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STUDY QUESTION: Can a deep learning model predict the probability of pregnancy with fetal heart (FH) from time-lapse videos?

SUMMARY ANSWER: We created a deep learning model named IVY, which was an objective and fully automated system that predicts
the probability of FH pregnancy directly from raw time-lapse videos without the need for any manual morphokinetic annotation or blastocyst
morphology assessment.

WHAT IS KNOWN ALREADY: The contribution of time-lapse imaging in effective embryo selection is promising. Existing algorithms for
the analysis of time-lapse imaging are based on morphology and morphokinetic parameters that require subjective human annotation and thus
have intrinsic inter-reader and intra-reader variability. Deep learning offers promise for the automation and standardization of embryo selection.

STUDY DESIGN, SIZE, DURATION: A retrospective analysis of time-lapse videos and clinical outcomes of 10 638 embryos from eight
different IVF clinics, across four different countries, between January 2014 and December 2018.

PARTICIPANTS/MATERIALS, SETTING, METHODS: The deep learning model was trained using time-lapse videos with known FH
pregnancy outcome to perform a binary classification task of predicting the probability of pregnancy with FH given time-lapse video sequence.
The predictive power of the model was measured using the average area under the curve (AUC) of the receiver operating characteristic curve
over 5-fold stratified cross-validation.

MAIN RESULTS AND THE ROLE OF CHANCE: The deep learning model was able to predict FH pregnancy from time-lapse videos
with an AUC of 0.93 [95% CI 0.92–0.94] in 5-fold stratified cross-validation. A hold-out validation test across eight laboratories showed that
the AUC was reproducible, ranging from 0.95 to 0.90 across different laboratories with different culture and laboratory processes.

LIMITATIONS, REASONS FOR CAUTION: This study is a retrospective analysis demonstrating that the deep learning model has a high
level of predictability of the likelihood that an embryo will implant. The clinical impacts of these findings are still uncertain. Further studies,
including prospective randomized controlled trials, are required to evaluate the clinical significance of this deep learning model. The time-lapse
videos collected for training and validation are Day 5 embryos; hence, additional adjustment would need to be made for the model to be used
in the context of Day 3 transfer.

WIDER IMPLICATIONS OF THE FINDINGS: The high predictive value for embryo implantation obtained by the deep learning model
may improve the effectiveness of previous approaches used for time-lapse imaging in embryo selection. This may improve the prioritization of
the most viable embryo for a single embryo transfer. The deep learning model may also prove to be useful in providing the optimal order for
subsequent transfers of cryopreserved embryos.

STUDY FUNDING/COMPETING INTEREST(S): D.T. is the co-owner of Harrison AI that has patented this methodology in association
with Virtus Health. P.I. is a shareholder in Virtus Health. S.C., P.I. and D.G. are all either employees or contracted with Virtus Health. D.G. has
received grant support from Vitrolife, the manufacturer of the Embryoscope time-lapse imaging used in this study. The equipment and time
for this study have been jointly provided by Harrison AI and Virtus Health.

Key words: artificial intelligence / deep learning / neural network / embryo selection / time-lapse

.

.

D
ow

nloaded from
 https://academ

ic.oup.com
/hum

rep/article/34/6/1011/5491340 by guest on 21 August 2022

http://creativecommons.org/licenses/by-nc/4.0/


1012 Tran et al.

Introduction
The advent of more physiological culture conditions for the human
embryo, conceived through IVF, has led to the routine culture and
transfer of embryos at the blastocyst stage (Gardner et al., 1998;
Biggers and Racowsky, 2002). Transfer of a single blastocyst can avoid
the many adverse medical conditions for mother and baby associated
with multiple gestations (Adashi et al., 2003; Sullivan et al., 2012).

However, our ability to select the optimum embryo for transfer has
changed very little since the birth of Louise Brown about 40 years
ago (Steptoe and Edwards, 1978). From the beginnings of IVF, it was
noted that the rate of embryo development was associated with
transfer outcome (Edwards et al., 1984). Subsequently, elegant grading
systems have been developed for each successive stage of preimplan-
tation human embryo development (Alpha Scientists in Reproductive
Medicine and ESHRE Special Interest Group of Embryology, 2011;
Gardner and Balaban, 2016), and each one has been able to relate
aspects of discrete stages of development at specific times to viability.
In the case of the blastocyst, an alpha numeric system has been in place
since the turn of the century, which takes into account both inner cell
mass development, as well as the trophectoderm, and its biological
activity (measured indirectly through the expansion of the blastocoel
cavity itself ) (Schoolcraft et al., 1999; Gardner et al., 2000). Although
such an approach has proved particularly effective in selecting embryos
for transfer, data on the metabolic activity of the human blastocyst
indicate that Day 5 morphology alone is not the sole predictor of
embryonic viability (Gardner et al., 2015), with glucose consumption
being positively correlated with the ability of a blastocyst to give rise
to a pregnancy (Gardner et al., 2011)

Prior to the introduction of time-lapse technologies, all embryo
assessments were restricted to specific time points during the first
5 days of life. Clearly, the majority of developmental events were not
being captured, and the use of time-lapse to image the developing
embryo every few minutes has confirmed that several key features of
human embryo development were being missed, such as direct cleav-
age (Rubio et al., 2012), or were simply not being quantitated, such as
the time taken to initiate and complete cavitation. This latter point is of
great physiological interest, as it appears tied to both metabolic activity
and embryonic ploidy (Desai et al., 2018). In an attempt to glean
more predictive potential from time-lapse images, several algorithms
have been created (Motato et al., 2016; Petersen et al., 2016; Fishel
et al., 2018), which take into account the annotated time at which
key morphological events occur. Data to date have suggested that
this approach may have value in embryo selection, and its efficacy has
been studied in randomized trials. Results have been variable (Rubio
et al., 2014; Goodman et al., 2016), but accumulating data infer that
key kinetic events are associated with important biological information
(Desai et al., 2018).

However, a current limitation of the analysis of time-lapse images
through these algorithms was that it was unfeasible to capture the
full temporal and spatial richness of time-lapse video within a few
morphokinetic parameters. As such, time-lapse data are currently
under-utilized in making predictions about clinical outcomes. Such
morphokinetic algorithms also rely on the embryologist to manually
annotate the morphological features and morphokinetic timing data.
These parameters can then be used as input for statistical or machine-
learned scoring tools. Unfortunately, time-lapse annotation and grading
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is a subjective process with intrinsic inter-reader and intra-reader
variability (Venetis et al., 2017) that will impact the performance of
the downstream scoring tools. What determines fetal heart (FH)
pregnancy was likely not a simple correlation between a few known
features, but rather a complex interaction between many factors across
both the temporal and spatial dimension (information acquired through
time-lapse microscopy), which may or may not have been identified
yet.

Deep learning is a subfield of machine learning that is based on
learning hierarchical knowledge from data rather than rule-based pro-
gramming. Deep learning models are inspired by the biological ner-
vous system in the way that information is processed through inter-
connecting neurons that are many layers deep (Kim, 2016). Recent
advancement in learning algorithms, together with the explosion of
electronic medical data and the increase in computational processing
power, has seen an explosion of application of artificial intelligence
in several aspects of human ART (Bui et al., 2017; Blank et al., 2019;
Curchoe and Bormann, 2019). A deep learning algorithm can directly
analyse the entire raw time-lapse video without the need for annotated
parameters, making use of every data point collected from time-lapse
to predict the probability of FH pregnancy. The objective of the study
was to investigate the hypothesis that a deep learning model named
IVY is a valid tool for the prediction of the implantation potential of
human preimplantation embryos.

Materials and Methods

Data collection
This study was carried out across eight IVF laboratories in four
countries, IVFAustralia (Sydney, Australia), IVFAustralia (Canberra,
Australia), Hunter IVF (Newcastle, Australia), Melbourne IVF (Mel-
bourne, Australia), Queensland Fertility Group (Brisbane, Australia)
SIMS IVF (Dublin, Ireland), Complete Fertility Centre (Southampton,
UK) and Aagard Fertility (Aarhus, Denmark). Each clinic used its own
approach to superovulation, egg collection and embryo transfer as
shown in Table I. All embryos were cultured in the EmbryoscopeTM

or Embryoscope PlusTM (Vitrolife, Copenhagen, Denmark). The study
was a retrospective analysis of the videos obtained from fresh embryos
that were fertilized and cultured in a time-lapse incubator in these
laboratories from January 2014 to December 2018.

All embryos cultured to the blastocyst stage in a time-lapse incu-
bator in these laboratories during the time period were studied,
regardless of their stage, grade, ploidy, fertilization status and culture
method. No embryos cultured in a time-lapse incubator were excluded
from the analysis. As a result, the study group included embryos
that resulted from fresh oocyte retrieval, vitrified oocyte warming
and oocyte donation. Embryos that underwent embryo biopsy for
preimplantation genetic testing were included. Embryos that were
cryopreserved for later use were studied and the later outcome from
the thawed embryo transfer was included in the analysis. Patients
from all demographic groups and medical history were included. The
mean age was 35.6 years (age range, 22–50 years). No patients were
excluded.

The study included 1835 unique treatment cycles from 1648 indi-
vidual patients. On average, there were 7.9 embryos per treatment.
Twenty-eight percent of the embryos transferred were part of a
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Predictive value of deep learning for time-lapse imaging 1013

Table I Number of embryos, patient ages and culture media used in each laboratory.

Laboratory
number

Laboratory Number of embryos
studied

Mean age Age range Media used in the
laboratory

.......................................................................................................................................................................................
1 IVFAustralia (Sydney, Australia) 1264 36.8 23–46 Vitrolife, Sequential; Vitrolife,

Single Stage (G-TLTM)

2 IVFAustralia (Canberra,
Australia)

150 34.2 24–44 Sage, Sequential

3 Hunter IVF (Newcastle,
Australia)

632 34.8 25–43 Vitrolife, Single Stage (G-TLTM)

4 Melbourne IVF (Melbourne,
Australia)

758 36.6 30–45 Vitrolife, Single Stage (G-TLTM)

5 Queensland Fertility Group
(Brisbane, Australia)

3827 35.6 22–50 Sage, Sequential; COOK,
Sequential; Vitrolife, Single Stage
(G-TLTM)

6 SIMS IVF (Dublin, Ireland) 1454 35.9 25–46 Vitrolife, Single Stage (G-TLTM)

7 Complete Fertility Centre
(Southampton, UK)

915 34.7 24–44 Vitrolife, Sequential; Vitrolife,
Single Stage (G-TLTM)

8 Aagard Fertility (Aarhus,
Denmark)

1683 34.2 24–44 Sage 1-step

Table II Classification of the outcome of each embryo for training of the deep learning system.

Classification Outcome
.......................................................................................................................................................................................

POSITIVE for each embryo
involved

FH observed on ultrasound after 7 weeks gestation following a single embryo transfer or multiple FH observed equal to
the number of embryos transferred

NEGATIVE for each embryo
involved

No pregnancy occurred or no FH was observed on ultrasound after 7 weeks gestation following transfer or embryo
discarded because of a failed or abnormal fertilization, grossly abnormal morphology or aneuploidy from preimplantation
genetic testing

UNKNOWN for each
embryo involved

Multiple embryos transferred and FH(s) seen but the number is fewer than the number transferred

PENDING Embryo in storage and not yet used

FH, Fetal heart.

multiple transfer cycle. Twenty-nine percent of the embryos trans-
ferred were frozen embryos, and the remainder were fresh embryo
transfers. The resulting outcomes for the embryos are shown
in Fig. 1.

Deidentified videos, as well as patient age and the outcome for
each embryo, were provided to the researchers by each participating
laboratory. All other patient information was held confidentially by
the participating laboratory, and no identifying information was made
available to the researchers. The outcomes of the analysis were not
reported back to the participating laboratories.

The clinical outcome for each embryo was classified as per Table II.
The principal endpoint was an FH pregnancy that was defined by the
observed presence of an FH on ultrasound at or beyond 7 weeks
gestation. The entire dataset includes the 8836 embryos coded as
positive or negative, which were used for training and testing of the
deep learning model.

Training of the deep learning model
The training process began by randomly partitioning the entire dataset
into an 80% training dataset and a 20% testing dataset. The deep
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learning model named IVY was only trained on the embryos in the
training set and subsequently used to make predictions on the held-
out testing dataset to estimate its predictive power.

IVY is a feed forward deep learning model that takes nothing but
the raw time-lapse video sequence as input and produces a confidence
score ranging from 0 to 1 as output that represents the model’s
confidence that the input embryo video will lead to an FH pregnancy.
The behaviour characteristic of this deep learning model was dictated
by a large set of weights that were randomly initialized at the beginning
of training; hence, the model starts out making random predictions.

During the training process, batches of time-lapse videos were
randomly sampled from the training dataset. The deep learning model
then attempted to make predictions on these time-lapse videos and
produce confidence scores for each embryo. These predictions were
compared with the known target outcomes (0 for negative and 1
for positive) to compute the difference known as the ‘loss’, which
represents how far off the predictions was compared to the known
outcomes.

The loss value was then used to compute the incremental updates on
all of the model’s weights to improve its prediction, a process known
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1014 Tran et al.

Figure 1 The outcomes of the embryos being studied. FH, Fetal heart.

as backpropagation. This process was repeated for many thousands
of updates to drive down the loss value. As the training progressed,
the loss value was continuously reduced closer to 0, which translate
to predictions that were closer to the actual FH pregnancy outcome.
The training set was looped over randomly for 20 epochs. Each epoch
represents a single pass over the dataset. Once the loss value had
plateaued, and no more improvement could be made, the training was
stopped. The trained model and all its weights were then saved to make
predictions against the unseen embryos in the testing dataset. The
predictions were compared with the known FH pregnancy outcome
from the testing dataset to obtain the performance characteristic of
the trained model.

ROC
The performance characteristic of IVY was calculated using the
receiver operating characteristic (ROC) curve generated by plotting
the true positive rate (sensitivity) against the false positive rate (1-
specificity) across all possible thresholding values using the predicted
confidence score compared to the actual FH pregnancy outcome.
Sensitivity and specificity values can be calculated by selecting a specific
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thresholding value. A lower threshold value will yield a higher sensitivity
and lower specificity while a higher threshold value will yield a lower
sensitivity and higher specificity. The nature of this trade-off can be
summarized by calculating the area under the curve (AUC) of the
ROC curve.

AUC ranged from 0.5 to 1.0, which represents the predictive power
of a binary classifier. An AUC of 0.5 represents completely random
choices while an AUC of 1 represents perfect discrimination. The
higher the AUC, the more favourable the trade-off between sensitivity
and specificity. The quantitative value of AUC can also simply be inter-
preted as the probability that the binary classifier will score a randomly
selected positive embryo higher than a randomly selected negative
embryo. As a result, AUC was the most appropriate benchmark for
a binary classifier’s ability to rank embryos according to their likelihood
of creating an FH pregnancy.

5-fold cross-validation
To increase the robustness of the performance estimation we per-
formed 5-fold stratified cross-validation (Kuhn and Johnson, 2013).
During this process, the entire dataset was randomly partitioned
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into five subsets of equal size such that each subset maintained the
same prevalence of positive embryos. We subsequently trained five
separate deep learning models from scratch on four out of the five
subsets and performed validation on the fifth hold-out subset. For
each of the training-testing runs, we calculated the AUC on the testing
dataset as described above. The final AUC was reported as the mean
AUC over five separate training-testing runs. Cross-validation enables
the estimate a more reliable performance metric. This methodology
lowers the risk of overestimating or underestimating the model true
performance characteristic by sampling a uniquely favourable or chal-
lenging testing dataset by chance.

Eight laboratories hold-out validation
To investigate the transferability of the deep learning model across
different laboratory environments and patient demographics, we also
performed an eight-laboratory hold-out validation test (Kuhn and
Johnson, 2013). In this approach, the entire dataset was partitioned into
eight cohorts according to their laboratory of origin. We subsequently
trained another eight deep learning models from scratch by holding
out embryos from each of the eight laboratories for validation and
performed training on the other seven laboratories’ videos. We then
used each of the eight trained models to calculate the AUC on the
embryos from the corresponding hold-out laboratories to estimate its
predictive power on the untrained lab.

Ethical approval
Under the Australian National Statement on Ethical Conduct in Human
Research (National Health and Medical Research Council, 2015), this
project was classified as negligible risk and was exempted from ethical
review.

Results

ROC
Analysis of the ROC is shown in Fig. 2. The resulting AUC of IVY
to predict FH pregnancy on the testing dataset was 0.93 (95% CI
0.92–0.94).

5-fold stratified cross-validation
The results of the 5-fold cross-validation are shown in Table III. The
mean AUC over 5-fold stratified cross-validation was 0.93. The AUC
was reproducible across five separate training-validation runs.

Eight laboratories hold-out validation
The results of the eight laboratories hold-out validation are shown
in Supplementary Table S1. The validation AUC from each laboratory
was very similar indicating excellent transferability across the different
laboratory process and clinical environments.

Discussion
The data presented demonstrate that deep learning can predict, with
a high degree of probability and reproducibility, the likelihood of a
transferred embryo implanting and developing as far as FH. The AUC
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Figure 2 ROC curve for prediction of FH pregnancy on the
testing dataset by IVY. ROC, Receiver operating characteristic;
AUC, area under the curve.

finding presented here categorizes the diagnostic test quality of IVY as
excellent (Šimundić, 2009). Our findings suggest that the combination
of time-lapse imaging and deep learning provides an assessment of the
embryo viability that is likely to be significantly better than previous
algorithm-based approaches.

Previous approaches to morphokinetic analysis (Meseguer et al.,
2012; Conaghan et al., 2013; Basile et al., 2014; Milewski et al., 2016;
Fishel et al., 2018; Liu et al., 2018) have been based on algorithms
that have studied known events in embryological development, such
as rapid early cleavage and blastulation, and applied scores to these
known events. Deep learning takes an entirely different approach,
where time-lapse videos are objectively reviewed with no assumptions
at all being made about the significance, or otherwise, of different
events in early embryo development.

A number of studies have examined the predictive power of
morphokinetic algorithms. A comparison of six previously published
embryo selection algorithms to a single set of blastocysts (Barrie et al.,
2017) found that none of the algorithms had an AUC of greater than
0.65. A study from our own group (Storr et al., 2015) carried out a
logistic regression of four different approaches. They found the AUC
on ROCs curve varied from 0.585 to 0.748. A further study (Liu et al.,
2018) observed a wide range of predictive powers from 0.509 to
0.762, depending on the algorithm tested.

Previous studies of the predictive capacity of morphokinetics
on Day 2 embryos (Ahlstrom et al., 2016; Milewski et al., 2016)
give comparable results and have suggested that an embryologist
approach gives an AUC of 0.74 (Ahlstrom et al., 2016) while
morphokinetics gives an AUC of 0.67 (Ahlstrom et al., 2016) and 0.70
(Milewski et al., 2016).

The inbuilt software in the Embryoscope system is the KIDscore
(Petersen et al., 2016) whereby embryos are allocated to one of five
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Table III Results of the 5-fold cross-validation analysis.

Fold 1
(n = 1767)

Fold 2
(n = 1767)

Fold 3
(n = 1767)

Fold 4
(n = 1767)

Fold 5
(n = 1768)

AUC

.......................................................................................................................................................................................
1 Test Train Train Train Train 0.93

2 Train Test Train Train Train 0.93

3 Train Train Test Train Train 0.92

4 Train Train Train Test Train 0.94

5 Train Train Train Train Test 0.93

Mean AUC 0.93

Mean AUC, The mean area under the curve across 5 cross-validation steps.

categories (KID1–KID5) based on early cleavage events. This approach
has previously been studied and found to surpass the predictive value
of 0.745 for morphology based on accepted criteria (Alpha Scientists in
Reproductive Medicine and ESHRE Special Interest Group of Embry-
ology, 2011).

Two recent reports have added understanding to this field. Blank
et al. (2019) has studied the use of machine learning to combine known
morphokinetic algorithms, similar to the above, with clinical predic-
tors of IVF outcome such as parental age, Anti-Mullerian hormone
concentration and past pregnancies. Although it is also an application
of machine learning to the problem of embryo selection, the overall
approach is quite different from the deep learning methodology of
the present study with a correspondingly lower AUC (0.74) on ROC
analysis.

Khosravi et al. (2019) have used deep learning to analyse blastocyst
images derived from time-lapse imaging and were able to demonstrate
a very high ROC (0.98) in being able to predict the embryologist
assessment of the embryo. However, unlike our model, this group was
unable to demonstrate any direct predictive value for pregnancy. This
model differs from our model in being based on only a limited number
of images. Our deep learning model studies the whole video and it is
likely to be this that gives it the capacity to identify the likelihood of
pregnancy with a high degree of predictability.

Clearly, the clinically significant endpoint for any fertility intervention
is live birth per cycle started. In this study, we have used FH as
the assessment of clinical pregnancy per embryo transferred, as the
approach being evaluated is a prediction of the implantation rate for
each individual embryo. We acknowledge that the FH rate is clearly
only a proxy for live birth, and future clinical studies will need to
evaluate the impact on live birth rate. However, at this stage of
assessing a rapidly developing technology, the use of live birth as an
endpoint would be impractical.

One further limitation of this study that should be noted is that the
deep learning system was trained on data from two specific incubator
systems (EmbryoscopeTM and Embryoscope PlusTM, Vitrolife) and the
applicability to other time-lapse incubator systems remains unclear.
However, the different laboratories involved in this study have het-
erogeneous patient characteristics, apply a wide range of clinical IVF
stimulation regimes and use a variety of different culture media. The
use of the eight laboratories hold-out validation demonstrates that the
predictive value of the deep learning approach is robust despite a wide
range of clinical settings of IVF in different parts of the world.
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Previous randomized controlled trials of morphokinetics applied
to time-lapse images have not provided convincing evidence of any
clinical benefit from such approaches. Some studies have not found
any benefit of time-lapse images in improving success rates (Ahlstrom
et al., 2016; Goodman et al., 2016), while others have suggested a
benefit in success rate (Rubio et al., 2014). Further, it is difficult to
separate the different effects of the morphokinetic analysis from
varying laboratory conditions. Given the relatively low predictive value
with the algorithm-based approaches, a paucity of clinical efficacy
may not be entirely surprising. The significantly improved predictive
value of the deep learning approach such as IVY suggests that further
clinical prospective studies based on a deep learning approach are
needed to investigate the possibility of a clinical benefit from this
approach.

As in all of IVF, the cumulative likelihood of a successful pregnancy for
one cycle started is a consequence of a number of factors including the
clinical context, the stimulation approach, the culture system used and
the clinic’s own inherent success rates. Given modern cryopreservation
capacity, the cumulative success rate would be very unlikely to be
affected by the ability to predict the implantation rate for a partic-
ular embryo. However, the capacity to predict the likelihood of an
embryo transfer successfully will result in the embryo with the highest
developmental potential being selected first. This would not necessarily
affect the cumulative likelihood of obtaining a pregnancy from a batch
of embryos cultured from an IVF cycle, but will shorten the time to
pregnancy.

The development of deep learning systems may also offer other
benefits in the IVF laboratory. Deep learning may increase laboratory
efficiency, particularly compared to the time-consuming work involved
in annotating morphokinetic parameters as well as eliminating inter-
observer variation between embryologists. These potential benefits
merit investigation through cost analysis studies.

The data presented here open up the exciting area of investigation of
the relationship between the critical features of time-lapse imaging that
the deep learning identifies as predictive of implantation and the cellular
and physiological events of preimplantation embryo development.
Considering that the model operates at raw pixel level across time,
macroscopic features such as embryo/cell shape, size and finer features
such as texture and movement pattern can all be learned through the
training data. The model was trained tabula rasa and decides for itself
the significance or otherwise of all these features (or the complex
interaction between these features) and assigns predictive weighting
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accordingly. However, the exact logic utilized by the model, in making
its decisions, remains an active area of investigation and will be a topic
for future study.

Further, the model presented utilizes the entire video to inform its
prediction of the study endpoint in one single pass, which is distinctly
different to how embryologist analyse time-lapse video from frame
to frame. There may be time intervals in the 5 days of development
that are more important than others but this will require further
exploration. Future studies to correlate IVY’s prediction with other
parameters of embryo physiology, such as metabolic activity and chro-
mosomal constitution, will be of value in advancing our understanding
of preimplantation embryo development.

One major question is how these predictive calculations relate to
other clinical factors that are known to predict embryo outcomes
such as female age and previous reproductive history. The findings
presented in this study, quite deliberately, result from the study of each
individual embryo from a heterogeneous group of patients and the
predictive value that has been derived is independent of age, or any
other clinical factors. Further studies investigating the prognostic rela-
tionship between known clinical factors and deep learning prediction
will therefore be of great value.

Conclusion
In summary, these data demonstrate the potential for deep learning to
contribute to clinical IVF in the same way as it has contributed to other
areas of human health (Patel et al., 2009). This study is a retrospective
analysis that has demonstrated an effective means of IVY in predicting
implantation rate. Further detailed prospective clinical studies are now
underway to investigate the clinical impact and cost-effectiveness of
this development.

Supplementary data
Supplementary data are available at Human Reproduction online.
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