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A B S T R A C T   

Desiccant evaporative cooling systems pave the path towards energy and environmental sustainability in 
buildings especially; however, the direct evaporative coolers in such configurations result in high water con
sumption. The application of modern computational intelligence tools, including artificial intelligence and meta- 
heuristic optimization algorithms, can improve the operational comprehension of desiccant cooling systems 
while addressing the minimization of total water footprints with the maximization of the cooling capacity. The 
contribution/objective of this research is to address the gaps in understanding through the application of deep 
learning, genetic algorithm, and multicriteria decision analysis applied to a desiccant cooling system working 
under real transient experimental conditions of a building located in Austria. Within the methodology, cali
brated, experimental, and validated data monitoring system displaying the real desiccant-enhanced cooling 
system is adapted to generate a set of input-output data sets. The set of data includes ambient temperature, 
ambient humidity, regeneration temperature, supply airflow rate, and return airflow rate yielding the cooling 
capacity and total water footprints of the system. The results of deep learning algorithm using an artificial neural 
network have suggested that the architectures 5-[6]-[6]-1 and 5-[12]-[12]-1 are the best to accurately predict the 
cooling capacity and total water footprints with a coefficient of determination of 0.98856 and 0.99246, 
respectively. Secondly, the “white-box model” of the deep learning algorithm is used to develop a digital twin 
model which helps in the replication of the earlier experimental conditions. The optimization results have 
suggested that the optimized total water footprints are 45.17 kg/h with a system of 3.32 tons of refrigeration. 
These optimal values are found in the best combination of design variables in which the ambient temperature is 
28 ◦C, ambient relative humidity is 52.0%, supply airflow rate is 2.13 kg/s, and regeneration flow rate is 2.35 kg/ 
s, and the regeneration temperature is 70.0 ◦C. It is concluded that the application of data-driven models can 
extend the interpretation of desiccant cooling systems and can participate in its performance enhancement.   

1. Introduction 

As the concerns of global warming and temperature rise are turning 
into reality, nations across the globe have tried to develop a unified front 
to tackle the biggest challenge to the existence of living beings on this 
planet. In modern & developing urbanized centers of the human 

population, the demand for air conditioning [1,2] is rising steeply as it is 
consuming as high as 70% of prime energy sources in countries situated 
in MENA regions. Such consumption of electrical power to keep built-up 
structures is highly unsustainable. Therefore alternatives are proposed 
based on several techniques and one famous method, proven in com
mercial units as successful, is desiccant-based evaporative cooling [3]. 
This is not a newer idea for air cooling, as evaporation is known to be a 
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source of cooling air for generations [4–11]. To overcome the challenges 
of latent as well as sensible load handling, improving air quality in 
humid/tropical regions, working below wet-bulb barrier [12], utilizing 
return air energy [13], renewable integration [14], open cycle with 
refrigeration [15] benefits (especially in the COVID-19 pandemic), etc. 
are some of the talking points of the desiccant based evaporative cooling 
technology. 

With the growing concern on the working control, especially of the 
sub-systems such as desiccant wheel and regeneration heat source, of the 
open-cycle cooling methods used in desiccant-based evaporative cool
ing, there is a dire need to look at the performance matrix and find a 
method to bring the multi-system into a predictive controllable or even 
intelligent regime. This is particularly important as opposed to air-tight 
building-based controls. For instance, humidity control is more intrinsic 
here in the desiccant system as separate load handling [16] is essential, 
unlike the vapor compression cycle which is not greatly influenced in 
terms of the control system. While the benefits are counted with high 
regard for desiccant-based systems including high EER (Energy Effi
ciency Ratio) [17], a great deal of concern is also mentioned regarding 
the water consumption of these systems as it involves evaporative 
cooling devices (both direct as well as indirect coolers). This has a direct 
impact on the water consumption of these systems especially if 
employed at a large scale in desert/hot climatic conditions which usu
ally have scarce water resources, especially in the global south. 

Moreover, the operational part of the desiccant air cooling systems 
can involve several air cycle configurations such as ventilated mode 
working, Dunkle cycle, etc. There is extensive literature informing the 
need and working of these cyclic configurations in different working 
conditions/climatic zones. Intelligent switching is direly needed so that 
the same set of equipment (the majority of items are the same in most 
configurations) can be automatically tuned to work for best-suited 
performance indicators. This is of high importance from the perspec
tive of manufacturers as well. These units can only be excellent sells and 
prove alternatives to conventional technologies if they are adaptive in 
nature. 

The use of intelligence in the predictive and automatic control of air 
cooling, both active as well as passive, using data-driven models is not a 
new area. Many regressive, machine learning [18], data-driven [19], 
and predictive control strategies have been proposed in the literature. 
These models and strategies mainly aim to make the system or its 
components responsive and controllable to the varying conditions, input 

parameters, and system dynamics. Therefore, intelligence in the control 
system of the HVAC systems is essential for optimal performance. 
Various techniques are being implemented for the efficient performance 
of building HVAC systems like energy modeling and Model Predictive 
Control (MPC) [20]. The application of artificial neural network (ANN) 
for predicting the performance of solid desiccant cooling systems was 
found feasible [21]. Independent temperature/humidity control strate
gies were implemented for precooled desiccant-based evaporative 
cooling systems to ensure room comfort with less energy. The new 
control strategies were developed based on proportional and fuzzy+
proportional techniques which resulted in 20% energy savings 
compared to the traditional ON/OFF control [22]. In desiccant air 
conditioning systems, a desiccant wheel and direct/indirect evaporative 
cooler are the key components. A high-low (H-L) control strategy on 
regenerative indirect evaporative coolers caused 11.3% less energy 
consumption annually [23]. In addition, a year-round optimization 
method of L/H was also proposed by considering energy consumption, 
thermal comfort, and switch frequency. The lowest annual energy con
sumption of RIEC is observed when L/H is about 0.3 [24]. Annually, IEC 
with variable speed fans consumes 50.0% less energy than that on-off 
fans by applying proportional–integral (PI) law based variable speed 
technology for accurate temperature control in an IEC system [25]. 
Regarding desiccant wheel control, multiple regression and machine 
learning models of rotary desiccant wheel were developed for perfor
mance prediction. It was determined that predictive power of the MLR 
models increases as the degree of equation increases and cross terms are 
added [26]. Moreover, an adaptive neuro-fuzzy inference system with 
artificial neural network fuzzy logic was implemented to predict the exit 
parameters of desiccant coated heat exchangers. It was analyzed that 
ANFIS–AI tool with ANN fuzzy logic can be used as a reference AI tool 
for the efficient design and performance prediction, analysis, and opti
mization of any heat exchanger [27]. 

Goldsworthy et al. [28] solved the heat and mass transfer equations 
for combined solid desiccant-indirect evaporative cooling and 
concluded that a regeneration temperature of 70 ◦C, supply/regenera
tion flow rate of 0.67, and an indirect cooler secondary/primary flow 
rate of 0.1 can give the optimal performance. Hung-Yi et al. [29] 
developed and validated a numerical model including the heat and mass 
transfer for the rotary desiccant wheel and included the factors like 
ambient temperature, ambient humidity, air flow rate, the rotational 
speed of the wheel, wheel split, and regeneration airstream temperature 

Nomenclature 

Letters 
CC Cooling capacity of the supply air, tons 
cp, air Specific heat of air, kJ/kg.oC 
ṁsupply air flow rate Mass flow rate of the supply air, kg/s 
ṁreturn air flow rate Mass flow rate of the return air, kg/s 
RHamb Ambient relative humidity, % 
Qsupply Supply flow rate, kg/s 
Qregeneration Regeneration flow rate, kg/s 
R2 Coefficient of Determination 
TWF Total water footprints, kg/h 
TWFsupply side Total water footprints on the supply side, kg/h 
TWFreturn side Total water footprints on the return side, kg/h 
Tsupply air temperature Supply air temperature, oC 
Tambient, Tamb Ambient air temperature, oC 
Treg Regeneration temperature, oC 

Symbols 
ωsupply air Absolute humidity of the supply air, kg/kg 
ωexit of desiccant wheel Absolute Humidity at the exit of the desiccant 

wheel, kg/kg 
ωroom return air Absolute Humidity of the room in the return air, kg/kg 
ωexit of return humidifier Absolute Humidity at the exit of the return 

humidifier, kg/kg 

Abbreviations and acronym 
ANN Artificial neural network 
BRA Bayesian regularization algorithm 
DEC Desiccant evaporative cooling system 
EER Energy Efficiency Ratio 
LMA Levenberg-Marquardt algorithm 
MLP Multilayer perceptron 
MSE Mean-square error 
MAPE Mean absolute percentage error 
MENA Middle East and North Africa 
MIMO Multiple Input and Multiple outputs 
RMSE Root-Mean-Square-Error 
SCGA Scaled Conjugate Gradient algorithm 
TOPSIS The Technique for Order of Preference by Similarity to 

Ideal Solution 
XAI Explainable Artificial Intelligence  
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to offer the optimized control strategies for the operation of rotary 
desiccant wheel installed for a hotel building. Wang et al. [30] used a 
simulation method including a parametric and optimization study on a 
novel transient air dehumidifier to meet a constant energy supply with 
multi-stage desiccant plates. Rayegan et al. [31] also proposed an 
optimization based upon a dynamic simulation for a solar-assisted 
desiccant cooling system but it was also integrated with a ground 
source heat exchange. The results have suggested that the system can not 
provide thermal comfort in extremely humid regions with high regen
eration temperatures and the integration with ground source heat ex
change can significantly decrease the regeneration temperature. Zhang 
et al. [32] focused on the optimization through exergy destruction 
analysis of a liquid desiccant dehumidification system and obtained an 
exergy efficiency improvement to around 4%. Ou et al. [33] applied a 
model-based optimization strategy for liquid desiccant cooling and 
dehumidification and suggested an energy consumption reduction of 
over 12.49% through the adaption of the optimal control strategy. Tu 
et al. [34] considered various air handling units under different ambient 
humidity ratios along with various other variables in the desiccant air 
cooler to suggest two control strategies under winter ambient condi
tions. The authors obtained a satisfactory rate of over 95%. Boudjabi 
et al. [35] conducted parametric analysis including multiobjective and 
single-objective optimization and concluded that the unique airflow 
configuration of a combined parallel-regenerative cooler is higher in 
drier climates to report a cooling capacity improvement by 5% at the 
cost of water consumption increment of about 40%. Motaghian et al. 
[36] have suggested optimum and effective purge angles for different 
dimensionless dehumidification angles, rotational speeds, number of 
transfer units, and regeneration temperature in desiccant wheels. Chen 
et al. [37] combined photovoltaic and thermal solar power, dehumidi
fication, and active cooling along with the development of a component 
scale mathematical model of a solar-driven liquid desiccant air condi
tioning system especially targetting extremely hot and humid climates. 
Bouchaala et al. [38] used a multiobjective particle swarm optimization 
algorithm to display the Pareto optimality of conventional adsorption 
ventilated cooling systems and concluded that the use of a purge zone 
during the optimization process can improve the cycle performance. 

While the effort on the sub-system/component control has merits. 
However, the overall behavior of the system under varying configura
tional parameters, ambient/input conditions, resources, and air condi
tioning requirements is much more complicated owing to Multiple 
Inputs and Multiple outputs (MIMO). MIMO includes air entering and 
returning to the system, water sprayed in humidifiers [39], and heat 
input to heaters while the thermal comfort in terms of temperature and 
humidity control to the air-conditioned space are major outputs. The 
‘black-box’ modeling approach may serve the whole desiccant system, 
albeit requiring realizability. Moreover, the dynamic variations in the 
ambient and operational parameters (for all inputs including ambient 
air, water, and energy/power especially utilizing renewable sources) 
require a dynamic model. Thus, as suggested by the literature review, it 
can be concluded that the current optimization studies have not focused 
on the usage of direct experimental data of a working building to offer 
digital twinning i.e. empirical modeling, and multiobjective optimiza
tion especially to focus on the reduction of water footprints of the 
desiccant air conditioning systems. 

Data-driven model development leads to the generation of a ‘digital 
twin’, which acts as a responsive decision-making tool. Several examples 
of digital twinning can be seen in the energy sector [40]. Here using an 
actual experimental dataset of a working building [41], is taken for the 
generation of the digital twin. Initially, a black box-based approach is 
used for the model to develop its performance matrix and validate its 
work. However, upon realization, the model is optimized for a set of 
operations conditions of the system which otherwise would not have 
been generated using the digital twin. Ensuring that the realizable 
operating conditions, where the system shall be responding and opera
tional, are used for optimal space search; the ‘while box’ model 

approach is introduced here to ensure a realizable decision/recom
mendation for multi-objective optimal working. This realizable recom
mendation is primarily the initial ingredient of XAI (explainable 
Artificial Intelligence) which is introduced in the forthcoming sections. 

2. System description 

In the current work, a solid desiccant evaporative cooling system 
(DEC) of a real building [41] located in Vienna, Austria is considered. 
The key components of the system include a silica-gel-based desiccant 
wheel, a heat wheel along with two direct humidifiers i.e. supply hu
midifier and return humidifiers which are the main sources of water 
consumption. The overall DEC system is equipped with numerous sen
sors continuously measuring all significant parameters at the individual 
component as well as at the system levels. Two data monitoring systems, 
Siemens DESIGO Insight [41] and JEVis [41] are used for data recording 
from all sensors. The system schematic with instrumentation is shown in 
Fig. 1 (a). The process starts with the increase of temperature of ambient 
air with dehumidification (process 1–2). During the dehumidification, 
the process air loses moisture and increases temperature. Afterwards, 
the temperature of this air is reduced sensibly through the heat wheel 
(process 2–3) with subsequent addition of moisture using a direct hu
midifier (process 3–4). The regeneration side includes series of processes 
involving humidification (process 5–6), sensible heating (process 7–8) 
and desiccant wheel regeneration (process 8–9) as shown in Fig. 1(b). 
Key aspects of technical design data of the main components of the 
installed DEC system are given in Table 1. 

In this system, each humidifier is equipped with four sensors, two at 
the inlet and two at the outlet, each pair measuring temperature and 
relative humidity at both locations. K-type thermocouple are used for 
temperature measurement having range from 0 to 200 ◦C, accuracy of 
0.3% and with resolution of 0.1 ◦C. Whereas, resistive air humidity 
sensors are employed that have range of 0 to 100% for relative humidity, 
and 0–18 g/kg for humidity ratio with resolution of 1% RH and accuracy 
of ± (3% of reading +1% RH). These sensors are coupled with data 
acquisition for continuous measurements of temperature and air hu
midity. Consequently, the data set of six selected days consists of air 
temperature and relative humidity along with the rotation speed of the 
spray pump. The monitoring setup of both humidifiers is shown in Fig. 1 
(c). In the actual monitoring set-up, the water mass flow rate from the 
spray pump was not measured. The water mass flow rate depends on the 
inlet conditions of the air in terms of its temperature, absolute humidity, 
and mass flow rate along with the rotational speed signal of the spray 
pump. 

3. Method 

The system under consideration is shown schematically in Fig. 1 (a). 
The desiccant evaporative cooling system is integrated with multiple 
components to provide the air-conditioned space with the flow rate of 
conditioned air. This system involves two main sides, the process side, 
and the return side respectively. The process side takes the ambient air 
which passes through the desiccant wheel to remove excessive moisture. 
The desiccant wheel is a rotating water-absorbing pad that is continually 
recharged using the return side air. The next component is the heat re
covery wheel which transfers the heated air, the air while getting 
moisture removed is heated, to the return side. This recovery of energy 
assists in the recharging of the desiccant wheel. The next component in 
the cyclic configuration of Fig. 1 (a) is the suction fan, which sucks the 
air through the first two components. The air, after heated and moisture 
removed, is passed through the evaporative cooler/supply humidifier to 
bring the temperature and humidity of the air to the required temper
ature and relative humidity through water spray for supplying to an air- 
conditioned room. 

The return side uses the return air from the air-conditioned room 
while controlling the temperature and humidity of the room. The first 
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component is the additional moisture addition before passing it on to the 
recovery wheel which heats up the air through heat transmission from 
the process side. The next stage is desiccant wheel discharging which 
usually takes place at a temperature greater than 70 ◦C. The additional 
heaters are installed to get the required heat energy for the air to 

recharge the desiccant wheel. While the whole process is driven by the 
return side suction fan assisting the flow to be maintained. In the whole 
process, two important parameters are noted that rate the overall per
formance of the desiccant system. Namely, the cooling capacity of the 
system in terms of the amount of heat it can remove (measured 

Fig. 1. The considered desiccant evaporative cooling system: (a) schematic diagram with instrumentation, (b) psychrometric representation of processes, (c) data 
sensors for direct evaporative supply and return humidifiers. 
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conventionally in tons of air conditioning) as shown in eq. (1); while the 
second and equally important index is the total water consumed in hu
midification process both at the process as well as return sides. The total 
water footprint is measured and shown in eq. (2). The supply and return 
sides of water footprints are separately shown as well as eqs. (3) and (4) 
respectively. 

Cooling capacity (tons) = ṁsupply air flow rate × cp,air

×
(
Tsupply air temperature − Tambient

)
× 0.284345

(1)  

TWF = TWFsupply side +TWFreturn side (2)  

TWFsupply side = 3600
(
ωsupply air − ωexit of desiccant wheel

)
× ṁsupply air flow rate (3)  

TWFreturn side = 3600
(
ωroom return air − ωexit of return humidifier

)
× ṁreturn air flow rate

(4) 

In total two system performance indicators are identified and eval
uated here. It is to be noted that the equations from (1) to (4) are generic 
thermodynamics performance indicators. The cooling capacity is 

evaluated using mass flow rate, specific heat, and temperature differ
ence. The factor 0.284345 is multiplied by the cooling capacity to get the 
units in tons of refrigeration. The water footprints on each side (supply 
and return side) are evaluated just through a generic mass (expressed in 
the form of ‘humidity’) balance where the difference of absolute hu
midity is multiplied by its appropriate mass flow rate. 

4. Results and discussion 

The results section includes a detailed interpretation of the deep 
learning model for the system including its operation on ventilation as 
well as re-circulation modes. The variation in the input parameters and 
the performance of the system in achieving thermal comfort are related 
to the range of variations. In addition, to thermal comfort, the water 
footprint on the air conditioning system is equally important as the 
demand for water for mass-scale utilization of desiccant-based cooling 
systems can impact scarce freshwater resources. 

One key ingredient of the analysis present here is the evaluation of 
system performance in terms of achieving thermal comfort and the set of 
optimal input parameters ensuring it. However, this is constrained by 
the total water usage in the system to achieve the required temperature 
and humidity levels. This is directly linked with the usefulness of 
desiccant-based air cooling systems which claim to handle sensible and 
latent loads separately. The use of the desiccant-based system with 
direct or indirect evaporative coolers has a larger water footprint than 
conventional air cooling devices such as vapor compression or cryo
genics. However, it offers merits in terms of separate load handling 
which can be mechanically more efficient. Nevertheless, the success of 
such desiccant-based evaporative cooling technology is directly linked 
to the water usage it will require especially in water-scarce regions of the 
globe. Here the linkage is established as multi-objective function opti
mization linking both thermal comfort as well as water footprint, while 
both have different requirements often countering/opposing each other. 
For instance, for a hot desert climate, the thermal comfort (both in terms 
of sensible as well as latent loads) shall be demanding water for air 
cooling and humidification despite the scarce availability of fresh/ 
drinkable water in those regions. While in tropical conditions, the 
requirement for thermal comfort can be a great deal of removals of 
ambient moisture which shall be requiring higher temperatures for re- 
charging the desiccant wheel. Thus in all conditions, water usage or 
removal is key to this air conditioning technology. 

4.1. Statistical explanation of the data 

The data selected for the desiccant system at hand is actual opera
tional data for seven selected days during the month of July. The data 
includes a variety of input, process, monitoring, and output variables 
while operating in a daily routine. The data is time-averaged for an in
terval of 05 min, while the actual data is recorded each minute, to avoid 
any unnecessary fluctuation, which indicates a local/temporal peak/ 
fluctuation only. Amongst the parameters recorded at all the input/ 
output of each component in the desiccant system as shown in Table 2, 
primarily temperature and humidity, the selected system inputs and 
outputs are separated. These parameters are external, independent, and 
uncorrelated parameters that can impact the system alone or in 

Table 1 
Component design parameters of the system [41].  

No. DEC component design parameter Details or design value 

1 Desiccant wheel Model SECO 1770, Klingenburg 
Air volume flow rate (m3/h) 8240 
Adsorbent LiCl 
Wheel diameter (m) 1.77 
Wheel depth (m) 0.45 
Pressure drop (Pa) 164 
Wheel rotation speed (rph) 20 
Ambient air (oC / %) 32 / 40 
Supply air (oC / %) 46.9 / 12 
Regeneration air (oC / %) 70 / 10 
Exhaust air (oC / %) 55.1 / 20 

2 Heat wheel ModelRRS-P-16-18-1770-400, 
Klingenburg 

Air volume flow rate (m3/h) 8240 
Wheel diameter (m) 1.77 
Wheel depth (m) 0.4 
Wheel rotation speed (rpm) 10 
Pressure drop (Pa) 119 
Effectiveness 0.8 
Outdoor air (oC / %) 45 / 14 
Supply air (oC / %) 31.24 / 29 
Regeneration air (oC / %) 28 / 85 
Exhaust air (oC / %) 41.62 / 40 

3 Supply and return spray 
humidifiers 

Robatherm 

Air volume flow rate (m3/h) 8240 
Saturation efficiency (%) 90 
Dehumidification capacity (g/kg) 4.4 
Water flow rate (m3/h) 4.0 
Pump power (kW) 0.8 
Pressure drop (Pa) 235 
Supply air (oC / %) 32 / 33 
Exhaust air (oC / %) 21.26 / 89 

4 Supply and return fans RH 45C 
Air volume flow rate (m3/h) 8240 
Pressure drop (Pa) 600 
Power (kW) 4.3  

Table 2 
Basic statistical details and characteristics of the design variables and the performance indicators.  

Characteristic Name of the variable Symbol Unit Minimum value Maximum value 

Design variable 1 Ambient temperature Tamb 
oC 21.28 36.76 

Design variable 2 Ambient relative humidity RHamb % 13.71 100 
Design variable 3 Regeneration temperature Treg 

oC 21.3 80.66 
Design variable 3 Supply flow rate Qsupply kg/s 0.10 2.70 
Design variable 5 Regeneration flow rate Qregeneration kg/s 0.021 2.78 
Performance indicator 1 Cooling capacity CC tons 0.029 8.51 
Performance indicator 2 Total water footprints TWF kg/h 0.39 60.78  
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combination with other parameters. These 05 parameters include the 
ambient temperature and relative humidity of the air, the regeneration 
temperature of the air, the flow rate at the supply side, and the regen
eration side flow rate. These flow rates, ambient conditions, and 
regeneration temperature independently influence the cooling capac
ities and performance of the desiccant system while getting the required 
indoor conditions ensuring thermal comfort (i.e. cooling capacity) 
which is one output parameter/performance indicator. The other per
formance indicator is the water consumption by the system. The inde
pendent parameters and performance indicators are listed in Table 2 
indicating the maximum and minimum values as seen in the actual data 
series. 

Moreover, the model development focuses on the input-output of the 
complete system, which includes a number of sub-systems or compo
nents. Each component has its own characteristic; however, the model 
developed here uses the overall system input and maps it with the 
desired output along with its utility budget including heat requirements 
as well as water consumption. Therefore, the inputs of the complete 
system are considered here for the sake of the realizable model devel
opment. The input parameters and response parameters are well and 
diversely populated as highlighted in Fig. 2(b). The correlations 
amongst each of the input and output parameters are also included in 
the detailed parameter-to-parameter subplots shown in Fig. 2(b). It 
clearly indicates that some of the parameters such as ambient temper
ature and relative humidity are well varied while the regenerative 
temperature requirements fluctuate as the ambient condition on the 

water content changes in the system. The flow rates of the system are not 
very well distributed in terms of the plot on the histogram. This indicates 
the system flow rates are somewhat steady and unperturbed. While the 
cooling capacity and total water footprint, show desired variability, 
which indicates that the system is fairly non-linear in its operability in 
different operating conditions. Moreover, the input parameters do not 
indicate any correlation, which means that the parameters are inde
pendent and can influence the system independently. On the other hand, 
the output parameters are not linearly linked as observable from Fig. 2 
(b). These identifications are extremely important for data-driven 
modeling, optimization, and learning processes. The data seems suit
able for extensive realizable development of system response charac
teristics which can be generalized upon learning and tuning techniques. 

4.2. Deep learning neural network modeling of cooling capacity and water 
resource consumption 

The developed experimental setup can mimic the real physical per
formance of the building-integrated desiccant cooling system, and it is 
desired to comprehend its optimal characteristics. This brings the need 
for the generation of an alternative surrogate, otherwise called a “digital 
twin”, model of the data obtained from the experimentation procedure. 
The idea is to apply the data engineering model to replicate the actual 
experimental procedure with the purpose to find the operational opti
mality. In simple words, digital twin models are mathematical replica
tions of the actual physical procedure which are developed under a set of 
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Fig. 2. Scatter matrix of the input-output data including the statistical distribution of the data.  
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design and operational limits. These models help to develop communi
cation with the raw data and transform them into a set of mathematical 
expressions which can be used for further processing. 

Digital twin models can be generated through a range of methods 
from the area of multivariate statistics, machine learning, and artificial 
neural network. Research [42–44] has demonstrated that the neural 
network type of digital twin models can offer better statistical perfor
mance in terms of the prediction of the actual experimental or physical 
procedure. Thus, the application of an artificial neural network (ANN) 
with a multilayer perceptron (MLP) model is considered adequate for 
prediction purposes. 

The applied MLP-ANN model in this article contains an input layer 
that contains 5 neurons corresponding to the five design variables, at 
least one hidden layer with a variable range of neurons, and an output 
layer that contains two neurons representing the two performance in
dicators. The computational procedure is applied through the develop
ment of an in-house code combined with the characteristics of the nftool 
box within the MATLAB interface. MLP-ANN works on the principle of 
backpropagation to minimize the mean-square error (MSE) calculated 
between the predicted performance indicator and the actual perfor
mance indicator. Three different backpropagation techniques are 
applied which include the Levenberg-Marquardt algorithm (LMA), 
Bayesian regularization algorithm (BRA), and Scaled Conjugate 
Gradient algorithm (SCGA). In this case, for both performance in
dicators, BRA came out to be the backpropagation technique with the 
highest statistical performance including Coefficient of Determination 
(R2), Root-Mean-Square-Error (RMSE), MSE, and Mean-Absolute- 
Percentage-Error (MAPE). The experimental dataset was small and 
had a noisy behavior and literature has also shown that BRA is the most 
suitable for such a characteristic of the input data [45]. 

The functionality of MLP-ANN includes the process of multiplication 
of the neurons Xi from one layer with the appropriate weights wik, added 
with the bias bhk, and goes through an activation function fsig, written 

mathematically with: fsig
(

bhk +
∑m

i=1wikXi

)

. The output from the first 

layer is passed on to the second next layer until the final output can be 
obtained. Such an integrated process can be expressed using the math

ematical expression: Performance indicator = fsig
{

bo +
∑h

k=1

[

wk×

fsig
(

bhk +
∑m

i=1wikXi

)]}

[46]. The activation function is a tan-sigmoid 

of the form 2
1+e− 2p7 − 1. This mathematical procedure is applied in an 

iterative way using a BRA optimization algorithm to minimize the mean- 

square-error and for the evaluation of weights and bias of each layer, 
and only 85% of the data is used for this training purposes whereas the 
remaining 15% of the data is used for the testing of final digital twin 
model. The 15% testing data has quite a significance because the trained 
model does not have any recognition for this testing data and an accu
rate prediction of this testing data set would determine the accurate 
prediction capability of the digital twin model. 

Thus, it is understood that the generation of a suitable ANN archi
tecture is an iterative procedure where the number of hidden layers, the 
number of neurons in each hidden layer, and the optimization technique 
should be iterated systematically. The results of such an iterative pro
cedure are displayed in Table 3 for both cooling capacity and the total 
water footprints. The selection of the best architecture is based on the 
statistical performance indicators where it is desired to the maximum 
R2, and minimum values of RMSE, MSE, and MAPE. The first four ar
chitectures for both performance indicators have only used one hidden 
layer having 6, 8, 10, and 20 neurons in it. The range of R2 of such an 
architecture is from 0.97866 to 0.98744 for cooling capacity and 
0.95821 to 0.97334 for the total water footprints. These values of R2 are 
quite low because these digital twin models would be used for optimi
zation purposes where the algorithm evaluates the model on its extremes 
and any lack of fit can yield an unreliable and unrealistic outcome. Thus, 
it is desired to obtain a relatively higher value of R2. On the other side, 
an architecture with so many hidden neurons would also not be 
appropriate because it would be increasing the computational proced
ure. Thus, the ideal case is to find the architecture with the least number 
of hidden neurons. 

As an alternative to this situation, multiple hidden layers are intro
duced in the iterative procedure which has yielded the development of a 
deep learning MLP-ANN model. As a rule of thumb, an architecture can 
be placed into the category of deep learning provided it has more than 4 
layers including the input and the output layer. In this case, two hidden 
layers are introduced in which iterations are also conducted on the 
number of neurons in each hidden layer. For the cooling capacity, a total 
of 6, 8, and 10 hidden neurons are tested in each hidden layer, whereas, 
for the total water footprints, a total of 6, 8, 10, 12, and 14 hidden 
neurons are tested in each hidden layer. For the cooling capacity, it is 
noted that the R2 has increased from 0.97866 to 0.98856 making a 
change of 1.01% by introducing a second hidden layer with the same 
number of neurons, in this case, 6. This is an appreciable change in R2 

because it has decreased the lack of fit in the regression model. However, 
as the number of neurons in the hidden layer is increased to 8 and 10, the 
performance of the predictive model has decreased which can be 

Table 3 
Selection of the most suitable ANN architecture for cooling capacity and total water footprints.  

No. Architecture R2 RMSE MSE MAPE 

Cooling capacity 
1 5-[6]-1 0.97866 0.1027 0.0106 0.0848 
2 5-[8]-1 0.98406 0.1296 0.0079 0.0889 
3 5-[10]-1 0.98047 0.0983 0.0097 0.2249 
4 5-[20]-1 0.98744 0.0797 0.0063 0.1563 
5 5-[6]-[6]-1 0.98856 0.0754 0.0057 0.0290 
6 5-[8]-[8]-1 0.97974 0.1023 0.0105 0.0972 
7 5-[10]-[10]-1 0.98231 0.0946 0.0090 0.3728  

Total water footprints 
1 5-[6]-1 0.95821 0.6192 0.3834 3.3792 
2 5-[8]-1 0.95221 0.6268 0.3929 3.2451 
3 5-[10]-1 0.96991 0.6305 0.3976 2.8177 
4 5-[20]-1 0.97334 0.6382 0.4072 2.8767 
5 5-[6]-[6]-1 0.97664 0.6305 0.3975 3.3042 
6 5-[8]-[8]-1 0.98648 0.6448 0.4158 2.8838 
7 5-[10]-[10]-1 0.98212 0.6447 0.4157 3.3357 
8 5-[12]-[12]-1 0.99246 0.6472 0.4189 2.9616 
9 5-[14]-[14]-1 0.97245 0.6522 0.4254 2.6168  
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Fig. 3. (a and b) Linear statistical fit between the experimental data and the predicted data for the best architecture. Compliance of (a1 and b1) normality of errors, 
(a2 and b2) independence of errors, and (a3 and b3) homoscedasticity of errors. (a4 and b4) Response graph between the experimental and predicted data. 
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because of the mathematical complications resulting as an outcome of 
increasing the hidden neurons. In conclusion, the suitable architecture 
for the prediction of cooling capacity has two hidden layers with 6 
neurons each, and the suitable architecture for the prediction of total 
water footprints has two hidden layers with 12 neurons each. 

Once the optimal architecture is identified, the next step is to visu
alize its regressive performance which is done by plotting the experi
mental performance indicator concerning the predicted performance 
indicator. These results for the cooling capacity and total water foot
prints are displayed in Fig. 3. Ideally, the regressive fit between the 
actual and the predictive performance indicator should be linear with a 
unity slope and a zero y-intercept, but the real situation deviates a little 
from the ideality. In the case of cooling capacity and total water foot
prints, the value of the slope is 0.9832, whereas the bias is 0.0683 which 
are close to unity and zero, respectively. It is noted that the data dis
tribution at the central part of both performance indicators has dis
played a better regression fit as compared to its extremes which can be 
because of the unavailability of sufficient data after quartile 3 and before 
quartile 1. Fig. 3 (a4 and b4) displays another representation of the 
regressive fit in which both the predicted and the actual value are placed 
on the y-axis and the absolute difference between both can be noted 
clearly. This difference between the predicted and the actual value has 
quite a significance in the determination of the accuracy of fit and it is 
required that this error should comply with various assumptions of the 
regression procedure. It includes compliance with the assumptions like 
normality, independence, and homoscedasticity. The normality of the 
errors signifies the normal bell curve distribution of the errors which 
would comply with a universally acceptable distribution pattern. It can 
be verified by making a frequency diagram of the error terms as seen in 
Fig. 3 (a1 and b1). The independence of error tests the correlation be
tween the design variables and their dependency. It is required that all 
the design variables should be independent otherwise, the regression fit 
might not be accurate. It is tested by plotting the residual errors with 
respect to the total number of data points. It is desired to have not any 

definite visible pattern. In this case, as noted in Fig. 3 (a2 and b2), both 
performance indicators satisfy the assumption of independence of er
rors. Homoscedasticity is checked by plotting the error term with respect 
to the predicted performance indicator and this assumption is also 
verified as indicated in Fig. 3 (a3 and b3). 

MLP-ANN-based digital twin models are useful because they can 
provide a direct empirical relationship between the design variables and 
the performance indicator. However, the current research has focused 
on a black-box or grey-box modeling approach where the in-depth 
explanation of this relationship is not declared properly. This brings 
difficulty in replication and validation studies in further research. Thus, 
it is necessary to add a white-box digital twin model with the application 
of the MLP-ANN model. Such a model is mathematically extensive but 
can provide an appropriate prediction of the performance indicator. 

Such a white box is displayed graphically in Fig. 4. In the first step, 
all the variables are normalized using min-max constrained minimiza
tion between the range of − 1 to +1 for effective implementation of the 
tan-sigmoid activation function. For example, the ambient temperature 

is normalized using: − 1 +
(Tamb − Tamb,min)×(2)

(Tamb,max − Tamb,min)
where 2 represents the dif

ference between +1 to − 1. All the design variables constitute five design 
variables of the input layer yielding a matrix having 1 column and 5 
rows in which each row designates a different input design variable. This 
is multiplied by the weight matrix of the first hidden layer. As seen in eq. 
(5), the weight of the first hidden layer has 5 columns for 5 design 
variables and 6 rows for a total of 6 neurons in the first hidden layer 
applied in the case of cooling capacity. The bias vector (eq. (6)) of the 
first hidden layer is added to it. It yields a matrix [p1] that is used in the 
activation function yielding the matrix: [q1] =

2
1+e− 2[p1 ]

− 1. This matrix 

[q1] is placed as an input to the next hidden layer and multiplied by its 
weight (see eq. (7)) and its bias (eq. (8)) which would result in the 
generation of the matrix [p2] going through the activation function and 
yielding [q2]. Eventually, the same procedure is applied in the 
output layer using its weight and bias matrix which are presented in eqs. 

Fig. 4. White-box model of artificial neural network for the estimation of performance indicator.  
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(9) and (10), respectively. This would provide us with a normalized 
value of the cooling capacity which can be converted into its normal 
value by re-arranging the min-max normalization function as 
given in the equation: CC =

(
(([Weight of output layer] × [q2] +

[Bias of output layer] ) + 1 ) ×
( CCmax − CCmin

2
) )

+ CCmin. 

[Bias of hidden layer 1] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 0.587639567850162
− 0.726473017497812
0.126891422414869
2.56860573655349
4.36557320159079
− 1.22263880866441

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6)    

[Bias of hidden layer 2] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0737795969181049
− 1.20473326037474
0.443419261116188
0.750968595338646
0.864395154696170
− 1.26905196849726

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8)  

[Bias of output layer] = [-2.8608] (9)   

4.3. Results of the applied optimization method 

This section summarizes and discusses the optimization results. 
Starting with the objective function, as mentioned earlier, two outcome 
indicators are identified for this study including cooling capacity (CC) 
and total water footprint (TWF). In light of the discussion mentioned 
earlier and viewing the system as a block, both indicators are somewhat 

counter-related. The cooling capacity is expected to maximize as the hot 
and dry air helps in the evaporation of more and more water. The system 
is therefore expected to maximize CC. However, in the case of TWF, 
minimization of water usage is desired. Therefore, the overall multi- 
objective function as shown in Eq. 11 is the minimization of –CC (or 

maximization of CC) and TWF. Both are independent objectives; there
fore a multi-objective function is presented. 

While the constraints, put limits on the range of the quantification of 
both the functional parameters of CC and TWF. It is primarily the 
maximum and minimum ranges of the quantities as seen in the data sets 
and plotted in Fig. 2. This is the optimization of the objective function 
subject to constraints within the search space. In general, this is quite 
basic as the space entrains all the limit range of the independent pa

rameters as indicated in Fig. 2. However, keeping a blind eye on the 
parameters can easily lead to a local minimum which may not be a 
system performance indicator as the system behaves differently when 
outside conditions are well within the thermal comfort conditions as it is 
an open-air conditioning cycle. 

This is a critical part of this work, the knowledge of the system dy
namics is of utmost importance as the data-driven model and optimi
zation are expected to lead to a non-operating system mode of working i. 
e., passing the outdoor air to comfort indoors without conditioning. This 
is an essential part of realistic decision-making and steps towards xAI 

(realizable artificial intelligence). This is the critical juncture in this 
work and points towards the fact that the intelligence in the data se
lection or its operating range is critical to evaluating the system per
formance as well as optimal conditions in multi-objective function 
optimization. For this reason and to realize the actual system perfor
mance instead of its by-pass operation (which is of importance when the 
control strategy of the whole building setup is analyzed), a curtailed 
range of independent parameters is used as search space as given in Eq. 
11. It can be noticed that the space restricts the ambient temperature to a 

[Weight of hidden layer 1] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.908123889431902 − 0.0542513491331009 − 1.64136579472561 0.351237943424630 − 0.251568025267574
2.12624802713820 1.67758315936998 1.80604726758061 − 1.29724404460463 0.362627157191961
1.35991930010710 0.272482859243860 − 2.52361330003952 − 1.75503929570321 1.34073448729706

− 0.509789974827116 1.71600475255588 − 1.20417828106988 − 2.98858550845512 − 2.45701783166648
− 0.576349479541600 − 3.15460539384414 − 0.601522171472399 − 4.96065581974215 − 1.90802783131018

4.09254097014555 4.15099580647972 1.35772654854594 1.62995236862397 − 0.243534565815890

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5)   

(7)   

[Weight of output layer] = [ − 3.82317879725307 − 0.787910734258533
− 1.41511070491873 1.96965734854498 4.15790791801437 − 2.02482510392489 ]

(10)   

R. Tariq et al.                                                                                                                                                                                                                                    



International Communications in Heat and Mass Transfer 140 (2023) 106538

11

value at the borderline of thermal comfort, instead of a data-set based 
lowest value of ambient. Moreover, the relative ambient humidity is also 
limited to a lower bound of 50% (again a borderline value for thermal 
comfort). 

Objective function : min f =

{
− CC

TWF

Constraints :

{
CC − 8.51 ≤ 0 and − CC + 0.029 ≤ 0

TWF − 60.78 ≤ 0 and − TWF + 0.39 ≤ 0

Search space :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

25◦ C ≤ Tamb ≤ 36.76 ◦C

50% ≤ RHamb ≤ 100%

30 ◦C ≤ Treg ≤ 80.66 ◦C

0.10kg
/

s ≤ Qsupply ≤ 2.70kg
/

s

0.021kg
/

s ≤ Qregeneration ≤ 2.78kg
/

s

(11) 

The multi-objective function parameters of CC and TWF are shown in 
Fig. 5(a) for the search space and constraints as mentioned in Eq. 11. The 
range of variations of both parameters can be divided into certain 
quarters/regions. The four regions can be distinguished from the scatter 
observed in Fig. 5(a). Region A indicates the low CC regime with high 
TWF. Region B is at the bottom of the figure with low CC and TWF. 
Region C is opposite region B with high CC and high TWF. While region 
D is at a relatively lower TWF and high CC. One can note that the low 
TWF and higher CC are not seen in this scatter plot, the solution is most 
desirable and labeled as the Ideal solution. Each region has its own 
characteristics, as region A is dominated by high TWF while region B is 
low on the ability to cool the space at low CC. Region C is a relatively 
higher TWF as well as higher CC. It is imperative to notice that the ideal 
solution is the one with lower TWF and higher CC but distinguishing 
between these regions of Fig. 5(a); the merits of a certain region over 

others are not plainly clear. Though region C is desirable in terms of CC 
but has the highest TWF. While region D is sparsely mapped in the 
scatter plot indicating that evaporative cooling has a significant role in 
air cooling and thus TWF shall happen to be significant in any case. 
Region B is not fulfilling the cooling demand and thus shall remain lower 
on CC as well as TWF. It seems that region A is somewhat more likely to 
have the optimal solution set and picking the right optimal conditions 
pertaining to closeness to the ideal solution is expected in the bordered 
region in Fig. 5(a). In fact, the Pareto front is zoomed in and shown in 
Fig. 5(b) for clarity. As region A is medium in terms of fulfilling CC re
quirements as well as lessening the TWF, the ideal solution remains 
(within region A) with the lowest TWF and highest CC i.e., towards the 
left bottom corner of Fig. 5(b). While the farthest point on the top left 
side of Fig. 5(b) is non-ideal with lower CC and higher TWF. 

Using TOPSIS selection i.e., mapping the desirable solution closest to 
the ideal point is the optimal condition for this multi-objective optimi
zation. The technique TOPSIS, which is an abbreviation of “The Tech
nique for Order of Preference by Similarity to Ideal Solution”, is a 
multicriteria decision-making algorithm to select the final optimal so
lution within the Pareto front. Since all the points on the Pareto front are 
optimal points, thus, such a multicriteria decision-making system is 
needed to give select one point within each optimal point. This tech
nique is applied based upon a total of five steps called (a) normalization, 
(b) evaluation of ideal and non-ideal solutions, (c) calculation of positive 

Fig. 5. (a) Search space of the data-driven optimization process, and (b) Pareto front along with TOPSIS best selection for final optimization results.  

Table 4 
The final optimal solution for optimal water resource consumption and cooling 
capacity.  

Variable Symbol Unit Optimal value 

Ambient temperature Tamb 
oC 28.0 

Ambient relative humidity RHamb % 52.0 
Regeneration temperature Treg 

oC 70.0 
Supply flow rate Qsupply kg/s 2.13 
Regeneration flow rate Qregeneration kg/s 2.35 
Cooling capacity CC tons 3.32 
Total water footprints TWF kg/h 45.17  

Fig. 6. Sensitivity of the design variables on the (a) cooling capacity, and (b) 
total water footprints. 
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and negative Euclidian distances, (d) calculation of relative closeness 
index, and (e) sorting. In the first step, the normalization of all the 
vectors (decision/design variables, and fitness/performance indicators) 
is accomplished through the Euclidian non-dimensioning method. The 
ideal and non-ideal points are evaluated which are in reality some hy
pothetical points in the design problem but can help us to identify the 
best candidate within the TOPSIS selection. The ideal point (desired 
conditions) for this optimization problem would be the maximum value 
of cooling capacity and the minimum value of the total water footprints 
within the vector of a fitness function. On the other side, the non-ideal 
point (non-desired conditions) for the subject case would be the mini
mum cooling capacity with the maximum total water footprints. Once, 
the ideal and the non-ideal points are identified, then positive and 
negative Euclidian distances are calculated for each optimal point of the 
Pareto front with respect to the ideal and non-ideal solutions. These 
distances are used to evaluate the relative closeness index which is 
defined as the relative geometrical closeness of any Pareto front point 
with respect to the ideal solution. Thus, sorting the matrix of relative 
closeness index and its highest value is the realistic optimal point on the 
Pareto front. Further technical details of its implementation along with 
the relative equations can be consulted from Tariq et al. [42,43] and 
Tzuc et al. [47]. 

The selected point, in terms of nearness to the ideal point and farthest 
from the non-ideal point, corresponds to the input and output parame
ters listed in Table 4. It is clear that the system has the optimal condi
tions in relatively calmer ambient conditions where the ambient 
temperature is around 28 ◦C at a relative humidity of 52%. At these 
conditions, the system cooling capacity is more than 3 tons with more 
than 45 kg of water usage in one hour at the listed flow rates. It is very 
important to mention that the system shall be operational at higher 
ambient temperature and relative humidity, however, it shall be getting 
far from the ideal point as mentioned in Fig. 5(b). One may appreciate 
that the hot and dry water is expected to drain the water resource, while 
high ambient humidity is expected to increase the desiccant wheel load 
in terms of frequent recharging. 

4.4. Sensitivity analysis 

The sensitivity analysis is evaluated using the Garson method which 
takes the synaptic weights of the input, hidden, and output layers (eqs. 
5–10). It is based upon the analogy that the magnitude of the weight of 
each variable would eventually indicate the strength of the corre
sponding variable on the fitness function. Thus, for each fitness function, 
the Garson method is applied two times to give the resulting sensitivity 
ranks. Further theory, implementation, and relative mathematics of the 
Garson method can be consulted by Ajbar et al. [48]. 

The overall impact of the above analysis can be more appreciated 
with the help of the relative impact each of the operating parameters is 
causing on the overall multi-objective function. This is analyzed here in 
this section that the considered input/independent parameters are 
influencing the desired outcomes. Amongst the considered 05 inde
pendent parameters, each of these is analyzed for the output parameters 
for CC and TWF in Fig. 6(a) and (b) respectively. 

Clearly, the ambient temperature and relative humidity are less 
influential on the cooling capacity as indicated by the sensitivity anal
ysis shown in Fig. 6(a). The most important factor is the supply airflow 
rate and the return/regenerative flow of air along with the regenerative 
temperature. Clearly, the higher need for airflow and regeneration re
quirements impact the cooling capacity of the system. While the ambient 
air conditions are somewhat less important as the intermediate com
ponents in the system damp the direct impact of ambient air on the 
system. 

While the total water footprint is primarily driven by the ambient air 
condition and especially the number of water vapors carried by the 
ambient air while entering the system. This is counter to the charac
teristics of CC and thus explains the challenge faced in this multi- 

objective optimization problem. Quite clearly, the independent param
eters have their own impacts on the system; however, the combined 
influence is what the multi-objective optimization is able to evaluate 
and present. 

5. Conclusions 

Desiccant evaporative cooling systems are energetically, economi
cally, and environmentally favorable candidates to handle the air con
ditioning load in commercial and residential buildings subjected to a 
specific range of climatic conditions. Its prime limitation is related to its 
high water footprint which is required to produce the required cooling 
capacity. Especially with the novel technologies like the usage of the 
Maisotsenko Cycle, the potential of desiccant-enhanced indirect evap
orative coolers is more suitable, but it is primarily constrained by its 
high water usage too. This work is dedicated to applying a methodo
logical framework including deep learning, genetic algorithm, and 
multicriteria decision-making analysis to reduce the water footprints of 
the desiccant-enhanced evaporative coolers with experimental data 
obtained using real building conditions. The objective is to display a 
multicriteria outcome which also includes the maximization of the 
cooling capacity too. The following are the main conclusions obtained 
from this research:  

1. The application of an artificial neural network with a deep learning 
architecture using the Bayesian Regularization algorithm to optimize 
the bias and weights offers the best statistical performance.  

2. A deep learning algorithm with architecture 5-[6]-[6]-1 is optimal to 
predict the experimental data set of cooling capacity and offers a 
coefficient of determination of 0.98856, along with RMSE: 0.0754, 
MSE: 0.0057, and MAPE: 0.0290.  

3. A deep learning algorithm with architecture 5-[12]-[12]-1 is optimal 
to predict the experimental data set of total water footprints and 
offers a coefficient of determination of 0.99246, along with RMSE: 
0.6472, MSE: 0.4189, and MAPE: 2.9616.  

4. Non-sorting genetic algorithm (NSGA-II) and multicriteria decision 
analysis using TOPSIS have suggested that the optimized total water 
footprints are 45.17 kg/h with a system of 3.32 tons of refrigeration. 
These optimal values are found in the best combination of design 
variables in which the ambient temperature is 28 ◦C, ambient rela
tive humidity is 52.0%, supply airflow rate is 2.13 kg/s, and regen
eration flow rate is 2.35 kg/s, and the regeneration temperature is 
70.0 ◦C.  

5. Sensitivity analysis has suggested that the supply airflow rate and 
regeneration airflow rate are the most dominant design variables for 
the cooling capacity, whereas the relative humidity and the ambient 
temperature are the most dominant for the evaluation of total water 
footprints. 
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[12] D. Pandelidis, A. Cichoń, A. Pacak, P. Drąg, M. Drąg, W. Worek, S. Cetin, 
Performance study of the cross-flow Maisotsenko cycle in humid climate 
conditions, Int. Commun. Heat Mass Transf. 115 (2020), 104581, https://doi.org/ 
10.1016/j.icheatmasstransfer.2020.104581. 

[13] R. Prommas, P. Rattanadecho, D. Cholaseuk, Energy and exergy analyses in drying 
process of porous media using hot air, Int. Commun. Heat Mass Transf. 37 (2010) 
372–378, https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2009.12.006. 

[14] E.M. Salilih, N.H. Abu-Hamdeh, H.F. Oztop, Analysis of double U-tube ground heat 
exchanger for renewable energy applications with two-region simulation model by 
combining analytical and numerical techniques, Int. Commun. Heat Mass Transf. 

123 (2021), 105144, https://doi.org/10.1016/J. 
ICHEATMASSTRANSFER.2021.105144. 

[15] C. Tang, K. Vafai, C. Gu, K.N. Gloria, M.D.R. Karim, Experimental investigation of 
dehumidification performance of a vapor compression refrigeration system, Int. 
Commun. Heat Mass Transf. 137 (2022), 106282, https://doi.org/10.1016/J. 
ICHEATMASSTRANSFER.2022.106282. 

[16] X. Shi, Y. Mu, G. Chen, X. Zhang, Experimental investigation on the start-up 
characteristics of single loop thermosyphon for motorized spindle bearing-shaft 
system cooling, Int. Commun. Heat Mass Transf. 120 (2021), 104989, https://doi. 
org/10.1016/J.ICHEATMASSTRANSFER.2020.104989. 

[17] S.E. Rafiee, Experimental and thermo-dynamical analysis of fully turbulent gas 
flows in vortex tube- fluid, temperature and power separations, isentropic 
efficiency, coefficient of performance (COP), Int. Commun. Heat Mass Transf. 138 
(2022), 106296, https://doi.org/10.1016/J. 
ICHEATMASSTRANSFER.2022.106296. 

[18] J. Mohammadpour, S. Husain, F. Salehi, A. Lee, Machine learning regression-CFD 
models for the nanofluid heat transfer of a microchannel heat sink with double 
synthetic jets, Int. Commun. Heat Mass Transf. 130 (2022), 105808, https://doi. 
org/10.1016/J.ICHEATMASSTRANSFER.2021.105808. 

[19] J.X. Wang, Z. Wu, M.L. Zhong, S. Yao, Data-driven modeling of a forced convection 
system for super-real-time transient thermal performance prediction, Int. Commun. 
Heat Mass Transf. 126 (2021), 105387, https://doi.org/10.1016/J. 
ICHEATMASSTRANSFER.2021.105387. 

[20] D. Kim, J. Lee, S. Do, P.J. Mago, K.H. Lee, H. Cho, Energy modeling and model 
predictive control for HVAC in buildings: a review of current research trends, 
Energies 15 (2022), https://doi.org/10.3390/EN15197231. Page 7231. 15 (2022) 
7231. 

[21] D.B. Jani, M. Mishra, P.K. Sahoo, Application of artificial neural network for 
predicting performance of solid desiccant cooling systems – a review, Renew. Sust. 
Energ. Rev. 80 (2017) 352–366, https://doi.org/10.1016/J.RSER.2017.05.169. 

[22] M.H. Demir, S. Cetin, O. Haggag, H.G. Demir, W. Worek, J. Premer, D. Pandelidis, 
Independent temperature and humidity control of a precooled desiccant air cooling 
system with proportional and fuzzy logic + proportional based controllers, Int. 
Commun. Heat Mass Transf. 139 (2022), 106451, https://doi.org/10.1016/J. 
ICHEATMASSTRANSFER.2022.106451. 

[23] Y. Chen, H. Yan, H. Yang, Comparative study of on-off control and novel high-low 
control of regenerative indirect evaporative cooler (RIEC), Appl. Energy 225 
(2018) 233–243, https://doi.org/10.1016/J.APENERGY.2018.05.046. 

[24] H. Yan, Y. Chen, W. Zhang, Year-round-based optimization of high-low control in 
the regenerative indirect evaporative cooler (RIEC), Doi:10.1080/ 
23744731.2019.1620576 25 (2019) 1394–1405, https://doi.org/10.1080/ 
23744731.2019.1620576. 

[25] Y. Chen, H. Yan, Y. Luo, H. Yang, A proportional–integral (PI) law based variable 
speed technology for temperature control in indirect evaporative cooling system, 
Appl. Energy 251 (2019), 113390, https://doi.org/10.1016/J. 
APENERGY.2019.113390. 
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