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Abstract

	 The need for long-term monitoring of individuals in their natural environment has 
initiated the development of a various number of wearable healthcare sensors for a wide ran-
ge of applications: medical monitoring in clinical or home environments, physical activity 
assessment of athletes and recreators, baby monitoring in maternity hospitals and homes etc. 
Neural networks (NN) are data-driven type of modelling. Neural networks  learn from expe-
rience, without knowledge about the model of phenomenon, but knowing the desired „out-
put” data for the training „input” data. The most promising concept of machine learning that 
involves NN is the deep learning (DL) approach. The focus of this review is on approaches of 
DL for physiological activity recognition or human movement analysis purposes, using wea-
rable technologies. This review shows that deep learning techniques are useful tools for heal-
th condition prediction or overall monitoring of data, streamed by wearable systems. Despite 
the considerable progress and wide field of applications, there are still some limitations and 
room for improvement of DL approaches for wearable healthcare systems, which may lead to 
more robust and reliable technology for personalized healthcare.
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Potreba za dugotrajnim praćenjem osoba u njihovom svakodnevnom okruženju 
inicirala je razvoj velikog broja nosivih senzora (integrisanih u delove garderobe) s razli-
čitom primenom, kao što su medicinsko praćenje u kliničkim i kućnim uslovima, procena 
fizičke aktivnosti sportista i rekreativaca, praćenje beba u porodilištima i kućama i sl. 
Neuralne mreže (NM) predstavljaju tip modelovanja zasnovan na velikom broju podata-
ka. Ove mreže uče na osnovu iskustva, bez poznavanja modela fenomena, ali znajući šta 
su željeni „izlazni” podaci za obučavajuće „ulazne” podatke. Koncept mašinskog učenja 
koji najviše obećava i uključuje NM jeste duboko učenje (DU). Fokus ovog preglednog 
rada je u pristupima DU u cilju prepoznavanja fizioloških aktivnosti i analize ljudskih 
pokreta primenom “odevne tehnologije”. Ovaj rad pokazuje da su tehnike dubokog učenja 
korisne alatke za predikciju zdravstvenih stanja ili celokupno praćenje podataka koji se 
šalju sa “odevnih” senzora. Uprkos značajnom napretku i obećavajućoj oblasti primene, i 
dalje postoje ograničenja i prostor za unapređenje pristupa DU za “odevne” zdravstvene 
sisteme koji će dovesti do njihove pouzdane primene i omogućiti personalizovanu zdrav-
stvenu zaštitu.

Ključne reči: 
duboko učenje, 
praćenje ljudske aktivnosti, 
čovek-mašina interfejs, 
odevni senzori, 
pametni senzori, 
multimodalni interfejs

Introduction

In the last two decades, the development of techno-
logy and computer science has enabled the miniaturizati-
on of electronic components and sensors, their integrati-
on into clothes or jewelry for continuous healthcare or 
behavior monitoring and sharing acquired data using 
Internet of Things (IoT) concepts (Figure 1) (1-3). 
Wearable healthcare devices integrate: 1) sensor with ana-
log front-end (conditioning circuitry); 2) microcontroller 
unit for data acquisition; 3) wireless module for data tran-
smission (Bluetooth, ZigBee, GPRS, GSM etc.); and 4) 

battery cell for independent power supply of the device. 
Acquired data could be stored on the local medium (SD 
memory card), the local computer device (laptop, tablet, 

smartphone) or on the secured cloud. Basic non-com-
pliant processing could be performed by AFE and micro-
controller in the wearable device, but more complex data 
science (advanced signal processing, data mining, mac-
hine learning, decision support etc.) are usually perfor-
med offline.

The results of measuring by wearable devices could 
be used for monitoring of vital parameters of the human 
body, improving diagnostics by medical experts, or as a 
feedback information for the user.

The need for long-term monitoring of individuals 
in their natural environment has initiated the develop-
ment of a various number of wearable sensors for a wide 
range of applications: medical monitoring in clinical or 

Sažetak

Figure 1. Wearable system – data acquisition and transmission concept, AFE – analog front-end
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home environments, physical activity assessment of athletes 
and recreators, baby monitoring in maternity hospitals and 
homes (4). Wearable technology combines several discipli-
nes: electronics, biomedical engineering, fashion, smart 
textile and flexible-stretchable-printable electronics, with 
the aim to design unobtrusive sensing devices for human 
activity monitoring (5,6). Also, an emerging trend of simul-
taneous recording using different wearable devices, so-called 
multimodal interfacing, is present in the literature (7). 

Examples of various wearable devices developed by 
research university teams and R&D companies are presented 
in Figure 2. Paradiso et al. (8) produced a Wearable Wellness 
System (WWS) for real-time monitoring of 1-lead ECG (ele-
ctrocardiogram) and respiration rate. Textile ECG electrodes 
are placed on the thorax, and textile piezoresistive sensor 
(breathing sensor) is placed above them in the middle (9). 
Emotiv EPOC® neuroheadset is a wearable 14-channel EEG 
system, validated as brain computer interface (BCI) device 
(10,11), used in the research of event-related potential (ERP) 
studies (12,13) and emotion recognition experiments (14,15). 
Myo armband® is a hand gesture controller that integrates 
eight segments with electromyography (EMG) sensors (each 
segment includes one EMG amplifier with bar electrodes), 
and one segment additionally includes a three-axis accelero-
meter and a three-axis gyroscope (16). This device could be 
used as a substitution of computer mouse, providing indivi-
duals without hand or forearm to make human- computer 

control, but also supports other applications of human- 
machine interface. Djurić-Jovičić et al. (17) developed 
SENSY system of interactive shoes inertial measurement 
units (IMU) that measure force distribution and stride 
parameters in gait analysis. Moodmetric® ring measures 
electro dermal activity of the skin, as an indicator of 
sympathetic activation (18) and the appropriate applica-
tion, estimates the level of physiological and psychologi-
cal arousal (19). 

Mobile eye tracking devices in the form of ordi-
nary glasses frames, with storing and real-time proce-
ssing capabilities, have expanded the research and the 
application field of gaze gestures in daily life environ-
ment like (20).

Development of wearable minimally-invasive 
glucose monitor sensors has made the revolution in con-
tinuous diabetes treatment and significantly improved 
the quality of life of diabetics (21). Such wearable sen-
sors insert a needle in the subcutaneous tissue of the ab-
domen or the arm and measures in real-time (every 
1-5 min) the electrical current of glucose-oxidase reacti-
on, proportional to the glucose concentration. Zheng et 
al. developed a prototype of armband for 24-hour blood 
pressure (BP) monitoring that indirectly measure BP 
using pulse transit time obtained from ECG and photo-
plethysmogram (PPG) (22).

Figure 2. a) Wearable Wellness System from (8), b) Emotiv EPOC® neuroheadset, c) Myo armband® hand gesture 
controller, d) SENSY system for gait analysis (17), e) Moodmetric® ring for stress follow, f) Tobii® eye tracker glasses 
form (20), g) Medtronic® continuous glucose monitor form (21), h) A prototype of wearable 24-hour blood pressure 
device form (22)
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Deep Learning algorithms

Data science is a “concept to unify statistics, data 
analysis, machine learning and their related methods” in or-
der to “understand and analyze actual phenomena” with 
data (23). Machine learning (ML) is an application of artifi-
cial intelligence (AI) that provides systems the ability to au-
tomatically learn and act like humans do, based on expe-
rience rather than based on strictly defined algorithms. An 
individual measurable representation of a phenomenon be-
ing observed is called a feature (24). The performance of ML 
algorithms depends on the features that are chosen, and this 
is the most important step for the various ML algorithms.

One of the growing fields of ML is Deep Learning (DL). 
It  solves the main issue of ML by expressing complex repre-
sentation in terms of other, simpler representations, allowing 
the computer to build complex concept out of simpler con-
cepts (25). Principles of several deep learning algorithms: 
feedforward neural networks (FNN), convolutional neural 
networks (CNN) and recurrent neural networks (RNN) will 
be briefly explained in this chapter. The data processing in 
those artificial neural networks (NN) is very similar to deci-
sion making procedure in biological neural structure. 
Neural networks learn from experience without knowledge 
about the model of phenomenon but knowing what the de-
sired reaction is (“output” data) for the appropriate training 
“input” data. Based on the given input/output data, they de-
velop their own knowledge, which allows them to make 
conclusions during testing on new datasets.

The basic NN unit is a perceptron or artificial neuron, 
Figure 3. The perceptron combines several inputs using and 
produces a single output. It consists of two parts: net functi-
on and activation function. Net function summarizes infor-
mation from m external sources or other neurons. Net 

function is a linear combination of products of inputs x_i 
and weight coefficients w_i, Eq. (1): 

The activation function (threshold, linear, sigmoid 
etc.) is applied to the output of net function. The output 
value of the perceptron is defined as the output of activa-
tion function. 

Feedforward deep learning is based on feedforward 
neural networks (multi-layered perceptron – MLP). 
These neural networks (Figure 4) consist of large num-
ber of highly connected perceptron grouped into 
layers (26). The number of layers defines depth of neural 
network. Number of neurons in one layer defines width 
of model. First layer is called input layer and the last one 
is called output layer. Layers between input and output 
layer are called hidden layers. These networks are called 
feedforward because the information flows from the in-
put layer, through hidden layers, to the output layer, whi-
ch means that there is no feedback from the output to the 
input. During the training phase, learning algorithm up-
dates weight factors depending on the difference between 
current outputs and desired outputs and when the diffe-
rence becomes satisfactory small, learning algorithm 
stops. Estimated weight factors are stored for the testing 
phase. During the training phase, over fitting should be 
avoided and NN must generalize well with unknown in-
puts too. Autoencoder is a type of NN where the number 
of input and output nodes is the same. Deep Belief 
Network (DBN) is composed of layers of Restricted 
Boltzmann Machines (RBMs) for the pre-train phase and 
then a feed-forward network for the fine-tune phase.

Figure 4. An example of feedforward neural network

Figure 3. A description of how perceptron (artificial neuron) works
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Convolutional neural networks (CNN) are speciali-
zed neural networks for processing data that has grid-like 
topology (time-series data or images). They have sparse 
interactions, which is accomplished by using the kernel 
smaller than the input (27). For example, if the input data 
have thousands or millions of samples, local features could 
be detected using kernels that occupies only a dozen or a 
hundred of samples. Efficiency of CNN is improved com-
pared to FNN and memory requirements are reduced. 
Using classic FNN, an input neuron affects all outputs neu-
rons, while in CNN an input neuron only affects several 
output neurons (number is defined by kernel width). The 
typical layer of CNN consists of three stages (Figure 5). 
The first stage performs several convolutions in parallel to 
produce linear activation. In the second, detector stage, 
each linear activation is run through nonlinear activation 
function. The last, third stage uses pooling function to 
make the output invariant to the noise and disorder.

The best performances of CNN are achieved for 
two-dimensional image topology, while for processing of 
one-dimensional time series data, it is best to use RNN. 
Each output of RNN depends on the previous outputs (28), 
Figure 6. RNN shares their weight factors through a very 
deep computation graph. Long Short Term Memory 
(LSTM) is a type of RNN that uses special units to include 
a ‘memory cell’ that can maintain information in memory 
for long periods of time.

Deep Learning applications in wearable 
healthcare systems

Several comprehensive reviews about the rise of we-
arable sensors and the significance of using data science 
methods for improving wearable healthcare information 
systems could be found in the literature (29-32). They 
emphasize the increasing trend of continual multimodal 
sensing for early diagnosis of diseases, prevention of chro-
nic conditions, quick response in emergencies, physiologi-
cal activity monitoring. Gravina et al. (33) have published 
a global overview about multi-sensor fusion of informati-
on in body sensor networks. Banaee et al. (34) presented 
the data mining review for healthcare and wearable sensors 
for the following vital signals: electrocardiogram, heart 
rate, blood pressure, respiratory rate, oxygen saturation, 
photoplethysmography and blood glucose. In this chapter, 
we will focus on approaches of DL for physiological activi-
ty recognition or human movement analysis purposes. The 
general concept of the DL approach for wearable sensor 
data is presented in Figure 7. The starting point in DL 
approaches is the acquisition of raw data from different 
wearable sensors. The next step is data preprocessing (filte-
ring, de-noising, normalization, all data synchronization 
etc.) followed by the feature extraction (in time or frequen-
cy domain or nonlinear features) and the selection of the 
most informative features for DL training/testing. The re-
sults of feature extraction and selection and additional 

Figure 5. The structure of convolutional neural network

Figure 6. The structure of recurrent neural network

Figure 7. The integration of data from wearable sensors in DL approaches
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knowledge (expert opinion, patient metadata, study meta-
data etc.) are inputs for training/testing DL algorithm that 
will finally make a decision about the medical phenome-
non of interest (detection, prediction etc.).

The summary of possible DL applications in weara-
ble healthcare approaches is presented in Table 1. with the 
comparison of their accuracy. 

Sarkar et al. (35) proposed a framework utilizing 
deep learning that recognizes human cognitive activities 
in real time via fusion of multiple EEG sensors in an un-
constrained environment and selects a smaller sensor suite 
appropriate for wearable systems. Classification perfor-
mances for two major activities “listening” and “watching” 
was high using DBN and CNN approaches (91.15% and 
91.63%, respectively). 

Langkvist et al. (36) tested a two-layer DBN with 
200 hidden units in both layers. They report that the DBN 
method increased the accuracy of sleep scoring (91.33%) 
by approximately 3%, when compared with the manual 
methods. Authors concluded that, for multimodal data, it 
is favorable to utilize separate DBNs for each of the signals 
and then combine their outputs with a secondary DBN.

Zhang et al. (37) applied the sparse version of DBN 
(SDBN) for sleep stage classification. They also used a vo-
ting principle based on classification entropy using SDBN 
and combination of classifiers including Support Vector 
Machine (SVM), k-nearest neighbors (KNN) and Hidden 
Markov Model (HMM), attaining 91.31% accuracy.

Dong et al. (38) have used LST network for sequen-
tial data learning to optimize classification performance 

Data Application Network type Results
EEG Cognitive activity recognition DBN

CNN
35 Acc: 91.15%

Acc: 91.63%
Sleep stage scoring DBN 36

37
Acc: 91.33%
Acc: 91.31%

LSTM 38 Acc: 85.92%
Anomaly detection DBN 39 P: 0.1920

high performance
Classification of motor 
imagery

CNN
Autoencoder

40 Acc: 77.6%

Frequency DBN 41 Acc: 84%
Motion-onset Visual Evoked 
Potential feature extraction

CNN 42 Acc: 87.5%

EMG Hand movement classification DBN 43 Acc: 66.59% 
(healthy)
38.09% (amputees)

ECG Arrhythmia classification DBN 45 Acc: 98.83%
Abnormal ECG recognition DNN 47 Acc: 85.52%
Biometric user identification CNN-LSTM 48 Acc: 99.54%
Diabetes detection CNN 49 Acc: 95.1%

PPG Monitoring and detecting of 
atrial fibrillation

DBN 50 Acc: 91.8%

Biometric user identification DBN 51 Acc: 96.t1%
Blood pressure monitoring CNN, LSTM-

RNN
52 BA: 0.47 (systolic)

        0.16 (diastolic)
Motion Human activity recognition CNN, LSTM 53 Acc: 95.8%

Closed loop for human 
activity recognition

DBN 54 Acc: 90%

Mobile applications for 
activity recognition

DBN
CNN

55
56
57

Acc: 73-94%
Acc: 95.75%
Acc: 91.5-98.2%

Movement disorder CNN 58 Acc:90.9%

Table 1. Summary of different deep learning methods possible for wearable healthcare. Acc – accuracy, 
P – precision, BA – Bland Altman slope (systematic error)
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with one-channel EEG. Authors have tested single-channel 
EEG options on the forehead (F4-EOG left and Fp2-EOG 
left). Evaluation of data from 62 people and 494 hours of 
sleep demonstrated better performance of their algorithm 
than existing approaches with vertex or occipital electrode 
placements. The classification accuracy using LST network 
was 85.92% and it was higher than using SVM (79.7%), 
Random Forest (RF, 81.67%) or MLP (81.43%).

Wulsin et al. (39) applied DBN in a semi-supervised 
paradigm to model EEG waveforms for classification and 
anomaly detection i.e. small group of isolated waveform 
patterns, such as spikes, seizures, eye blinks and other arti-
facts/noise. Their results show that DBN performance was 
comparable to standard classifiers (decision trees, SVM, 
KNN), and classification time was found to be 1.7 to 103.7 
times faster than the other high-performing classifiers. 
Authors suggested that DBNs with raw data inputs may be 
more effective for online automated anomaly recognition 
in the EEG than other common techniques.

Tabar et al. (40) have used deep learning approach to 
improve classification of EEG motor imagery for BCI. 
They employed CNN and Autoencoder network to classify 
motor imagery from EEG. They proposed a new deep 
network in which the features that are extracted by CNN 
are classified through the Autoencoder network. The ave-
raged classification error was 77.6%. They report 9% im-
provement over the winner algorithm of BCI competition 
IV (Berlin, 2008).

Lu et al. (41) estimated frequency domain represen-
tations of EEG signals for motor imaginary obtained via 
fast Fourier transform (FFT) and wavelet package decom-
position (WPD) to train three RBMs, which were stacked 
up with an additional output layer to form a four-layer ne-
ural network, which is named the Frequential DBN 
(FDBN). The output layer used Softmax regression for cla-
ssification and the conjugate gradient method and back-
propagation were used to fine tune the FDBN. Results on 
benchmark datasets, showed statistically significant im-
provement in classification, using FDBN over other sele-
cted state-of-the-art methods (84% vs. 73-80%).

Ma et al. (42) combined DBN with compressed sen-
sing to extract discriminative Motion-onset Visual Evoked 
Potentials (mVEP) information for improving the BCI 
performance. The deep learning and compressed sensing 
approach generated the multi-modality features which im-
proved BCI performance with approximately 3.5% accura-
cy incensement. Deep learning and compressed sensing 
approach yielded higher classification accuracy (87.5% vs. 
84%), against using conventional mVEP features, and were 
effective for subjects with relatively poor performance.

Atzori et al. (43) used CNN to classify 50 hand mo-
vements using surface EMG signals. Authors used Ninapro 
open database (44) of 78 subjects: 67 health subjects and 11 
subjects with trans radial amputee. The average classifica-
tion accuracy using simple CNN and classical classificati-
on methods (SVM, KNN, random forest, linear discrimi-
nant analysis) were comparable (66.59% vs. 62.06% for 
dataset 1 of health subjects, 60.27% vs. 60.28% for dataset 2 

of health subjects, 38.09% vs. 38.82% for amputees).
Yan et al. (45) used standard MIT-BIH database (46) 

of ECG signals to train RBMs. Half of the data was used for 
RBMs training, 30% was used for fine-tuning of DBN and 
20% was used for testing. It is shown that by combining the 
two ECG-lead the accuracy, sensitivity and specificity rea-
ched to 98.83%, 99.83% and 96.05%, respectively.

Ripol et al. (47) compared the efficacy of DBN reco-
gnition of abnormal 12-lead ECG in a large group of pa-
tients (1390 patients from Hospital Clinic in Barcelona) 
against several algorithms: SVM, KNN, Extreme Learning 
Machines (ELM) and professional algorithm of dedicated 
cardiology system. Both SVM (accuracy 84.76% and speci-
ficity 73.46%) and DBN (accuracy 85.52% and specificity 
78.27%) resulted by better accuracy and specificity than 
other methods.

Page et al. (48) applied deep neural network (DNN) 
on identified QRS segments of 90 subjects in resting state 
to biometrically identify them. The best results were obtai-
ned using a single hidden layer while deeper networks had 
overfitting problems. The accuracy of applied NN was 
99.54%, sensitivity was 99.49% and specificity was 99.55%.

Swapna et al. (49) applied CNN-LSTM on heart rate 
extracted from ECG signals to detect diabetes, with the ac-
curacy of 95.1%. This seems to be a promising method for 
non-invasive detection of diabetes.

Shashikumar et al. (50) performed real-time detecti-
on of atrial fibrillation in patients. They used continuous 
wavelet transform of the PPG signal recorded by Simband 
smart watch to extract features for training of CNN. The 
obtained accuracy was 91.8% and comparable to ECG-
based approaches.

Jindal et al. (51) compared the performance of DBN 
approach with classic KNN and fuzzy classifier in biome-
tric user identification. The DBN approach included the 
clustering step to subgroups before pre-training by RBMs 
and DBN fine tuning. The combined clustering and DL 
method had 96.1% accuracy in biometric authorization, 
which was more than 10% higher than by classic methods.

Ruiz-Rodrıíguez et al. (52) simultaneously recorded 
blood pressure invasively (by radial artery catheter) and 
non-invasively (by photoplethysmograph). The RBM was 
trained to assess blood pressure using PPG signals in the 
group of 572 patients with stable blood pressure. A syste-
matic error (Bland-Altman slope) was 0.47 and 0.16 for 
systolic and diastolic arterial pressure, respectively.

Wearable DL systems for the recognition of physical 
human activity were considered by different authors. The 
input signals for DL training in such systems are from mo-
tion sensors (accelerometers, gyroscopes). Ordóñez et 
al. (53) showed that the combination of CNN and RNN 
was effective in human activity recognition of 18 gesture 
tasks with the accuracy of 95.8%. The robustness of activity 
recognition could be improved using closed loop concept 
introduced by Saeedi et al. (54) and the accuracy of activity 
recognition could reach 90%. Several authors presented 
frameworks for activity recognition using mobile devices 
indicating the possibilities of commercial applications 
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(55-57). Bhattacharya et al. (55) presented a simple RBM 
solution that could work on smart watch processor 
(Qualcomm Snapdragon 400). The smart watch prototype 
included following sensors: accelerometer, gyroscope, ba-
rometer, magnetometer, light and temperature. Three di-
fferent RBM architectures were tested to support three 
types of daily scenarios: gestures, transportation and physi-
cal activities, and transition between indoor/outdoor envi-
ronments. Classification results by RBM method had hig-
her accuracy in comparison to conventional methods 
(SVC, RF, decision trees). The results of testing the battery 
life were between 6 and 52 hours, depending on the RBM 
model. Ronao et al. (56) presented results on the study of 
30 volunteers that performed different physical activi-
ties (walking, sitting, standing, laying) while the smart 
phone was in their pockets, collecting accelerometer and 
gyroscope data. They report the classification accuracy of 
95.75% for human activity recognition by CNN. Also, one 
solution for CNN efficient implementation of human acti-
vity recognition (walking, jogging, cycling etc.) on a 
low-power device was introduced by Ravi et al. (57). 
Eskofier et al. (58) explained the clinical application and 
superiority of deep CNN in recognition of bradykinesia in 
Parkinson’s patients (based on data from accelerometers 
positioned on the forearm) in comparison with classic 
methods (SVM, KNN, PART, Ada Boost M1), 90.9% vs. 
85.6%, 67.1%, 81.7% and 86.3%, respectively.

Limitations and future directions

We have presented the summary of 23 papers with 
DL methods possible for wearable healthcare application 
and compared the results of their accuracy. Most of them 
use DBN or CNN concepts as DL methods, Table 1. Also, 
we have cited 5 review papers in the wider field of data 
science methods applied for wearable healthcare.

Deep Learning techniques have high computational 
complexity, but also high accuracy in various types of 
applications, because of which they are promising approa-
ches for extraction and/or classification of data in health 
informatics. However, before their expansion in usage, the 
following questions should be resolved (59-61): 1) standar-
dization of data acquisition, normalization and preproce-
ssing procedures and collecting of huge amount of data for 
the homogenous groups of subjects related to the pheno-
menon of interest – this is the key condition for the validity 
of data driven modelling; 2) designing of DL approaches for 
longitudinal studies; 3) developping sequrity models for 
data acquisition and delivery of results/feedback; 4) inclu-
ding expert knowledge in DL process; and 5) finding a way 
to rationalize neural predictions.

Wearable systems for analyzing state of the user have 
been developed and tested for wide area of application: 
motion analysis, human machine interaction (HMI), dete-
ction (and/or prediction) of different type of seizures, 
drowsiness monitoring (for example during driving), sleep 
monitors, emotion recognition, etc. Significant number of 
studies explore their applicability in the area of neuroreha-
bilitation and feedback and show progress in improving 

communication, mobility and environment control in se-
verely disabled users. This review shows that DL tech-
niques are useful tools for health condition prediction or 
overall monitoring of data streamed by wearable systems. 
Nowadays, DL is present in commercial systems for speech 
recognition and computer vision and it is expected to have 
an important role in smart healthcare in the future. It is 
expected that wearable healthcare systems with DL appro-
aches will be successfully integrated in mobile systems (52-
64). The direct consequence of the application of such 
systems, in both home and clinical practice, will be decrea-
sing expenses for home and clinical healthcare, or supervi-
sing athletes. Despite the considerable progress, there is 
still room for improvement of DL approaches for wearable 
healthcare systems, which will lead to more trustable and 
reliable application and personalized healthcare.
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