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Deep learning assisted sound source
localization from a flying drone

Lin Wang, Andrea Cavallaro

Abstract— Sound source localization from a flying drone is a
challenging task due to the strong ego-noise from rotating motors
and propellers as well as the movement of the drone and the
sound sources. To address this challenge, we propose a deep
learning-based framework that integrates single-channel noise
reduction and multi-channel source localization. In this framework
we suppress the ego-noise and estimate a time-frequency soft
ratio mask with a single-channel deep neural network (DNN).
Then we design two downstream multi-channel source localization
algorithms, based on Steered Response Power (SRP-DNN) and
Time-Frequency Spatial filtering (TFS-DNN). The main novelty lies
in the proposed TFS-DNN approach, which estimates the presence
probability of the target sound at individual time-frequency bins by combining the DNN-inferred soft ratio mask and
the instantaneous direction of arrival of the sound received by the microphone array. The time-frequency presence
probability of the target sound is then used to design a set of spatial filters to construct a spatial likelihood map for source
localization. By jointly exploiting spectral and spatial information, TFS-DNN robustly processes signals in short segments
(e.g. 0.5 seconds) in dynamic and low signal-noise-ratio scenarios (e.g. SNR -20 dB). Results on real and simulated data
in a variety of scenarios (static sources, moving sources and moving drones) indicate the advantage of TFS-DNN over
competing methods, including SRP-DNN and the state-of-the-art time-frequency spatial filtering.

Index Terms— Deep neural network, drone audition, ego-noise reduction, microphone arraysound source localization

I. INTRODUCTION

Drone audition has been attracting a growing interest

because of the increasing availability of agile multi-rotor aerial

vehicles [1], [2]. Drone audition techniques enable a drone

to localize, enhance, and understand sound sources in the

surrounding environment through the analysis of the sound

captured by airborne microphones for application in search and

rescue [3]–[6], monitoring [7]–[9], recreational filming [10],

human-drone interaction and robot autonomy [11], [12].

The performance of acoustic sensing from drones degrades

significantly mainly due to two challenges: the strong ego-

noise from rotating motors and propellers, which leads to

extremely low signal-to-noise ratio (SNR), and the movement

of the drone and sound sources, which leads to highly dynamic

acoustic transmission paths [13], [14].

Drone-based sound source localization approaches are uni-

modal or multi-modal. Uni-modal approaches, such as spatial

likelihood methods and spatial filtering methods, use the

microphone signal only. Spatial likelihood methods are based

on traditional source localization algorithms, such as steered

response power (SRP) and steered response power with

phase transform (SRP-PHAT) [3], [15]–[18], and multiple

signal classification (MUSIC) [9], [19], [20]. While being
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widely used for ground robot audition, the performance of

these algorithms typically degrades with drone platforms

due to the strong ego-noise and hence the low SNR [21].

Spatial filtering methods were recently proposed for drone

sound processing [22]–[25]: spatial filters steered at multiple

candidate locations and sound source localization is based

on comparing the spatial filtering output (e.g. Kurtosis) at

these locations. By designing the spatial filter in the time-

frequency domain, the spatial filtering method can suppress

the ego-noise effectively and thus works robustly in low-SNR

scenarios. While promising results have been reported, the

spatial filtering method typically requires a certain amount

of audio data to estimate the statistical information of the

sound and design the spatial filters. This leads to degraded

performance when signals are processed in short segments, and

thus it is not efficient when dealing with moving drones and

sound sources. Since the locations of the motors and propellers

are fixed, some work proposed to minimize the influence of

the ego-noise by mounting the microphone array far from the

drone body using an extension pole [5], [26] or rope [16].

While these approaches reduce the effect of the ego-noise, the

requirement of additional hardware reduces the versatility of

the drone and hence of drone audition applications.

Multi-modal approaches use additional sensors mounted on

drones to improve the sound source localization performance.

Since the ego-noise is generated by the motors and propellers,

speed sensors can be used to monitor the motor rotation speed
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and predict the ego-noise. The predicted ego-noise is further

incorporated into existing source localization algorithms to

improve the robustness to ego-noise [26], [27]. Computer

vision algorithms can exploit onboard cameras to localize

candidate sound sources (e.g. humans) and thus guide where

to steer spatial filters for sound enhancement [28]–[30].

Deep learning, which has revolutionized audio and

speech processing [31]–[33], has also found applications in

drone audition, in particular for sound enhancement. When

appropriate training data are available, deep neural networks

(DNN) can learn to predict the clean speech from noisy

recordings in low-SNR scenarios (e.g. using fully connected

DNN [34] and SMoLNet [35]). In addition to promising results

for speech enhancement, recent years saw the emergence

of deep learning applied to sound source localization. DNN

sound enhancement is typically a pre-processing step for

traditional source localization algorithms [36]. While a DNN

can also be trained to predict the location of the sound

source directly from the multi-channel microphone signal,

the performance typically drops significantly in low-SNR

scenarios [37].

In this paper, we propose a deep learning-based sound

source localization framework that integrates single-channel

ego-noise suppression and multi-channel source localization.

The proposed approach addresses the challenges of strong

ego-noise and can deal with the movement of drones and

sound sources. First, we estimate the soft ratio mask at

individual time-frequency bins from the noisy signal using

single-channel DNN models, and define a baseline sound

source localization system, namely SRP-DNN. Since a single-

channel DNN can enhance the noisy signal robustly in case

of sensor and source movement, SRP-DNN achieves better

performance than the original SRP-PHAT algorithm in low-

SNR scenarios. Second, we propose a TFS-DNN sound source

localization pipeline that incorporates the DNN-estimated soft

ratio mask into the state-of-the-art time-frequency spatial

filtering (TFS) approach [23]. By jointly exploiting the spectral

and spatial information, TFS-DNN can better estimate the

presence probability of the target sound at individual time-

frequency bins and thus provide better performance when

processing sounds in short segments and low-SNRs. We

evaluate the performance in different scenarios with static

sources, moving sources, and moving drones (Fig. 1). We also

investigate the impact of various DNN ego-noise suppression

models on the proposed pipeline.

The paper is organized as follows. After formulating the

problem in Section II, we introduce in Section III the DNN

model for the estimation of the time-frequency mask. In

Section IV we propose the two DNN-based sound source

localization algorithms. Section V covers the experimental

results and analysis. Finally, conclusions are drawn in

Section VI.

II. PROBLEM DEFINITION

Let a microphone array mounted on a quadcopter platform

consist of I microphones placed in an arbitrary shape (e.g. a

circular array in Fig. 1(a)-(c) or a cubic array in Fig. 1(d)).

(a) (b)

(c) (d)

loudspeaker

drone
Vicon camera

Fig. 1. Drone audition hardware. (a)(b) The 2D coordinate system for
a circular array mounted on a drone. (c) A static drone with a moving
speaker (image from AVQ [29]). (d) A flying drone with a static speaker
(image from DREGON [38]).

Without loss of generality, we consider a 2D coordinate system

(Fig. 1(b)) and denote the locations of the microphones as R =
[r1, . . . , rm, . . . , rI ], where rm = [rmx, rmy]

T is the position

of the m-th microphone, and the superscript (·)T denotes the

transpose operator.

A target source in the far field emits sound with a time-

varying direction of arrival (DOA), θd(n), with respect to

the microphone array, where n is the time index. The time-

varying DOA is caused by the movement of the sound source

(Fig. 1(c)) and/or the movement of the microphones with the

flying drone (Fig. 1(d)).

The signal from the array, x(n) = [x1(n), . . . , xI(n)]
T,

captures the target sound, s(n) = [s1(n), . . . , sI(n)]
T, as

well as the noise, v(n) = [v1(n), . . . , vI(n)]
T. The noise

term is dominated by the drone ego-noise, and might also

contain other components such as the wind noise (from the

propellers and the environment) and microphone self-noise in

practice. The ego-noise mainly consists of multiple narrow-

band harmonic components, which are caused by the rotating

rotors, and broadband noise, which is caused by the propellers

cutting air [14]. Since the motors and propellers are close to

onboard microphones, the ego-noise is typically stronger than

the target sound and the other noise components. We express

the microphone signal in the time domain as

x(n) = s(n) + v(n), (1)

and in the time-frequency domain as

X(k, l) = S(k, l) + V (k, l), (2)

where k and l denote the frequency and frame indices,

respectively. Let K and L be the total number of frequency

bins and time frames.

Given x(n) and R, the goal is to estimate the time-varying

DOA θd(n) of the sound source despite the very low SNR

(that can be lower than -15 dB) and the movement of the

drone or sound sources, which creates a challenging dynamic

acoustic transmitting path.
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Fig. 2. The proposed deep learning assisted sound source localization framework. (a) Single-channel sound enhancement DNN model that
estimates a soft ratio mask, which is then integrated in two multi-channel sound source localization pipelines: (b) SRP-DNN and (c) TFS-DNN. SRP-
DNN employs time-frequency weighting when computing the spatial likelihood map. TFS-DNN employs time-frequency weighting when computing
the target correlation matrix and the spatial filter. The Kurotis value of the spatial filtering output is used to indicate the spatial likelihood of the target
sound.

(a) Fully connected DNN.

(b) SMoLNet DNN
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Fig. 3. Two DNN architectures for single-channel drone noise reduction.
(a) Fully-connected DNN. (b) SMoLNet DNN.

III. MASK ESTIMATION

Fig. 2 shows the proposed framework, which consists of two

steps. In the first step (Fig. 2(a)), we employ a single-channel

DNN model to enhance the noisy recording and estimate a

soft ratio mask in the time-frequency domain. Based on the

estimated mask, in the second step, we propose two sound

source localization algorithms, which are referred to as SRP-

DNN (Fig. 2(b)) and TFS-DNN (Fig. 2(c)). We describe mask

estimation in this section and then source localization in the

next section.

A. DNN sound enhancement

Single-channel DNN models are suitable for preprocessing

the noisy sound captured on flying drones, due to their

robustness to sensor and source movement. We employ single-

channel DNN models to enhance the noisy recording, after

which we estimate the soft ratio mask. We consider two

existing approaches that were originally proposed for ego-

noise reduction and speech enhancement on drones: fully

connected (FC) DNN [34] and SMoLNet DNN [35]. Fig. 3

depicts the architectures of the two DNN models.

The first DNN model (FC) operates in the time-frequency

magnitude domain to estimate the magnitude of the clean

speech [34]. After converting the time-domain signal into

the short-time Fourier transform (STFT) domain, the DNN

model takes as input seven neighboring magnitude frames

and generates as output one frame of estimated magnitude.

As shown in Fig. 3(a), the DNN architecture simply consists

of one flatten layer, three fully-connected layers, and one

output layer. The flatten layer converts the neighboring STFT

frames into an input vector; the three fully connected layers

each consist of 2048 neurons; the output layers generate one

STFT frame of magnitude estimation. Finally, the time-domain

speech is reconstructed by combining the estimated magnitude

and the original noisy phase.

The second DNN model (SMoLNet) operates in the time-

frequency complex domain to estimate the complex spectrum

of the clean speech [35]. SMoLNet treats the real and

imaginary components of the complex spectrum as separate

channels. As shown in Fig. 3(b), the DNN architecture

consists of ten dilated convolutional layers, three non-dilated

convolutional layers, and one output layer. The ten dilated

layers aggregate information across the frequency dimension:

they have kernel size (3, 1) and dilation factor 2(d-1), where

d denotes the depth of the dilated layer. The three non-

dilated layers aggregate information across both time and

frequency dimensions, with a kernel size (3, 3). The output

layer consists of a convolutional layer with two kernel sizes

(1, 1), corresponding to the real and imaginary components

of the complex spectrum. SMoLNet takes as input the whole

STFT complex spectrum, and generates a complex spectrum

of the same size, which can be converted to the time domain

as clean speech estimation.
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A detailed training procedure for the two DNN models

will be given in Sec. V. The FC model has a simple

architecture and lower computational complexity, while the

SMoLNet model has a compact architecture and better ego-

noise suppression performance by operating in the time-

frequency complex domain (see Sec. V-D). We consider both

DNN models in our proposed framework in order to investigate

the impact of various DNN models on the performance of the

system.

B. Mask estimation

Fig. 2(a) depicts the detailed steps of mask estimation. Let

us consider the signal captured at one microphone as x(n) =
s(n)+v(n) in the time domain and X(k, l) = S(k, l)+V (k, l)
in the STFT domain.

Suppose we already trained a single-channel DNN model

(either FC or SMoLNet) that can enhance the microphone

signal as

ŝ(n) = DNN(x(n)). (3)

We convert the noisy and the enhanced signal into the STFT

domain as Ŝ(k, l) and X(k, l), and estimate the signal-noise

ratio at each time-frequency bin as

M(k, l) = min

(∣

∣

∣

∣

∣

Ŝ(k, l)

X(k, l)

∣

∣

∣

∣

∣

, 1

)

(4)

Lying in the range [0, 1], this ratio can be used to indicate the

speech-presence probability at each time-frequency bin.

To help understanding, Fig. 4(a) illustrates a sample of

mask estimation result, including the noisy signal X(k, l),
clean speech S(k, l), DNN enhanced speech Ŝ(k, l) and the

estimated mask M(k, l). We use SMoLNet as the DNN

sound enhancement model. For input SNR -5 dB, the DNN

model can improve the SNR effectively by about 11 dB. The

estimated mask M(k, l) appears consistent with the energy

distribution of the clean speech S(k, l) in the time-frequency

domain, which implies that the mask is good to measure the

speech presence probability.

IV. SOUND SOURCE LOCALIZATION

In this section, we show how we incorporate the DNN-

estimated soft ratio mask into two sound source localization

frameworks, namely SRP-DNN and TFS-DNN.

A. SRP-DNN for sound source localization

The traditional SRP-PHAT algorithm localizes a sound

source by computing a spatial likelihood function from the

microphone array signal as [39]

ρSRP-PHAT(θ) =

R















∑

k,l

I
∑

m1,m2=1
m1 6=m2

X∗
m1

(k, l)Xm2
(k, l)

|Xm1
(k, l)Xm2

(k, l)|
e−j2πfkτ(m1,m2,θ)















,

(5)

where fk denotes the frequency at the k-th bin, the superscript

(·)∗ denotes the complex conjugation, and the operator R{·}

denotes the real component of the argument. The term

τ(m1,m2, θ) denotes the delay between two microphones

m1 and m2 with respect to the sound coming from a

candidate direction θ ∈ {θ1, · · · , θD}. SRP-PHAT in (5)

is essentially a time-frequency implementation using GCC-

PHAT functions [40]. Alternatively, it can be implemented

as delay-an-sum beamforming with phase transform. Here

we use the time-frequency implementation as it is more

straightforward to extend to the SRP-DNN algorithm, as

explained subsequently.

In (5), all the time-frequency bins are treated equally when

computing the spatial likelihood map. If the time-frequency

bins are weighted with the presence probability of the target

sound, the computation of the spatial likelihood map will be

more robust to noise [40], [41]. Based on this idea, we propose

the SRP-DNN algorithm that computes the spatial likelihood

map as

ρSRP-DNN(θ) =

R















∑

k,l

M(k, l)

I
∑

m1,m2=1
m1 6=m2

X∗
m1

(k,l)Xm2
(k,l)e

−j2πfkτ(m1,m2,θ)

|Xm1 (k,l)Xm2 (k,l)|















,

(6)

where M(k, l) is the DNN-estimated ratio mask (4), indicating

the speech presence probability at each time-frequency bin.

Finally, from the spatial likelihood function, the location of

the sound source is estimated as the location of the highest

peak, i.e.

θSRP-DNN = argmax
θ∈{θ1,··· ,θD}

{ρSRP-DNN(θ)} (7)

B. TFS-DNN for sound source localization

The time-frequency spatial filtering (TFS) algorithm is a

recent algorithm for sound source localization on drones [22].

The basic idea is to formulate a set of spatial filters pointing at

candidate directions, θ ∈ {θ1, · · · , θD}, and use the kurtosis of

the spatial filtering outputs to indicate the spatial likelihood of

the target sound. In this section, we propose a new algorithm,

TFS-DNN, that incorporates the DNN-estimated ratio mask

into the time-frequency spatial filtering algorithm to further

improve the source localization performance. The detailed

computation procedure is given below.

Given the microphone signal x(k, l) and the microphone

locations R, we first estimate the instantaneous DOA of

the sound at each time-frequency bin. This is achieved by

computing a local spatial likelihood function as

γTF(k, l, θ)

= R















I
∑

m1,m2=1
m1 6=m2

Xm1
(k, l)X∗

m2
(k, l)

|Xm1
(k, l)Xm2

(k, l)|
ej2πfkτ(m1,m2,θ)















,

(8)

from which the DOA of the sound at each time-frequency bin

is computed as

θTF(k, l) = argmax
θ∈(−180◦,180◦]

γTF(k, l, θ). (9)
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Next, we define a confidence measure at each time-

frequency bin that the target speech comes from the direction

θ, i.e.

c̃d(k, l, θ) = cd(k, l, θ)M(k, l). (10)

The confidence consists of two parts. The first term cd(k, l, θ)
measures the closeness of each time-frequency bin (k, l) to

the direction θ, and is defined as [22]

cd(k, l, θ) = exp

(

−
(θTF(k, l)− θ)2

2σ2

)

, (11)

where we assume the DOA estimate to be Gaussian-distributed

with mean θ and standard deviation σ. Lying in the range [0, 1],
the higher cd(·), the closer of the local DOA to the direction

θ. The second term M(k, l) is the ratio mask estimated by the

DNN model, which indicates the speech presence probability

at each time-frequency bin. Combining the spatial information

and the spectral information, the confidence measure c̃d(k, l, θ)
can better indicate the probability that the sound at the (k, l)-th
bin arrives from the direction θ.

Next, we calculate an I × I target correlation matrix of the

direction θ as

Φss(k, l, θ) =
1

L

L
∑

l=1

c̃d(k, l, θ)x
H(k, l)x(k, l), (12)

where c̃d(k, l, θ) indicates the contribution of each time-

frequency bin to the target correlation matrix. With this target

correlation matrix, we can formulate a spatial filter pointing at

the direction θ. We use a standard Multi-channel Wiener filter

(MWF) that is defined as [42]

wTF(k, l, θ) = Φ
−1
xx (k, l)φss1(k, l, θ). (13)

The MWF filter can be estimated directly from the microphone

signal: φss1(k, l, θ) is the first column of Φss(k, l, θ),
and Φxx(k, l) is the correlation matrix of the microphone

signal, which can be estimated directly using Φxx(k, l) =

1
L

L
∑

l=1

x(k, l)Hx(k, l). The sound coming from the direction

θ is extracted as

yTF(k, l, θ) = wH
TF
(k, l, θ)x(k, l). (14)

We calculate the kurtosis value ξ(k, θ) of the time sequence

in each frequency bin:

ξ(k, θ) = K(ỹ
TF
(k, θ)), (15)

where ỹ
TF
(k, θ) denotes the time sequence |yTF(k, :, θ)| and

K(·) denotes the kurtosis value of the sequence.

Repeating this procedure for each θ ∈ {θ1, · · · , θD} and

averaging the whole frequency band, we obtain a spatial

likelihood function as

ρ(θ) =
1

K

K
∑

k=1

ξ(k, θ). (16)

The location of the sound source is then estimated as the

location with the highest peak, i.e.

θ̂ = argmax
θ∈{θ1,··· ,θD}

{ρ(θ)} (17)

TFS and TFS-DNN share exactly the same computation

procedure, with the main difference lying in the computation

of the confidence measure (10). In TFS, the confidence

measure is computed solely as cd(k, l, θ) [22], i.e.

c̃TFS
d (k, l, θ) = cd(k, l, θ). (18)

In TFS-DNN, the confidence measure is computed as the

product of cd(k, l, θ) and M(k, l), where cd(k, l, θ) is based

on the spatial information and M(k, l) is based on the

spectral information of the acoustic signals. By exploiting

both spectral and spatial information, TFS-DNN can compute

the confidence measure more precisely, thus promising better

source localization performance.

C. Discussion

We show intermediate processing results in Fig. 4 to help

understand the proposed method. We use the same setup

as in Sec. V-D, where the sound arrives from the direction

θd = 20◦, and is captured by the circular microphone array.

Fig. 4(a) depicts the mask estimation results at input SNR

-5 dB. As already discussed in the last paragraph in Sec. III-

B, the estimated mask M(k, l) provides a good indication

of speech presence probability at each time-frequency bin. In

the last subfigure, we compare the spatial likelihood functions

obtained by SRP-PHAT and SRP-DNN1. SRP-DNN obtains a

correct estimation at 20◦, while SRP-PHAT produces a wrong

estimation at -90◦, which corresponds to the location of one

ego-noise source and deviates from the ground truth.

Fig. 4(b) compares the intermediate processing results

obtained by TFS and TFS-DNN for the same segment at

input SNR -5 dB. The left two columns represent TFS results

while the right two columns represent TFS-DNN. In the first

row, we present the instantaneous DOA estimation results by

the TFS algorithm, i.e. θTF(k, l). The right subfigure depicts

the histogram of θTF at individual time-frequency bins. From

the histogram we can observe two peaks at 20◦ and -90◦,

corresponding to the target sound source and one ego-noise

source, respectively. In the left subfigure we use dark color to

indicate the time-frequency bins that have instantaneous DOA

20◦, i.e. θTF(k, l) = 20◦. It can be observed that the majority

of these bins correspond to the speech component.

In the second row of Fig. 4(b), we present, for both

methods (TFS and TFS-DNN), the confidence measure c̃d
and the spatial filtering output Y for a candidate direction

θ = 20◦, which corresponds to the DOA of the target sound

source. For TFS, the confidence measure c̃d(k, l, 20
◦) =

cd(k, l, 20
◦) presents high values at time-frequency bins that

are dominated by both speech and noise, and the spatial

filtering output Y (k, l, 20◦) contains both speech and residual

noise. For TFS-DNN, the confidence measure c̃d(k, l, 20
◦) =

cd(k, l, 20
◦)M(k, l) presents high values at time-frequency

bins that are dominated by speech only, and the spatial filtering

output Y (k, l, 20◦) contains less residual noise. The output

SNR by TFS and TFS-DNN are 8.5 dB and 14.9 dB, where

TFS-DNN can better enhance the target sound from 20◦.

1For ease of comparison, the spatial likelihood function is normalized to
[0, 1] corresponding to its minimum and maximum value.
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  (a)

   (b)

(c)

TFS TFS-DNN

Fig. 4. Sample intermediate and final results of the proposed method.
(a) SRP-PHAT vs SRP-DNN at input SNR -5 dB. (b) TFS vs TFS-DNN
at input SNR -5 dB. (c) Sound source localization by SRP-PHAT, SRP-
DNN, TFS, and TFS-DNN at an input SNR varying from -20 dB to -5 dB.
We use SMoLNet for DNN sound enhancement. The DOA of the target
sound is 20◦.

In the third row of Fig. 4(b), we present, for both methods,

the confidence measure c̃d and the spatial filtering output Y

for a candidate direction θ = −90◦, which corresponds to

the DOA of one ego-noise source. For TFS, the confidence

measure c̃d(k, l,−90◦) = cd(k, l,−90◦) presents high values

at many time-frequency bins that are dominated by noise,

and the spatial filtering output Y (k, l,−90◦) correspondingly

contains the residual noise. For TFS-DNN, the confidence

measure c̃d(k, l,−90◦) = cd(k, l,−90◦)M(k, l) presents only

a few high values in the time-domain domain, and the spatial

filtering output Y (k, l,−90◦) also contains less residual noise.

The output SNR by TFS and TFS-DNN are 0.1 dB and 1 dB,

respectively, where TFS-DNN can better suppress the noise

from -90◦.

In the last row of Fig. 4(b), we present, for both methods,

the Kurtosis matrix ξ(k, θ) and the spatial likelihood function

ρ. For TFS, the Kurtosis matrix presents high values at

many (k, θ) bins and, correspondingly, the spatial likelihood

function ρ(θ) presents peaks not only at 20◦, but also at

other directions (e.g. -90◦). For TFS-DNN, the Kurtosis matrix

presents high values only at (k, θ) bins that are close to

20◦ and, correspondingly, the spatial likelihood function ρ(θ)
presents only one peak at 20◦. While from both spatial

likelihood functions we can correctly estimate the source

location, ρTFS-DNN is less affected by the ego-noise.

Fig. 4(c) compares the spatial likelihood functions obtained

by the four methods at an input SNR varying from -20

to -5 dB. SRP-PHAT can not estimate the source location

correctly for all SNRs. The height of the speech peak at 20◦

declines continuously with the decreasing SNR. SRP-DNN

estimates the sound source location correctly when SNR ≥-15

dB. The height of the noise peak at -90◦ rises with the decrease

of SNR, finally surpassing the speech peak at SNR -20 dB.

TFS estimates the source location correctly when SNR ≥ -10

dB. The height of the speech peak at 20◦ declines with the

decreasing SNR, and is exceeded by the noise peak at SNR

-15 dB. TFS-DNN can estimate the source location correctly

for all SNRs. The height of the noise peak at -90◦ rises with

the declining SNR, but never surpasses the speech peak at 20◦.

Overall, the demonstration in Fig. 4 confirms that the

DNN-estimated ratio mask can indicate the speech presence

probability at each time-frequency bin. The combination of the

ratio mask and the instantaneous DOA at each time-frequency

bin can better measure the confidence of a speech source

arriving from a target direction. As a result, SRP-DNN and

TFS-DNN work more robustly in low-SNR scenarios than

their counterparts SRP-PHAT and TFS, respectively.

V. VALIDATION

We consider eights algorithms for the comparison2: two

baseline approaches, SRP-PHAT and TFS, and six DNN-

based approaches: SRP-DNN0, SRP-DNN1, SRP-DNN2,

TFS-DNN0, TFS-DNN1 and TFS-DNN2. Here DNN1 and

DNN2 are SMoLNet and FC, respectively, while DNN0 is

the clean speech reference, which indicates the upper bound

of speech enhancement. These eight methods can also be

categorized into the SRP family and the TFS family. As set

2In [24], we conducted a systematic comparison between TFS and classical
sound source localization algorithms, including SRP-PHAT, MUSIC, and
histogram-based algorithms, where TFS, by exploiting the time-frequency
sparsity of the acustic signal, significantly outperforms these classical ones.
We thus consider TFS as the main baseline.
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in the original papers [34], [35], DNN1 (SMoLNet) uses an

STFT window size of 2048 with half overlap, while DNN2

(FC) uses an STFT window size of 256 with half overlap. For

the multi-channel processing in both SRP and TFS, we use

an STFT window size 1024 with half overlap. Following [22],

we set σ = 10◦ in (11).

A. Datasets

We use three drone sound recording datasets: AS [22],

AVQ [29] and DREGON [38]. AS and AVQ provide 8-channel

recordings made via a circular microphone array mounted

on the top side of a 3DR IRIS quadcopter drone, which is

fixed on a tripod (Fig. 1(a)-(b)). The diameter of the circular

array is roughly 20 cm. In AS, the recording is made inside

a room with sound coming from a loudspeaker at a fixed

location. In AVQ, the recording is made outside, with sound

from a speaker moving in front of the drone (Fig. 1(c)). AS

and AVQ both provide ego-noise recording made when the

drone is operating at a constant and varying motor rotating

speed. DREGON provides 8-channel recordings made via a

cubic microphone array mounted on the bottom side of a

MikroKopter drone, which can fly freely (Fig. 1(d)). The side

length of the cubic array is roughly 10 cm. In DREGON,

the recording is made inside a room, with sound from a

loudspeaker at a fixed location while the drone is flying

around. For AS, the ground-truth location of the fixed sound

source was measured manually. For AVQ, the ground-truth

location of the moving source was measured via an external

camera mounted on the drone [29]. For DREGON the ground-

truth location between the sound source and the moving drone

was measured with a Vicon motion tracking system [38]. All

the audio samples in the three datasets are resampled at 8 kHz.

This helps improve the localization performance as the speech

signal typically has significant energy below 4 kHz.

B. DNN Model training

We use the ego-noise in the AVQ dataset in combination

with the TIMIT speech corpus [43] for DNN model training.

AVQ provides the ego-noise recording with a total duration

of 704 seconds, where the drone is operating with either a

constant or a varying motoring rotating speed. We use the

first channel of the multi-channel recording. TIMIT contains

a training subset with 4620 utterances and a testing subset

with 1680 utterances. We use 4158 utterances from the training

subset for model training, with a total duration of 207 minutes.

For model training, we generate noisy speech by mixing

the ego-noise and the TIMIT utterances at different SNRs,

uniformly sampled from the [-25, -5] dB. For a specific

SNR, the TIMIT utterance is added with a segment of

noise randomly cropped from the ego-noise. We generate the

training data on the fly in every epoch, which covers 10

iterations of all the speech utterances, corresponding to about

35 hours in total. We use the same training strategies for both

FC and SMoLNet, and use their default parameters set in the

original papers [34], [35].

C. Performance evaluation

We evaluate the sound source localization performance in

three scenarios. S1 considers a static sound source and a static

drone, using the AS dataset; S2 considers a moving sound

source and a static drone, using the AVQ dataset; S3 considers

a moving sound source and a moving drone. In the first two

scenarios, the testing data is generated by mixing the speech

and the ego-noise at different SNRs varying in the interval

[-25, -5] dB with a step size of 5 dB. In the third scenario,

the speech and the ego-noise are recorded simultaneously.

In all three scenarios, we evaluate the source localization

performance for different processing block sizes B varying

from 0.25 to 4 seconds. The localization performance is

evaluated per processing segment, where the localization error

is defined, given the ground-truth θd and the estimation θ̂d, as

e = |θd − θ̂d|. (19)

For all T processing segments, we define the detection rate as

Rd =
Td

T
, (20)

where Td is defined as the number of segments with

localization error smaller than 10◦.

For reference, we also compute SNR and SDR to evaluate

the sound enhancement performance of the DNN models and

the TFS filters. SNR is defined as the ratio of the speech

and the noise after processing, assuming the clean speech

and the noise components at the microphones are known in

advance [22]. SDR is defined as the scale-invariant signal

distortion ratio [44].

D. Localization of static sound sources

We compare the source localization performance of the

considered algorithms with a segment of recording of 60s from

the AS dataset. The drone and the speaker both remain static,

and the DOA of the sound is 20◦ (see the coordinate system

in Fig. 1(b)).

Fig. 5(a) shows the output SNR and SDR achieved by the

DNN1 (SMoLNet) and DNN2 (FC) at an input SNR varying

from -25 to -5 dB. Both DNN models can improve the SNR of

the noisy input, with DNN1 evidently outperforming DNN2.

DNN1 improves the SNR consistently by about 15 dB for all

input SNRs, while DNN2 only improves the SNR by 5-10 dB.

Both models introduce speech distortion when suppressing the

noise, as indicated by the output SDR lower than the output

SNR. DNN1 improves the SDR by 5-12 dB at various input

SNRs, while DNN2 achieves minor or even negative SDR

improvement over the noisy input.

Fig. 5(b) shows the detection rate achieved by the eight

considered algorithms at various input SNRs and processing

block sizes. For all algorithms, the detection rate naturally

improves with the increasing SNR.

For the SRP family, the detection rate of SRP-DNN0 and

SRP-DNN1 improves with the increasing block size B, while

SRP-PHAT and SRP-DNN2 remain nearly constant. SRP-

PHAT fails in most scenarios and SRP-DNN2 outperforms

SRP slightly. SRP-DNN1 achieves a much higher detection
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Fig. 5. Sound source localization for static sources (AS dataset). (a)
Output SNR and SDR achieved by DNN1 (SMoLNet) and DNN2 (FC).
(b) Detection rate achieved by the eight considered methods at various
input SNRs and processing block sizes. (c) Detection rate improvement
achieved by using DNN over SRP and TFS at block size 1s and various
input SNRs.

rate than SRP-DNN2. However, the detection rate of SRP-

DNN1 is still not satisfactory at low SNRs, e.g. below 0.4

at SNR -15 dB with all block sizes. SRP-DNN0 provides

benchmark performance by using clean speech as a reference.

For the TFS family, the detection rate improves with the

increasing block size B, which allows more data to estimate

the statistical information of the acoustic signal. TFS fails

when SNR ≤ -20 dB and block size B ≤ 1s. However,

its performance rises quickly with the increasing block size

when B > 1s. DNN-based preprocessing can improve the

performance of TFS effectively, with the performance of the

TFS family ranked as TFS-DNN0 > TFS-DNN1 > TFS-

DNN2 > TFS. TFS-DNN0 provides benchmark performance

by using clean speech as a reference, while TFS-DNN1

outperforms TFS-DNN2. The performance of TFS-DNN1 is

close to the benchmark TFS-DNN0 when SNR ≥ -15 dB.

The TFS family remarkably outperforms the SRP family,

for instance, when comparing TFS-DNNx and SRP-DNNx

(x = 0, 1, 2). The two benchmark algorithms TFS-DNN0 and

SRP-DNN0 achieve similar performance when SNR ≥ -10 dB,

although the former performs better at lower SNRs. Notably,

even if a clean speech reference is available, neither of the

two benchmarks TFS-DNN0 and SRP-DNN0 achieves perfect

source localization results. For instance, TFS-DNN0 achieves

a detection rate lower than 0.5 when SNR < -20 dB and

B < 0.5s.

Fig. 5(c) shows the detection rate improvement by using

DNN over SRP and TFS at block size 1s and various input

SNRs. It can be observed the impact of DNN is always positive

for both SRP and TFS. For SRP, the performance improvement

by DNN tends to increase monotonically with the increasing

SNR. However, DNN1 improves the performance marginally

when SNR≤ -15 dB, and DNN2 also performs limitedly when

SNR ≤ -20 dB. For TFS, the performance improvement tends

to increase first with the increasing SNR and then drops

at SNR -15 dB. The drop in the improvement is due to

the high detection rate of TFS when SNR ≥ -10 dB. The

performance of TFS-DNN1 is close to TFS-DNN0 when SNR

≥ -10 dB. However, the gap becomes noticeable when SNR

≤ -15 dB. Overall, TFS can take better advantage of DNN to

improve the source localization performance, especially when

the noise suppression performance of DNN is limited in low-

SNR scenarios.

E. Localization of moving sound sources

We compare the considered algorithms with a segment of

recording of 60s from the AVQ dataset. During recording, a

speaker moved in front of the drone, which remained static.

We perform sound source localization with a processing block

size varying from 0.25 to 4 seconds. The fourth subfigure in

Fig. 6(c) depicts the variation of the input SNR to time during

the source movement, with an average input SNR of -18.6 dB.

It can be observed that the input SNR varies intensely in the

range [-25, -10] dB, depending on the location of the sound

source (see the coordinate system in Fig. 1(b))3.

Fig. 6(a) shows the detection rate for the moving sound

source by the eight considered algorithms. Interestingly, the

observation made in Fig. 6(a) is consistent with ones observed

in Fig. 5(b) for a static sound source at SNR -20 dB.

The SRP family performs limitedly in this experiment.

SRP-PHAT and SRP-DNN1 fail in all scenarios. SRP-DNN2

improves the detection rate only slightly by 0.2. SRP-DNN0

improves the detection rate significantly, e.g. with a detection

rate of 0.8 when B = 1s. However, it should be noted that

the clean speech reference is not available in practice.

The TFS family achieves much better performance than the

SRP family. The detection rate of the four TFS algorithms

improves with the increasing B, although the improvement

slows or even drops slightly when B ≥ 2s. The drop in the

performance at large B is possibly due to the bigger movement

3The video of human moving in front of the drone was also provided
in [29].
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of the sound source within a large processing segment. TFS

and TFS-DNN2 fail when B ≤ 0.5s, but the performance

rises quickly when B > 0.5s. TFS-DNN0 and TFS-DNN1

achieve significantly higher detection rates than the other two

when B ≤ 1s. TFS-DNN0 provides benchmark performance

by using the clean speech reference. The detection rate of TFS-

DNN1 is about 0.2 lower than TFS-DNN0 when B = 0.25s,

and the gap becomes smaller as B increases.

Fig. 6(c) compares the ground-truth trajectory and the

trajectories estimated by three representative algorithms (TFS,

TFS-DNN1 and SRP-DNN1) at various processing block sizes

B. It can be observed that SRP-DNN1 performs the worst

when estimating the trajectory of the moving sound source,

with many errors occurring at all block sizes. In comparison

to SRP-DNN1, TFS produces more errors when B = 0.5s, but

fewer errors when B ≥ 1s. TF-DNN1 performs the best, with

only a few errors at B = 1s and very few errors (detection

rate close to 0.9) at B = 2s.

F. Localization with a moving drone

We compare the considered algorithms with a segment

of recording of 34s from the DREGON dataset. During

recording, a drone is flying freely in front of a static

loudspeaker. The sound is recorded with a cubic microphone

array mounted on the bottom side of the drone. The coordinate

system was provided in [38]. We use the sequence ‘Free Flight

Speech Source at High Volume (Room 1)’.4. The input SNR

is estimated to be -12 dB during recording. The dataset does

not provide a clean speech at the microphones; however, an

external camera was recording the whole scene thus providing

certain clean speech reference that is less affected by the drone

noise. We use the sound recording from the external camera

as the DNN0 reference.

We perform sound source localization with a processing

block size varying from 0.25 to 4 seconds. For ease of

comparison, we only focus on the horizontal azimuth, although

the dataset provides both azimuth and elevation ground truth.

In comparison to Sec. V-E, the source localization task in this

experiment is more challenging due to the following reasons.

First, a 3D cubic eight-microphone array is used for recording,

with maximally four microphones in one plane. While our

algorithm can be extended to the 3D case easily [45], the cubic

array has less discriminability in the horizontal plane than the

circular array used in the AVQ dataset. Second, the relative

locations between the sensors and sources are changing more

quickly for a moving microphone array than for a moving

sound source. Third, the ego-noise in the DREGON dataset

is significantly different from the ego-noise used for training

the DNN models. The noise suppression performance of the

DNN models tends to decrease for unseen noise.

Fig. 6(b) shows the detection rate for the moving drone

by the eight considered algorithms. The SRP family works

limitedly in this experiment. All the four SRP algorithms,

including SRP-DNN0, achieve a detection rate lower than 0.3

for all processing block sizes. In addition, the performance of

4The video of the drone flying in the room was also provided in [38].
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Fig. 6. Sound source localization for moving sound sources (AVQ
dataset) and moving drones (DREGON dataset). (a)(b) Detection rate
by the considered algorithms at various processing block sizes. (c)(d)
Ground-truth and estimated trajectories of the sound source relative to
the drone. (e)(f) Box-plot of the absolute localization error for B = 2s.
The median value is indicated on top of the box.

all the four algorithms does not vary much with the block size

B, and even drops when B > 2s.

The TFS family achieves much better performance than the

SRP family, especially when B ≥ 1s. The performance of all

the four TFS algorithms improves with the increasing B, but

drops when B > 2s. The drop at large B is due to the big
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movement of the drone in a large processing segment (e.g. 4s).

TFS and TFS-DNN2 fail when B ≤ 0.5s, but the performance

rises quickly when B > 0.5s. TFS-DNN0 and TFS-DNN1

achieve significantly higher detection rates than the other two

when B ≤ 1s. TFS-DNN0 provides benchmark performance

by using a speech reference from the external camera. The

detection rate of TFS-DNN1 is lower than TFS-DNN0 in most

cases, but close to TFS-DNN0 when B ≥ 2s. Due to the

challenge of this task, the highest detention rate is 0.8, which

is achieved by TFS-DNN0 at B = 1s, followed by 0.75, which

is achieved by TFS-DNN1 at B = 2s.

Fig. 6(d) depicts the ground-truth trajectory of the sound

source relative to the moving microphone array, as well as the

trajectories estimated by three representative methods (TFS,

TFS-DNN1 and SRP-DNN1) at various block sizes. It can

be observed that the azimuth in Fig. 6(d) is changing more

quickly and intensely than the one in Fig. 6(c). SRP-DNN1

performs the worst when estimating the trajectory of the sound

source, with many errors occurring at all block sizes B. TFS

performs better than SRP-DNN1, with similar errors at B =
0.5s, and fewer errors at B ≥ 1s. TFS-DNN1 performs the

best, with minimum errors for all block sizes. When B = 2s,

TFS-DNN1 can estimate the trajectory of the sound source

robustly with a detection rate of 0.75.

Finally, we illustrate in Fig. 6(e) and (f) the boxplot of the

absolute localization error as well as the median localization

error at B = 2. The observations made in Fig. 6(e) and (f)

are consistent with the ones made in Fig. 6(a)-(d).

VI. CONCLUSION

We proposed a deep learning-based sound source

localization framework that integrates DNN-estimated

soft ratio masks into two multi-channel source localization

algorithms, namely steered response power SRP-DNN and

time-frequency spatial filtering TFS-DNN. In particular,

the proposed TFS-DNN algorithm combines both spectral

and spatial information to estimate the presence probability

of the target sound at individual time-frequency bins, and

performs source localization robustly when processing sound

signals in short segments and low-SNR scenarios. The source

localization performance tends to improve with the increasing

processing block size, which can better estimate the statistical

information of the sound signal. However, the performance

tends to drop if the processing block size is too large, where

large movement of the sound source is observed. It was shown

that the inclusion of DNN preprocessing can always improve

the source localization performance, and the improvement

is related to the noise suppression capability of the DNN

model. The TFS framework can better exploit the DNN

preprocessing results than the traditional SRP framework.

We compared three approaches to estimating the soft

ratio mask, including two existing models (DNN1 and

DNN2) and a clean speech reference (DNN0). The clean

speech indicates the upper bound of speech enhancement

and thus provides a benchmark performance of the proposed

framework. The benchmark method outperforms the two DNN

methods especially in low-SNR scenarios. Our future work

would target at this benchmark performance by developing

a better (single-channel or multi-channel) DNN model that

suppresses the ego-noise more efficiently. Experimental results

also indicate that even the benchmark method still struggles

when localizing a sound source in extremely adverse scenarios,

such as extremely low SNR (e.g. -25 dB) and short processing

segments (e.g. 0.25s). This implies that the performance of the

proposed method may degrade when the drone or the sound

source is moving quickly. The incorporation of sound source

movement and drone motion estimation would help improve

the performance in this challenging scenario [25], [46].

Future work will validate the performance of the proposed

framework in a more realistic environment with environmental

noise, occlusions, and other scene interferences. Drone

audition research is still in a very preliminary stage. Additional

advances are also needed in hardware design and system

integration, dataset collection and sharing, and our method

can be combined with other techniques, such as drone motion

estimation, moving source tracking, and multimodal fusion.

REFERENCES

[1] J. Martinez-Carranza and C. Rascon, “A review on auditory perception
for unmanned aerial vehicles,” Sensors, vol. 20, no. 7276, pp. 1-24,
2020.

[2] D. Floreano, R. J. Wood, “Science technology and the future of small
autonomous drones,” Nature, vol. 521, pp. 460-466, May 2015.

[3] M. Basiri, F. Schill, P. U. Lima, and D. Floreano, “Robust acoustic
source localization of emergency signals from micro air vehicles,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., Vilamoura-Algarve,
Portugal, 2012, pp. 4737-4742.

[4] A. Deleforge, D. Di Carlo, M. Strauss, R. Serizel, and L. Marcenaro,
“Audio-based search and rescue with a drone: highlights from the IEEE
signal processing cup 2019 student competition,” IEEE Signal Process.

Mag., vol. 36, no. 5, pp. 138-144, Sep. 2019.

[5] K. Nakadai, M. Kumon, H. G. Okuno, et al., “Development of
microphone-array-embedded UAV for search and rescue task,” in Proc.

IEEE/RSJ Int. Conf. Intell. Robot. Syst., Vancouver, Canada, 2017, pp.
5985-5990.

[6] J. Cacace, R. Caccavale, A. Finzi, and V. Lippiello, “Attentional
multimodal interface for multidrone search in the Alps” in Proc. IEEE

Int. Conf. Syst. Man, Cybernetics, Budapest, Hungary, 2016, pp. 1178-
1183.

[7] F. G. Serrenho, J. A. Apolinario, A. L. L. Ramos, and R. P.
Fernandes, “Gunshot airborne surveillance with rotary wing UAV-
embedded microphone array,” Sensors, vol.19, no. 4271, pp. 1-26, 2019.

[8] A. Michez, S. Broset, and P. Lejeune, “Ears in the Sky: Potential of
Drones for the Bioacoustic Monitoring of Birds and Bats,” Drones, vol.
5, no. 9, pp. 1-19, 2021.

[9] K. Okutani, T. Yoshida, K. Nakamura, and K. Nakadai, “Outdoor
auditory scene analysis using a moving microphone array embedded
in a quadrocopter,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst.,
Vilamoura-Algarve, Portugal, 2012, pp. 3288-3293.

[10] S. Yoon, S. Park, Y. Eom, and S. Yoo, “Advanced sound capturing
method with adaptive noise reduction system for broadcasting
multicopters,” in Proc. IEEE Int. Conf. Consum. Electron., Las Vegas,
USA, 2015, pp. 26-29.

[11] J. R. Cauchard, K. Y. Zhai, and J. A. Landay, “Drone and me: an
exploration into natural human-drone interaction,” in Proc. 2015 ACM

Int. Joint Conf. Pervasive and Ubiquitous Computing, Osaka, Japan,
2015, pp. 361-365.
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