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Abstract 

In this paper, a novel approach using deep learning-assisted wavefront correction 

in beam rotation holographic tomography to acquire three-dimensional images of native 

biological cell samples is described. With digitally recorded holograms, the wavefront 

aberration is contained in the reconstructed phases. However, there are large 

computation costs for compensating the phase aberration during the reconstruction. 

With the aid of a deep convolution network, we present an effective algorithm on the 

reconstructed phases with sparse data for active wavefront correction. To accomplish 

this, we developed a Res-Unet scheme to segment the cell region from its background 

aberration and a deep regression network for the representation of the aberration on 

Zernike orthonormal basis. Moreover, a sparse data fitting algorithm was used to 

predict the Zernike coefficients of whole scanning angles from the collected sparse data. 

As a result, the proposed algorithm is capable of accurately correcting the background 

aberration and much faster than the original plain algorithm. 
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1. Introduction 

Due to the rapid development of semiconductor technology, digital holographic 

microscopy (DHM)1-3 has been used to acquire quantitative phase information via a 

modified interferometric architecture. Studies have been conducted on correction of the 

phase aberration for the DHM system, with signal modeling of the background 

aberration in sparse domain, such as sparsity in the polynomial representation4 and 

Zernike polynomial5-7. Recently, DHM has been widely applied to the label-free 

analysis of living cells and tissues, to examine biophysical characteristics. Such 

research has extended to the fields of vascular and tumor biology, as well as monitoring 

of bacterial colonies, which require accurate three-dimensional (3D) reconstruction of 

a biological micro-sample. However, DHM cannot provide 3D information just with 

single-shot hologram. It has been found that tomographic imaging can be used to 

measure the 3D refractive index (RI) distribution inside a biological micro-sample by 

calculating the integral phase from different illumination directions. In a previous 

study8,9, holographic tomography was constructed by Fourier diffraction theorem10 and 

verified to provide high-precision measurement of cell RI with spatial resolution 

reaching the submicron (0.5 um) level of accuracy. This has become the essential 
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technique for the analysis of 3D biological micro-samples. In studies based on 

tomographic holography, there have been two common scanning architectures: beam 

rotation (BR) and sample rotation. Sample rotation requires rotation of the sample 

holder during the hologram recording process. Even though the sample rotation 

architecture can achieve 360° scanning of the sample, there are still some major 

problems to be resolved, such as the mechanical movement of the sample holder and 

the adverse effect of surrounding fluid on phase accuracy. Moreover, it is difficult to 

generate accurate rotation for biological samples that are close to circular in shape. In 

contrast, the BR scheme provides tilted illumination beam for scanning the biological 

sample at different angles to obtain sectional images. The essential problem with this 

scheme the limited range of scanning angles, which leads to low resolution in the axial 

direction. Moreover, it is necessary to have a high numerical aperture (NA) objective 

lens, limiting the depth of focus and leading to the optical aberration phase, especially 

for large illumination angles. Based on optical diffraction theory10-12, missing data is 

core issue for reconstruction in holographic tomography. To resolve this problem 

digitally, a regularization term is added to the signal sparsity domain for the phase 

recovery to achieve better convergence, which includes the constraints of 

minimization of the total variation, nonnegative, and edge preservation13,14. In a 

previous study, we proposed optical tweezer to trap the biological sample rotating 

in both x-z and y-z planes15,16. In another study17, combination of sample rotation 

and BR mechanisms resolved this problem. 

In recent years, due to the development of the internet and increases in 

computing speed, the acquisition and computing of huge amounts of data have led 

to progress in deep learning. During the 2012 ICSVRC competition, the network 

architectures of AlexNet18 and ImageNet19 were proposed to classify more than 

one million images, which was a groundbreaking breakthrough (error rate dropped 

from 25.8% to 16.4%). These architectures deepen the hidden layers in machine 

learning and use convolution layers to capture image features, to carefully design 

the activation function of each layer and reduce the possibility of over-fitting. 

Even with huge amounts of data, convergence can be achieved during the training 

process. Deep learning is widely used in various fields, such as computer vision, 

image processing, sound recognition, facial recognition, and medical imaging20. 

At the same time, some new architectures have been developed to reduce the number 

of calculations and to achieve more accurate learning performance and rapid 

convergence. One of the more well-known methods is the VGG architecture proposed 

by an Oxford research team in 201521. The feature extraction layer of VGG is stacked 

with multiple small 3×3 convolutional layers to replace large kernel convolutions and 

reduce the number of parameters in the network. Stacking multiple convolution 
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modules, which combine multiple convolutional layers and pooling layer, simplifies 

and deepens the network architecture. In that same year, the network architecture of 

the Inception series22 was proposed by a Google team. In addition to deepening the 

depth of the network, this architecture increases the width of the convolutional 

cognitive layer. The split and merge of different convolution kernels (1×1, 3×3, 5×5, 

7×7) allows this architecture to cover the multiscale and multilevel feature extractions 

in a single Inception module and greatly reduce the network parameters. Although the 

layers. The latest version Inception-V423 combines the concept of residue connection 

to design the Inception module. After 2015, the vanishing gradient problem of deep 

architecture was resolved using residue connection24,25 and skip connection26. In a 

residue module, the input of a module is directly added to the output of the two 

convolutional layers. In this way, the back propagated gradient can be directly passed 

to the previous layer during backpropagation training. Using the same concept in U-

net, the convolution output of the Encoder is directly skip connected to the decoder 

convolutional layer of the same feature level. In the recent literature27, the squeeze 

excitation (SE) network and Convolutional Block Attention Module (CBAM)28,29 

network have given different weights to the feature maps in the convolutional layer, 

thereby emphasizing channel and spatial features within the probability of activation. 

For the application of deep convolution network in DHM30-34, a deep convolutional 

network is used to quickly perform autofocusing and extended depth of focus 

processing35,36, to restore the acquisition distortion for the in-line hologram37, to 

reduce the speckle noise38 from the coherent light source, to reduce the noise led by 

the low photon count in the light source39, to correct optical phase aberration40,41 , to 

perform the phase unwrapping for the digital hologram42,43, to reconstruct a super-

resolution hologram in DHM system44, and to implement 3D holographic 

tomography45.  

In this study, we propose a BR planar scanning mechanism, named BR holographic 

tomography (BR-HT), to acquire 3D information using a phase-encoding computer-

generated hologram (CGH) to generate tilted incidence beam scanning on the transverse 

plane of the optical axis. The reconstruction of accurate 3D information requires a large 

number (~102) of two-dimensional scanning holograms. Thus, aberration correction 

becomes a very time-consuming task. Speeding up this process is crucial to promoting 

the usability of this system. 46,47, for 

example, Shack-Hartman wavefront sensor, have been proposed to sense wavefront 

errors for characterizing an imaging system. However, the main goal of the proposed 

method with deep learning is to solve the wavefront error and aberration problems of 

beam rotation holographic tomography system under sample testing condition, and 
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once completed sparse data training with deep learning, it can be applied to speed up 

whole wavefront correction and imaging processes without manual interference for 

future automation application. To resolve this problem, we developed a deep sparse 

data aberration correction (Deep-SDAC) algorithm to accelerate the overall process 

with the aid of deep convolution network technique. Moreover, a Res-Unet scheme to 

segment the cell region, a deep regression network to build up the background 

aberration phase with its Zernike coefficients, and a sparse data fitting algorithm to 

predict the Zernike coefficients of whole scanning angles from its sparse data were 

incorporated. With these improvements, the correction with the proposed algorithm was 

as good as that with the plain algorithm but at a speed which is 13 times faster.

2. Beam rotation holographic tomography (BR-HT) system

The experimental BR-HT system with active wavefront correction (AWC) is 

shown in Fig. 1. This system was based on improved Mach-Zehnder interferometer 

architecture with a diode-pumped solid-state (DPSS) laser of 532 nm wavelength as the 

light source. The laser beam passed through BS1 before splitting into reference beam 

and object beam. Phase-only spatial light modulator (SLM) (pixel number: 1920×1080, 

illuminated the phase-only SLM and reflected it back to the objective (MO1, 100x, 

NA=0.8) to illuminate the object. The wavefront information of the object was collected 

by 4-f imaging system (MO2: 60x, NA=1.2, water-immersion, L1: 180 mm). Finally, 

object beam interfered with reference beam as hologram and complementary metal-

oxide-semiconductor (CMOS) image sensor (pixel number: 1448×1086; pixel size: 

of the BR-HT system was obtained by numerical reconstruction based on the optical 

diffraction theory9. Accordingly, the reconstructed complex wavefront was propagated 

to its back-focus plane by the digitally simulated Fresnel formula. Then, the Fourier 

F
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transform of the complex wavefront for each angle was mapped as grid points on the 

Ewald hemisphere of the object frequency domain. Subsequently, the complex 

information from all scanning angles was integrated in the frequency domain and 

inverse 3D Fourier transform was performed to obtain the 3D RI distribution inside a 

biological micro-sample. Under this procedure, one can use the acquired phase from 

the system to estimate the background aberration phase and generate its compensated 

phase. This phase can then compensate the aberration wavefront during the acquisition 

process. 

The flowchart of the AWC used in the BR-HT system is shown in Fig. 2. The 

processing steps were as follows: (1) Two CGHs cascaded together to encode the phase 

information of the blazed grating and Fresnel lens. The phase information was encoded 

in a phase-only SLM. The phase wavefront of blazed grating can be expressed as 

, where  is grating period and x,y are the spatial coordinates. This 

grating created incident light to scan the 3D sample at different angles and acquire 

multiple-view holograms. In addition, the phase wavefront of Fresnel lens was 

expressed as , which led to a convergence spherical wave with 

focal length f.  Here,  was the wavelength of the light source. In this way, we built up 

a BR mechanism by changing the value of  in  to generate different 

illumination angles. In our CGHs designed, the encoded phase contains Fresnel lens (f 

= 150 mm, 312 Fresnel zones) and blaze. In the CGHs designed on phase-only SLM, 

the encoded phase consists of a Fresnel lens (f = 150 mm) with about 312 zones and a 

blazed grating with variable peri

scanning range [-45°, 45°] after the angular magnification of a microscopic objective 

(MO1, 100x, NA=0.8).  According to phase modulation of the SLM device, the phase 

map is employed to the phase encoding for optimal design of the Fresnel lens and 

blazing grating to fully utilized SLM phase depth. Further, the fill factor of SLM pixel 

is over 93%, this only leads to a little diffraction loss and distortion in phase encoding 

for Fresnel lens and blazing grating. Also, the small nonlinear response of phase 

modulation over 2  in SLM device might induce some encoding noise, but it is not 

severely detrimental to the resultant tomographic reconstruction. (2) With the acquired 

digital hologram, the wavefront information was recorded in the reconstructed phase, 

which contains cell wavefront distribution, background aberration wavefront, and 

acquisition noise. For the different scanning angles, the object wavefront passes 

through different parts of the objective lens with a large extended pupil (NA=1.2). In 

this way, the aberration wavefront was generated during acquisition, and related to its 

scanning angles. Our goal is to estimate this aberration wavefront from the acquired 

phase and generate the compensated wavefront to correct this aberration. (3) For 
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accurate and efficient estimation of the wavefront aberration, we employed deep 

convolution network for the cell region detection and used the Zernike polynomial as 

the mathematical model for the aberration on the acquired phase. In addition, the 

corresponding Zernike coefficients of full-angle beam rotation were obtained from the 

aberration distribution with sparse illumination angles using a data fitting algorithm. 

The compensated aberration distribution, , was the conjugate phase distribution 

from the proposed Deep-SDAC algorithm. In next section, this algorithm will be

discussed in detail. (4) Thin CGH encoded conjugates phase was added to the original 

CGH series, the phase wavefront of which was encoded as and 

named AWC CGHs. This information was displayed in phase-only SLM. The 

wavefront generated from AWC CGHs actively corrected the wavefront aberration for 

the corresponding illumination angle during the holographic acquisition. So, (5) in the 

recorded hologram after step (4), the effects of aberration is removed from the 

numerical reconstructed phase distribution. With a series of AWC CGHs displayed on 

the phase-only SLM for beam rotations, the results from the recorded holograms are 

used for further tomographic reconstructions.

3. Sparse-data aberration correction by deep learning (Deep-SDAC) algorithm

To obtain accurate 3D information of the measured object, hundreds of scanning 

angle 2D holograms are required. However, correcting the phase aberration holograms 

for all scanning angles is computationally intensive. In this paper, we propose a sparse-

data aberration correction algorithm by Deep-SDAC algorithm to accelerate the overall 

process, as indicated in Fig. 3. In the algorithm, the acquired multi-scanning angle 

holograms were obtained by the previously described BR-HT system. The phase 
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information was firstly unwrapped and an initial tilted parameter was estimated. Since 

the scanning angle was given, it was easy to obtain this tilt parameter. Next, a deep 

convolution network Res-Unet was used to segment cell region of the phase image, 

incorporating residue connection and U-net architecture for the segmentation. Our goal 

was to estimate the background aberration image. Thus, the phase corresponding to the 

cell object was removed. Once the cell region was detected, the background phase of 

the cell region could be replaced by the interpolated data from the non-cell (background) 

region. Accordingly, the phase aberration image could be obtained from its background 

with some acquisition noise. After that, we employed orthonormal Zernike basis as the 

theoretical model for the background phase aberration. Based on orthogonality, there 

exists unique representation for the phase aberration and this representation is robust to 

the random noise. In the next step, we developed a deep regression network, which 

cascaded the Inception-ResV2 and full-connection network, to establish the 

relationship between the phase aberration image and its Zernike coefficients. Once the 

Zernike coefficients were obtained, the aberration compensation phase was generated, 

which was the conjugated phase image generated by the resultant Zernike coefficients. 

To this end, the aberration compensation phase was added to AWC CGH hologram and 

encoded in the phase-only SLM. Then, the object wave after the AWC CGH 

constructed an active illumination wavefront to remove the system aberration during 

the holographic recording process. Even though the overall process, as shown in Fig. 3, 

is efficiency. However, the process must be implemented in all 244 holograms with 

different scanning angles, and thus it required a large amount of computation. In this 

study, we constructed a sparse data fitting method which uses Zernike coefficients of 

the sparse angles in 15-degree scanning steps, to predict all the scanning angles, which 

were in 1.5-degree scanning steps for the whole scanning range [-45°, 45°]. Only the 

reconstruction phase of the sparse angles went through the overall process in Fig. 3, 

while the other Zernike coefficients were evaluated only by the sparse data fitting 

method. In this way, computation cost of the algorithm was greatly reduced. In the 

following sections, we introduce two deep convolution networks for cell region 

segmentation and Zernike coefficient estimation, as well as sparse data fitting technique 

for the Zernike coefficients.
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3.1 Deep learning Res-Unet for cell region segmentation

The acquired phase information of the BR-HT system consisted of three parts: cell 

wavefront distribution, background aberration, and system noise. Our purpose was to 

remove the influence of the optical aberration by BR scheme. For this purpose, a fast 

process was required to separate the cell region from the background in the phase image. 

We utilized Res-Unet deep convolution network, which combines two network 

architectures: deep U-net and residue connection. The deep U-net architecture is a 

mature technique for the segmentation of 2D images26. With this technique, there is a 

question of whether the neural network can extract the feature maps of the cell 

wavefront distribution. Deep learning stacks up large numbers of convolutional layers 

to obtain multi-scale features, from fine-grid to coarse-grid. The fine-grid features 

corresponded to the low-level features, such as pixel color, line, edge, and corner, 

whereas the high-level integration of these low-level features was used to construct 

complex, abstract, and close to visually recognizable features. In contrast to digital 

image, the cell phase or the phase aberration possesses less sharp edge information and 

more mid-level (two or three upper levels) features. Thus, four or five convolutional 

blocks are suitable for extracting the cell wavefront distribution edge information. In 

addition, the residue connection2,24 was adopted to avoid the problem of vanishing 

gradient during backpropagation training.

As indicated in Fig. 4, the Res-Unet architecture was established for cell region 

segmentation, which is an image-in image-out structure. There are two strategies to deal 

with the input data. First, to overcome the overfitting problem, we employed data 

argumentation to increase the number of training images. Next, multiple inputs, the

original phase image and its gradient, were fed into the network. In this way, the size 



 9 

of the inputs was 256×256×2, which is resize from its the original recoded hologram 

(1448×1086 pixels) for the limited computer memory in network architecture. We 

found that the curvature of the cell was valuable for properly recognizing the cell 

boundary. Gradient image was the most convenient way to access this information. The 

network architecture consisted of three modules: encoding, intermediate, and decoding. 

The encoding module extracted the feature maps from fine-grid to coarse-grid by 

stacking a series of convolution layers. The decoding part recovered the pixel size of 

the feature map to that of the original input. Convolution block (CB) consisted of two 

3×3 convolutional layers with strike of 2. The basis unit of Res-Unet was a residue 

block (Res-Bk). Here, we combined CB block with residue connection, letting x, y 

denote the input and output of the block. Then we performed the residue connection by 

y = x + CB(x), where CB(x) means the convolutional result after CB block with input 

x, as indicated in Fig. 4(a). In the encoding module, we employed the depth-wise 

separable convolution to reduce the parameters of the network. Moreover, the 

transposed convolution48 restored the size of the feature maps in the decoding pass. As 

shown in Fig. 4(b), the encoding pass was comprised of a series of layers with structure 

5×(Res-Bk  Max pooling layer) modules. Similarly, the decoding module 

encompassed the 5×(concatenate layer  Res-Bk) modules. The intermediate module 

served as the interconnection between the encoding and decoding modules, which 

connected one Res-Bk block. In this architecture, the skip connection was used to 

incorporate the feature maps in the encoding module into the corresponding feature 

level in the decoding module. In this way, the gradient flow was properly 

backpropagated through the encoding path for fast convergence. For the output, the 

Soft-max activation function was used for segmentation, with  denoting the 

input and the desired segmented image (binary). In the training process, the input image 

was fed into the deep network. Then, the resultant output of the network 

 was considered the probability map of the image pixels belonging to the 

cell region, where W are the weighted parameters of the network. As a result, a single 

threshold segmented the output to a binary image and the resultant binary output Ti was 

compared with the desired segmented image Si for defining the error function. In the 

experiments, we found that, other than the sample object and the background area, 

adding edge as the third region can improve the segmentation. Thus, we utilized the 

multiclass segmentation, which included three objects: the sample, the background, and 

the edge. In advance, under normal circumstances, the edge area was a very small, 

normally less than 5 %, which led to the imbalanced multiclass segmentation problem. 

In this case, the dice loss (DL) can achieve most accurate segmentation result, and 

defined as 

       (1) 
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where denotes the intersection of these two binary sets and is the area of 

the set. During training, the gradient values of the error function with respect to the W

for each layer were evaluated and backpropagated from the output layer to the input 

layer successively. The gradient values were then used to adjust the W of the network 

to minimize the loss function.

3.2 Deep regression network for Zernike coefficient estimation

In this section, Zernike polynomial was employed to construct an orthonormal 

basis49 for the aberration phase. The orthonormal basis provided a simple way to 

transform the aberration phase image and its coefficients using integration operation. 

To increase the efficiency of the algorithm, we developed a deep regression network to 

establish the relationship between aberration phase image and its Zernike coefficient. 

In BR-HT system, the tilted scanning beam passed through different apertures of the 

objective lens with large extended pupil (NA=1.2, water-immersion) at different angles. 

Thus, phase aberration depended on scanning angle. The unflattened surface of the 

SLM element or the varying RI of the microslide generated the aberration phase. In the 

experiments, 15 terms of Zernike coefficients were sufficient for modeling the phase 

aberration of the proposed BR-HT system, which included tilted, astigmatism, coma, 

trefoil, and spherical aberrations. The phase aberration model can be expressed as                                           

(2)

where is the orthonormal Zernike basis and are the corresponding Zernike 

coefficients. Since the Zernike basis was orthonormal, the phase aberration was 

uniquely represented by its Zernike coefficients. This relationship was established by a 

deep regression neural network. Given the input phase aberration image, there is 

corresponding output of Zernike coefficient. For the accurate estimation of Zernike 
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coefficients, the deep regression network should be able to extract the surface feature 

maps from different aberrations, such as tilted, astigmatism, coma, trefoil, and spherical. 

Recently, deep convolutional networks have matured enough to extract multiscale 

feature maps, which include tilted, spherical, or low-order polynomial surfaces. Thus, 

we combined these features for the estimation of the Zernike coefficients. Here, we 

employed the deep convolution network, Inception ResNet-V2, which has performed 

the best in terms of feature extraction in recent years. The basic setup of the deep 

regression network combined Inception ResNet-V2 for feature extraction and a series 

of full-connection networks for coefficient estimation. To obtain exact Zernike 

coefficients, large numbers of training images were generated to train the neuron 

parameters. The overall scheme of the proposed deep regression network is shown in 

Fig. 5. As indicated, we adopted an Inception ResNet-V2 network to extract the surface 

feature maps of the aberration phase, with flattened feature maps imported into the next 

deep regression module, which was composed of a series of full-connection layers. 

Inception ResNet-V223 incorporates two main techniques in deep convolutional 

network: Inception block and residue connection. Inception block, as developed by 

Google-Net Group, combines multi-scale convolution of different sizes, 1×1, 3×3, 5×5, 

by split, transform, and merge, to deepen and widen the architecture. In this way, spatial 

information of different scales (at fine and coarse grid levels) can be captured in a single 

Inception block. As an example, in Fig. 5(b) of the scheme for 35×35 grid (Inception 

Res A) module, the input was split into three convolutional branches to obtain multi-

scale feature maps and then merged into the output. In this scheme, residue connection 

was also performed, with the input directly added to the merged output of the 

convolution. Meanwhile, with the Inception block there was emphasis on learning 

efficiency, with 1×1 convolution before a large kernel size convolution. Due to merging 

of the feature maps in the output, some irrelevant features were ignored. In this way, 

there was effective training and fast convergence. In recent years, residue connection 

has inherently contributed to the training of a very deep network architecture. Since 

Inception ResNet-V2 tends to be very deep, it was natural to incorporate the filter 

cascade of the Inception block with residue connection. As shown in Fig. 5(a), different 

modules were combined, including Stem, Inception Res A, Reduction A, Inception Res 

B, Reduction B, and Inception Res A, and there were serial cascades multiple times. 

For example, the notation 10x Inception Res A means that 10 convolution modules 

(Inception Res A) are connected in series. The Reduction modules employed the 

convolution with strike of 2 to reduce the spatial grid to its lower coarse grid. The details 

of these Inception modules can be found in ref. 23 

Given an input aberration phase , the output of network can be represented as 

   (3) 
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During training, the corresponding desired Zernike coefficients were employed to 

evaluate the root mean square error for each training step, which was 

, where N=15. The training process was used to minimize this error 

in each step. 

 

3.3 Sparse data fitting for the Zernike coefficients at different angles 

In order to obtain complete 3D information of the living cell, we acquired 244 2D 

holograms at different scanning angles from the system. Optical diffraction theory was 

utilized to restore 3D living cell data. Even though the overall aberration correction 

process in Fig. 3 was computationally effective, it had to be implemented in all acquired 

holograms. Correcting such a large number of holograms is still costly in terms of 

reconstruction. For sparse data fitting, we used Zernike coefficients from the sparse 

scanning angles, for example 15° steps from the whole scanning range [-45°, 45°], to 

predict the coefficients of the other scanning angles. For this problem, a mathematical 

model was required for the relationships of the Zernike coefficients at different angles. 

By assuming that the optical axis of the BR-HT system was the z-axis and with the 

tilted illumination beam scanned in the x-direction at the angle of , we derived the 

mathematical expression which represents the relationship of the 2nd Zernike coefficient 

at different angles. From the polar representation of the 2nd Zernike basis, the aberration 

led by the tilted scanning angle could be written as  

           (4) 

where  denotes the 2nd Zernike coefficient depending on the scanning angle and 

is a constant. Here, the right expression  of this equation is the Zernike 

basis. As a result, the relationship of the 2nd Zernike coefficient with respect to the tilted 

scanning angle can be considered , where is a constant. In practice, 

a small perturbation can be added for the tilted scanning angle. Accordingly, we altered 

the expression as . Taylor expansion led to the first order 

approximation of this expression with first two terms 

   (5) 

of a prediction model for the 2nd Zernike coefficient at different tilted scanning angles. 

With this model, we developed a data fitting algorithm for accurately predicting this 

coefficient at different angles using only sparse angle data. Predictive models for other 

coefficients can be derived in a similar way to utilize the polar coordinates of the 

Zernike basis in ref. 45 

 

4. Experimental results  

In this study, we determined the aberration correction performance of the proposed 

Deep-SDAC algorithm using living neuroblastomas (SY-SH5Y) as our biological 
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samples in BR-HT system to obtain the 3D RI of these cells. The neuroblastomas, 

which were comprised of cell body and synaptic structures, were cultured in phosphate 

buffered saline (PBS, RI: 1.33). Here, we propose a BR planar scanning mechanism to 

acquire 3D information of the biological samples, using a phase-encoding CGH to 

generate tilted incidence beam scanning on the transverse plane of the optical axis, 

named BR holographic tomography. In this scheme, the hologram is recoded 1.5-degree 

steps of the optical axis (z-axis). The maximum of illumination angle is ± 45°. The 

beam rotation directions are the angles of 0°, 45°, 90°, and 135° along x-axis on x-y 

plane. The total number of recorded holograms during beam rotation is 244 images. 

Computation was carried out with AMD Rysen5 2600X CPU, GTX 1060 3GB graphic 

processing unit, Windows 10 operating system, MATLAB program 2019 version, and 

deep convolutional network with Tensorflow 2.0 & Keras. 

Figure 6 shows the resultant aberration correction process of the reconstructed 

unwrapped phase with single biological cell for the BR-HT system. In Fig. 6, the 

encoded phase of the ideal CGH (1920×1080 pixels) displayed on phase-only SLM was 

indicated, as previous stated this element was used to generate a dynamic focal spot by 

a convergence spherical wave and frequency conversion grating to record as multiple 

view holograms. With a known tilted angle, it is easy to initially estimate the tilted 

parameters and remove the tilted aberration. In additions, the phase recovery and 

unwrapping algorithm can achieve the reconstructed phase (1448×1086 pixels), as 

shown in Fig. 6(b). Our purpose was to correct the background aberration. Thus, cell 

information was removed during the correction process. The proposed deep 

convolution network Res-Unet was used to segment the cell region, with the resultant  
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segmented cell region (black region) overlapped to the background information 

(1448×1086 pixels), as shown in Fig. 6(c). As indicated, other than cell information, 

the input phase of the Res-Unet network also contained aberration and acquisition noise. 

In order to collect a large number of these phase images, we acquired training phases 

directly from the BR-HT system with scanning at different angles. Given the input 

phase of the Res-Unet network in Fig. 6(b), there was good cell segmentation, as shown 

in Fig. 6(c). As a result, a proper trained network can distinguish smoothness on the 

cell wavefront distribution from that of the aberration surface and noise. It achieves 

good segmentation result, even if the cell region is not clear to the human eye. To 

remove the cell information, the background phase (1448×1086 pixels) contained only 

the aberration with some noise, as shown in Fig. 6(d). The background phase was then 

input into a deep regression network for the estimation of the 15 terms of Zernike 

coefficient. Finally, the estimated Zernike coefficients were used to obtain the 

aberration compensated phase. The conjugation of this aberration phase was added to 

the encoded phase of the ideal CGH in Fig. 6(a) and led the resulting phase in AWC 

CGH (1920×1080 pixels), as shown in Fig. 6(e). Given the active compensated 

wavefront generated from AWC CGH, the hologram acquired in BR-HT system led the 

compensated phase result (1448×1086 pixels), as indicated in Fig. 6(f). 

Next, the training and testing performances of two deep convolution networks are 

illustrated. In general, deep convolution network requires a large number of neuron 

parameters and the training process is based on stochastic optimization techniques, with 

different sources of randomness, optimization parameters, and regularization 

procedures, which impact on the results. In our experiments, AdaGrad optimization was 

employed, in which the learning rate of each neuron parameter was multiplied by the 

reciprocal of a weighted value, which was the square sum of its historical squared 

gradient values. In this way, fast changing parameters rapidly decreased the learning 

rate. On the contrary, there was a small decrease in learning rate for the small update 

parameters. The optimization parameters included batch size, learning rate, and dropout 

ratio. We employed a number of experimental trials to make reasonable optimization 

choices. 

The training data for Res-Unet was acquired from the real data of BR-HT system 

for the experimental nerve cells. We generated about 488 phase images from the BR-

HT system and utilized data argumentation to the generated phase images, such as 

rotation, shear, and horizontal flipping to obtain about 2000 large datasets for training. 

We separated the datasets into 1800 images for training data and 200 images for testing 

data. During training, the learning rate was initially set at 0.0001, initial accumulator 

value=0.1, with batch size of 12. Thus, there were 150 training steps for each epoch. In 

this network, there were 3.8 million neuron parameters to be trained. The training and  
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testing losses are indicated in Fig. 7(a) for 140 epochs where the loss function is defined 

as the dice loss error function in Eq. (1). The loss value decreased quickly from about 

0.65 to 0.09 and the testing loss demonstrated randomly turbulent decline during the 

first 50 epochs. After that, the loss value slightly decreased until stable. Due to a small 

number of testing datasets, there were still some small perturbations in the testing loss 

during stable status. Finally, the testing loss reached its minimum value of 0.0697. 

We also examined the performance of the deep regression network as described in 

previous section. With a background aberration image, this model accurately estimated 

its 15 Zernike coefficients. The background aberration was highly dependent on the 

optical parameters of the BR-HT system, such as the wavelength, focal distance, RI of 

the microslide, and pixel resolution of the image sensor. Once the system was set up, 

these parameters could either be fixed or were variable within a small dynamic range. 

Then, a few hundred background (cell free) phase images at different angles were 

obtained and the Zernike coefficients were determined. As a result, we attained the 

dynamic range of all the Zernike coefficients. Accordingly, the simulated aberration 

phase database was generated by randomly selecting Zernike coefficients inside this 

range. In this way, we created 20000 background aberration images for training this 

model, 16000 for training and 4000 for testing. The input of this network was 256×256 

background aberration image and the output was 15 Zernike coefficients. The training 

process used 3200 training steps for each epoch, with batch size of 5 and learning rate 

of 0.0001. In this network, there were 2.1 million neuron parameters to be trained. We 

used root mean square error (RMSE) as the loss function of this model, as defined in 

previous section. The training and testing losses with respect to the number of epochs 

are illustrated in Fig. 7(b). From this figure, loss function convergence was fast and 

became stable during the first 50 epochs. After 50 epochs, either training loss or testing 

loss became stable. As a result, the deep regression network could accurately estimate 

the Zernike coefficients, with RMSE between the estimated and the desired coefficients 

very close to zero (0.0013). 
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The performance of the sparse data fitting algorithm, introduced in previous section, 

was evaluated. In practice, the difference in the dynamic range of these coefficients is 

very large. The contribution of the aberration phase is mostly from the low-order 

Zernike coefficient, with radial degree less than or equal to 2 and some of the high order 

coefficients very close to zero. For comparison, we used a MATLAB program to 

implement the whole correction process, as shown in Fig. 3, and calculated the Zernike 

coefficients for every scanning angle of the aberration phase. The result was the ground-

true Zernike coefficient. Performance was evaluated using the RMSE between the 

predicted value and its ground-true value. The sparse data fitting algorithm, based on 

the derived model in previous section, was employed to predict the coefficients of all 

the scanning angles using only the sparse angle data; 15 degrees of step over whole 

scanning range. The prediction results were shown in Fig. 8.  Here, we only present the 

prediction results of 4 coefficients in positive angles, the 2nd (tilted-x, RMSE=0.37 in 

range [0, 132]), 3rd (tilted-y, RMSE=0.0041 in range [-1.5, 0.2]), 4th (defocus, 

RMSE=0.023 in range [4.06, 4.14]), and 10th (Trefoil-x, RMSE=0.0026 in range [-

0.082 -0.044]) terms. For example, in the 2nd coefficient, the sparse data was from the 

coefficients of 0°, 15°, 30°, and 43.5°scanning angles. Instead of 45°, we used 43.5° as 

the sparse input, since in the prediction model is undefined. From this result, 

it is obvious that, given a suitable model for the relationship of coefficient with 

respectto its scanning angle, one can accurately predict the Zernike coefficient from its 

sparse data and save computation costs in the overall correction process. 

The original phase images contained cell, aberration, and noise information. The 

proposed algorithm removed the aberration. The corrected background phase was still 
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not flat, as it contained acquisition noise. In this case, ground-true data for the 

performance evaluation of the proposed Deep-SDAC algorithm was required.  With 

MATLAB program, the plain algorithm was used to implement the overall aberration 

correction process, as shown in Fig. 3, and replaced the deep convolution algorithms 

by commonly used image algorithms, where the watershed50 image segmentation was 

used to segment the cell region and the numerical integration was employed for the 

Zernike coefficient estimation. Since, the Zernike basis was orthonormal with unique 

transformation between the Zernike coefficient and its background aberration phase. 

Therefore, the Zernike coefficient estimated from the process shown in Fig. 3 was an 

exact representation and it is robust to random noise. The aberration correction result 

of the proposed deep-SDAC algorithm was examined in comparison with that of the 

plain algorithm, which was considered ground-true data. 
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Table 1. Effectiveness of the proposed algorithm: Shorthand CRS: cell region segmentation, ZCE: 
Zernike coefficient estimation, SDF: sparse data fitting.

Computation time in second  (244 holograms)

Processing step CRS ZCE SDF Overall process

Plain algorithm 
(ground-true)

369.7 6.24 none 561

Proposed Deep-SDAC 
algorithm

21.7 4.6 8.4 42.9

According 

to the similar compensated phase of the reconstructed images from different scanning 

angles, the 3D refractive index distribution of the cell sample from tomographic 

reconstruction can be estimated with a reasonable accuracy of approximately 0.006 for 

both algorithms.

5. Conclusion

The proposed BR-HT imaging system was successfully used to acquire 3D RI 

distribution of a label-free living neuroblastoma cell, utilizing a planar BR scanning 

mechanism. The computational cost of the conventional aberration correction in the 

reconstruction was too high for practical use. To accelerate the aberration correction in 
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the BR-HT system, deep convolution network was introduced to segment the cell 

region and estimate the Zernike coefficients of the background aberration. Finally, a 

sparse data fitting algorithm was used to obtain the Zernike coefficients of the whole 

scanning range from its sparse data. The computation speed was up to 13 times faster 

than that of the original plain algorithm with the same correction performance. This 

greatly improves the practicality of the optical system. 
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