles to simulate dynamic operat-
ing conditions as elaborated in Sect. 3.1. �e dataset was divided into train, validation and test sets as shown in 
Supplementary Table 3. Next the data was normalized into the appropriate range (0 to 1) and pre-processed with 
sliding window of lag, k = 400 timesteps (Fig. 5b). �e sliding window lag value, n is arbitrarily selected to due 
to the limits in our computing resources. Given more computational resources, k can be made larger to allow 
the model to consider more contextual information from the past. At this point the dataset was also augmented 
by injecting additive and multiplicative Gaussian noise. Finally, the dataset is transformed into the positional 
encoding form shown in Fig. 5c. �is is the format of the data that is expected by the transformer model.

In Step 2, the Transformer was con�gured using the appropriate model hyperparameters as detailed in Sup-
plementary Table 4. Careful attention is placed on the dropout hyperparameter value as it largely in�uences the 
degree of over�tting on the dataset. We �nd that the settings of dropout in the feedforward layer to p = 0.2 and 
dropout in the residual layer to p = 0.1 work well in our experiments.

In Step 3, the model is now ready to be trained. As illustrated, the model was trained in two distinct stages in 
the order of unsupervised pretraining and then downstream retraining. In “Estimation accuracy under constant 
ambient temperature”, the model was trained on the LG dataset and was evaluated on its estimation accuracy at 
�xed and variable ambient temperature settings. In “Estimation accuracy under varying ambient temperatures.”, 
the model was trained on the LG dataset and tested on its estimation accuracy on the Panasonic dataset. In this 
step, the training hyperparameter was con�gured as detailed in Supplementary Table 5. Careful attention was 
placed on setting the LR in both training phase as it largely determines the performance and convergence to 
a global minimal. We rely extensively on the use of a LR �nder algorithm which points us to setting the LR, 
α = 1 ×  10–3 for pretraining and α = 2 ×  10–4 for retraining.

In Step 4 the model was evaluated on the SOC estimation accuracy in “Estimation accuracy under constant 
ambient temperature” and the in�uence of pretraining and SSL on the performance of the proposed model in 
“Estimation accuracy under varying ambient temperatures.”. �e performance of the model was quanti�ed with 
the RMSE and MAE performance metrics. Finally, the performance of the model is compared to various widely 
used DL models on similar performance metrics.

Data availability
�e data that support the �ndings of this study are available from the corresponding author upon reasonable 
request.

Code availability
�e so�ware code and the examined cases that validated our method are available from the corresponding author 
upon reasonable request.
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