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Abstract

Live-cell imaging has opened an exciting window into the role cellular heterogeneity plays

in dynamic, living systems. A major critical challenge for this class of experiments is the

problem of image segmentation, or determining which parts of a microscope image corre-

spond to which individual cells. Current approaches require many hours of manual curation

and depend on approaches that are difficult to share between labs. They are also unable to

robustly segment the cytoplasms of mammalian cells. Here, we show that deep convolu-

tional neural networks, a supervised machine learning method, can solve this challenge for

multiple cell types across the domains of life. We demonstrate that this approach can

robustly segment fluorescent images of cell nuclei as well as phase images of the cyto-

plasms of individual bacterial and mammalian cells from phase contrast images without the

need for a fluorescent cytoplasmic marker. These networks also enable the simultaneous

segmentation and identification of different mammalian cell types grown in co-culture. A

quantitative comparison with prior methods demonstrates that convolutional neural net-

works have improved accuracy and lead to a significant reduction in curation time. We relay

our experience in designing and optimizing deep convolutional neural networks for this task

and outline several design rules that we found led to robust performance. We conclude that

deep convolutional neural networks are an accurate method that require less curation time,

are generalizable to a multiplicity of cell types, from bacteria to mammalian cells, and

expand live-cell imaging capabilities to include multi-cell type systems.

Author Summary

Dynamic live-cell imaging experiments are a powerful tool to interrogate biological sys-

tems with single cell resolution. The key barrier to analyzing data generated by these
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measurements is image segmentation—identifying which parts of an image belong to

which individual cells. Here we show that deep learning is a natural technology to solve

this problem for these experiments.We show that deep learning is more accurate, requires

less time to curate segmentation results, can segment multiple cell types, and can distin-

guish between different cell lines present in the same image. We highlight specific design

rules that enable us to achieve high segmentation accuracy even with a small number of

manually annotated images (~100 cells).We expect that our work will enable new experi-

ments that were previously impossible, as well as reduce the computational barrier for new

labs to join the live-cell imaging space.

This is a PLOS Computational BiologyMethods paper.

Introduction

Live-cell imaging, in which living cells are imaged over a period of time using phase contrast

and/or fluorescencemicroscopy, is a powerfulmethod for interrogating living systems. This

class of experiments has shed light on numerous biological problems, which include transcrip-

tional regulation in both bacteria and eukaryotes as well as information transmission in mam-

malian signaling networks [1–8]. One common insight these single-cell measurements have

been able to provide is the role cellular heterogeneity plays in these systems, as they have the

ability to capture the differences between cells and observe how these differences evolve in

time. This aspect of living systems is often missed in population level analyses and is best cap-

tured by live-cell imaging [9].

Central to the analysis for these experiments is the problem of image segmentation—the

assignment of which pixels in an image belong to each individual cell [9]. Without this map-

ping, it is impossible to extract statistics on cellular fluorescence or geometrywith single-cell

resolution. The available solutions to date draw upon a standard set of techniques—filtering,

morphological operations, thresholding, and the watershed transform—from computer

vision. Typically, a combination of these tools are tailored to each individual experiment [4,

10–13]. For example, CellProfiler and Oufti are tools to perform cell segmentation and track-

ing (primarily using thresholding, watershed transform, and Voronoi algorithms). Super-

visedmachine learning methods have also seen significant success in this space [14–16]. Two

notable examples are Ilastik and Microscopy Image Browser, two freely available programs

that use supervisedmachine learning (edge and texture filters with random forest classifica-

tion) to perform segmentation [12, 17–19].

Our lab’s experience in performing all aspects live-cell imaging experiments—fromdata

generation to analysis—have lead us to identify three main challenges in this space. These are

curation time, segmentation accuracy, and solution sharing. The unfortunate reality is that

the output of most programs built around the standard set of techniques described above

requires significant amounts of manual curation. The specific time cost is rarely, if ever,

reported, but work by our lab on NF-κ B signaling in mammalian cells, which required seg-
menting images of fluorescent nuclei, required on the order of 100+ hours of manual cura-

tion per manuscript [4, 5]. Similarly, recently-published work requiring segmentation of

growing micro-colonies of E. coli required ~40 hours [20]. Much of this burden can be traced
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to inaccurate segmentation algorithms and the time required to separate accurately seg-

mented cells from inaccurately segmented ones. The need for human curation is a significant

drawback to these methods; not only are far fewer experiments performed than could be, but

many types of experiments are never performed because the analysis is seen as prohibitive

(co-culture, for example—see [5]).

The image analysis techniques mentioned above are also confounded by commonly-desired

tasks, such as robust segmentation of mammalian cell cytoplasms, or bacterial cells in close

proximity. Segmentationmethods exist for the mammalian cytoplasm, but they typically

require either imaging a cytoplasmic fluorescent protein (which removes a fluorescence chan-

nel) or imagingmultiple focal planes (which increases acquisition time) [21–26]. Neither of

these consequences are desirable. As a result, the cytoplasmic segmentation problem is fre-

quently circumvented by sampling pixels in close proximity to the nucleus and using them as a

proxy for the cytoplasm [27–29]. More progress has beenmade in segmenting closely packed

bacterial cells [17]; however, a robust method to identify the cytoplasm of mammalian cells or

bacterialmicro-colonies with single-cell resolution directly from phase microscopy images has

remained elusive [17, 26, 30, 31].

Another challenge concerns generality, or the ability of existing solutions or software in one

lab to be applied to the problems of another lab. Because different groups use highly-tuned

combinations of these standard techniques to solve the image segmentation problem for spe-

cific experiments, there is a barrier to sharing work and ideas in this space. CellProfiler, Oufti,

and Ilastik represent notable exceptions, and have empowered a number of experiments,

including in labs which were otherwise new to computational image analysis [12, 17, 18]. How-

ever, the overall lack of sharable segmentation solutions means the cost of entering this field

requires a significant—and often unanticipated—computational investment, beyond the obvi-

ous costs associated with the microscopy itself.

Recent advances in supervisedmachine learning, namely deep convolutional neural networks

(referred to here as conv-nets) have shown remarkable performance for the task of image classifi-

cation—that is, assigning descriptive labels to images [32, 33]. By “learning” on a set of manually

annotated data, conv-nets can be used to classify new images with remarkable accuracy [33].

Prior work has shown that in addition to functioning as image classifiers, conv-nets can also per-

form semantic segmentation—the assignment of class labels to each individual pixel of an image

rather than to the whole image itself—in a computationally efficientmanner [34–36]. Despite

their successful application to numerous real-world problems, conv-nets have only recently been

applied to analyzing biological data. Recent work has demonstrated that they have significant

potential to address the needs of live cell imaging experiments.Work by Ronnenberg et. al. won

the 2015 ISBI cell tracking competition, and was the first to demonstrate that conv-nets can seg-

ment images of U373 (with almost perfect accuracy) and HeLa cells fromDICmicroscopy

images [37]. Another recent paper addressed the problem of segmenting fluorescent images of

yeast cells [37–40]. Much like Krizhevsky’s initial application of conv-nets to the ImageNet

image classification challenge in 2012, this work strongly suggests that conv-nets are a natural

technology for live-cell imaging experiments [33]. While these recent developments have the

potential to be revolutionary, our experience both as experimentalists and as users of deep learn-

ing demonstrated that there was still work to be done before conv-nets can supplant prior image

segmentationmethods in this space. In this work, we build on these exciting advances to demon-

strate that conv-nets address all of the image analysis problems describedabove for a large variety

of cell types. Our aim was to leverage our lab’s experience in live-cell imaging and deep learning

to develop a robust tool that could be applied to a variety of live-cell imaging experiments.

Our paper is organized as follows. We first review how image segmentation can be thought

of as image classification as well as the mathematical structure of conv-nets. We show that
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conv-nets can accurately segment the cytoplasms of bacterial cells and mammalian cell nuclei

from fluorescent microscopy images.We show that integrating phase microscopy images with

fluorescent microscopy images of a nuclear marker enables the accurate segmentation of the

cytoplasm of mammalian cells.We show that by integrating conv-nets into an image analysis

pipeline, we can quantify the growth of thousands of bacterial cells and track individualmam-

malian nuclei with almost no manual correction.We also show that incorporation of cyto-

plasmic segmentationmasks provides a more accurate quantification of fluorescent protein

localization kinase translocation reporters (KTRs) [6]. A quantitative comparison demonstrates

that conv-nets are superior to other methods, both in terms of accuracy and curation time.We

show how this approach can be used to both segment and classify different mammalian cell

types in a co-culture using just the phase image and a nuclear marker. We highlight particular

features of our work—image normalization, segmentation refinement with active contours, and

receptive field size—whichwere critical for conv-nets to perform robustly on live-cell imaging

data using relatively small training data sets.We also explore how much recent deep learning

advances—namely dropout, batch normalization, and multi-resolution networks—impact seg-

mentation performance [37, 41, 42]. All of the software and training data describedhere, as well

as a Docker container, is available at https://simtk.org/projects/deepcell.

Image segmentation as image classification

Image segmentation of single cells in microscopy images can be converted into an image classi-

fication problem [38]. Consider a manually annotated image where each pixel has been identi-

fied as either a cell boundary, cellular interior, or background (non-cell) pixel, as depicted in

Fig 1a. By sampling a small region around each pixel and assigning the resulting image that

pixel’s respective class, we can construct a training data set that contains representative images

of each class. After the manually annotated image is reconstructed in this way, the image seg-

mentation task is effectively reduced to finding a classifier that can distinguish between the

three classes in the training data set and is robust enough to classify new images. Should such a

classifier exist, any newmicroscope image could be segmented by decomposing it into small

overlapping images, applying the classifier to each image, and then reassembling the classifica-

tion prediction into a new image. This image can then be subjected to standard computer

vision techniques to produce a segmentationmask—an image where the pixels for each cell’s

interior have been assigned a unique integer label. Conv-nets can function as exactly such a

classifier for data acquired from live-cell imaging experiments because they have both substan-

tial representational power to encode the nonlinear relationship between images and classes,

yet are general enough to provide robust predictions for new images [32, 33].

Here, we briefly review the mathematical structure of conv-nets and how they are trained to

perform classification tasks [32, 38]. With respect to their mathematical structure, conv-nets

can be thought of as having two components; this is schematized in Fig 1b. The first compo-

nent constructs a low dimensional representation of an image using the iterative application of

three operations, as depicted in Fig 1b. If we denote the input image as I, then the first opera-

tion is to convolve the image with a set of filters, denoted here as {w1,. . ., wn}, to produce the fil-

tered images {I � w1,. . ., I
� wn}. Each filterwi has the same shape—a square with a size of 3–5

pixels—in the conv-nets considered here. The filters can be thought of as local feature extrac-

tors as their output only depends on pixels in close spatial proximity. The weights of these fil-

ters are variables—their values are changed during a training procedure to minimize the

classification error on a training data set.

Once the image is filtered, the second operation is to apply a transfer function f to produce a

set of feature maps {f(I � w1),. . ., f(I
� wn)}. The transfer function serves to enable the classifier
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Fig 1. Performing image segmentation with deep convolutional neural networks. (a) Image segmentation can be recast as an
image classification task that is amenable to a supervised machine learning approach. A manually annotated image is converted
into a training dataset by sampling regions around boundary, interior, and background pixels. These sample images are then used
to train an image classifier that can then be applied to new images. (b) The mathematical structure of a conv-net. A conv-net can be
broken down into two components. The first component is dimensionality reduction through the iterative application of three
operations—convolutions, a transfer function, and down sampling. The second component is a classifier that uses the
representation and outputs scores for each class.

doi:10.1371/journal.pcbi.1005177.g001
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to construct non-linear decision boundaries. In this work, we use the rectified linear unit, or

relu, as our transfer functionwhich is defined as relu(x) = max(0, x) [43]. The third operation

is an optional down-sampling using max-pooling, which creates feature maps at a coarser spa-

tial scale. The max-pooling operation replaces anm ×m window with the largest pixel value

within that window. The window is then slid across the image with a particular step size to pro-

duce the down sampled image. In this work, we only consider max-poolingwith a 2 ×2 window

using a step size of 2. The output of these dimensionality reduction steps are a collection of

down sampled (if max pooling was applied) feature maps {pool(f(I � w1)),. . ., pool(f(I � wn))}.

These feature maps can be viewed as a single multi-channel image, which then serves as the

input to another round of the same three operations—convolution with a set of filters, applica-

tion of a transfer function, and optional down-sampling by max pooling. By iterating these

three operations for several rounds (4–6 times in this work), we construct a low dimensional

representation of the input image.

The second component of a conv-net, classification, uses a fully connected neural network

that takes the low dimensional representation described above an input and assigns class labels.

The mathematical structure is similar to a linear classifier, which collapses the low dimensional

representation of the image into a single vector r and then multiplies it by a matrix W. The

dimensions ofW are (number of classes X number of elements in r), which by design produces

the appropriate number of class scores. The output is a vector of class scores, with the highest

score being called as the winner.

The difference between the linear classifier and a fully connected neural network is that the

latter uses iterative applications of matrix multiplication and a transfer function to construct a

nonlinear mapping between the low dimensional representation and the set of class labels. Put

concretely, the first step is to collapse the low-dimensional representation into a single vector r

and then multiply with a matrixW1. The product is then sent through the transfer function f to

yield the output f(W1r). The repeated application of these two operations produce the output

Wqf(Wq-1f(. . .f(W1r))), where the number of rows of the last matrixWq is equal to the number

of classes. This output is a vector of class scores which serves as the classification prediction.

For the networks considered in this work, we take q = 3 or 4. The structure of the conv-nets

explored here are shown in Table A in S1 Text.

With the mathematical structure of a conv-net defined, we now to turn to training. As with

other supervisedmachine learningmethods, conv-nets have to learn frommanually annotated

datasets to perform the classification task, such as the classifying of boundary, interior, and

background images mentioned earlier. We refer to this dataset as our “training data” because it

is used to train the conv-net as a classifier. A small portion (10%) of this dataset is set aside as

“validation data” and is used to benchmark the training procedure. In the case of conv-nets,

training means tuning the weights of the filterswi and matricesWj to minimize the classifica-

tion error. This is done by first constructing a cost function that provides a reward for predict-

ing the correct class and a penalty for predicting the wrong class for a set of images. In this

work, we use soft-max cost function, which is defined as

Cost ¼ �

X

all images

log
ecorrect class score

X

all classes
eclass score

0

B

@

1

C

A
þ l

X

w 2 fall filter weightsg

w2
:

The first term can be thought of as the negative log likelihoodof choosing the correct class

while the second is a regularization term included to reduce overfitting.With the cost function

defined, batch stochastic gradient descent (or a variant like RMSprop) was used to tune the fil-

ter weights (after a random initialization) to minimize the cost function [44, 45]. Batch
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stochastic gradient descent works by computing the derivative of the cost functionwith respect

to each weight for a batch of images. The cost function is minimized by adjusting the weights

according to the formula

w ¼ w � learning rate �
@Cost

@w
:

The gradient of the cost with respect to the weights is computed analytically using the back-

propagation algorithm [46]. We implemented training and execution of conv-nets in Python

using the Keras, Theano, Numpy, Scipy, and Scikit-image Python packages[47–51]. Additional

details about training are provided in the supplemental information.

Results

Conv-nets accurately segment bacterial and mammalian cells

We trained conv-nets to perform 3 different segmentation tasks—bacterial cytoplasms (from

phase microscopy images), mammalian cell nuclei (from fluorescent microscopy images of

cells expressing a nuclear marker), and mammalian cell cytoplasms (from phase microscopy

images and images of a fluorescent nuclear marker). For the mammalian cell cytoplasm seg-

mentation task, we opted to allow the conv-net to see both the phase image and an image of a

nuclear marker. We did this for three reasons. First, most live-cell imaging experiments of

mammalian cells collect images of a nuclear marker for cell tracking purposes, so we expect

that data to typically be present. Second, we reasoned that because the nuclei and the cytoplasm

overlap spatially, the nuclear channel might help when the phase image is ambiguous. Third,

because the nuclei are typically separated spatially, we reasoned that the nuclear channel could

be used to separate cells that are in close spatial proximity—either inherently by the conv-net

or through a post processing step. The conv-net architectures trained on each dataset are

shown in Table A in S1 Text.

Once trained, a new image can be run through the conv-net to produce a prediction of

which pixels are background, cellular boundary, or cellular interior. As opposed to processing a

new image patch-by-patch, d-regularly sparse kernels can be used to process images in a fully

convolutional, computationally efficient fashion [35, 36]. These predictions are images with

pixel values ranging from 0 to 1 to reflect how certain the conv-net is of its pixel level classifica-

tion. For live-cell imaging experiments, this predictionmust be turned into a binarymask—an

image with a 1 at every cellular interior pixel and a 0 everywhere else. We’ve found that this

necessitated an additional downstream processing step. For bacterial cells and mammalian

nuclei, thresholding was sufficient to produce accurate segmentationmasks. For the mamma-

lian cytoplasm, we first used a conv-net to segment the nuclei, and then used the nuclear pre-

diction to seed a refinement of the cellular interior prediction with active contours [52].

Sample segmentation results are shown in Fig 2 and S1–S8 Figs. To date we have trained

and tested conv-nets to segment images of the following cell types/lines—E. coli, NIH-3T3,

MCF10A, HeLa-S3, RAW 264.7, and bonemarrow derivedmacrophages (BMDMs). To

benchmark the segmentation results, we computed standard (Jaccard and Dice) indices of seg-

mentation accuracy [53] (Table 1). For each cell, given a reference segmentation R and com-

puted segmentation S, the Jaccard index is defined as JI ¼ jR\Sj

jR[Sj
and the Dice index is defined as

DI ¼ 2jR\Sj

jRjþjSj
. The conv-net based approach has an accuracy that is either on par with or superior

to the current methods developed to segment phase and fluorescent images of cellular cyto-

plasms and nuclei. The results in Table 1 also suggest two significant advantages of conv-nets

over other approaches. First, the approach is general. Although the specifics of the architecture

Segmenting Single Cells with Deep Learning
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may need to be fine-tuned for each cell type, they have the capacity to segment images of multi-

ple different cell lines. Second, because of their improved accuracy, less time is required to

manually curate the segmentation results.

As a second validation test, we examined time lapse images of E. coli and HeLa cells to deter-

mine whether segmentation results were significantly different between images known to be

closely related in time. This test also had the advantage of being particularly relevant to the

most pressing application of our method. A linear assignment problem-based approach was

used to track cells from frame to frame [54]. To estimate how many E. coli cells showed high

variance in segmentation over time, we counted how many cells had a 30% or larger area

increase from frame to frame (S1 and S2 Movies)—such a large increase typically means that

two bacteria have been incorrectly segmented as a single cell. We found that 69 of the 11909

cells (across all frames) analyzed in Fig 3 met this criterion, which leads to an error rate of

~0.6%. This number is superior to the best results from standard approaches by four-fold

(2.6%) [17]. For HeLa cells, we performed a similar analysis, but in this case comparing the

Fig 2. Sample images from live-cell experiments that were segmented using conv-nets. Images of bacterial and
mammalian cells were segmented using trained conv-nets and additional downstream processing. Thresholding for bacterial
cells and an active contour based approach for mammalian cells were used to convert the conv-net prediction into a
segmentation mask.

doi:10.1371/journal.pcbi.1005177.g002
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segmentation contour for each cell to the actual phase image over time.We visually inspected a

segmentedmovie (S3 and S4 Movies), and found that 21 of 145 cells tracked over time exhib-

ited significant changes in segmentation. This leads to an error rate of 14%, which is sufficient

to analyze most cells within a field of view, and represents a significant step forward in compar-

ison to prior methods.We conclude that conv-nets are comparably accurate for a variety of cell

types with a significantly reduced curation requirement.

Conv-nets automate the quantification of live-cell imaging experiments

Having established and validated the use of conv-nets for segmentation of live-cell images, we

decided to apply them to pressing needs in our field: first, constructing single-cell growth

curves for bacteria; and second, quantifying localization-basedkinase reporters in mammalian

cells. The analysis of single-cell growth curves has recently produced a number of insights into

the mechanism of bacterial growth, including the identification of the adder model for bacterial

growth and the observation of metabolic co-dependencewithin biofilms [20, 55–58]. The

images for single-cell growth curves are typically generated by growing bacteria in a patterned

microfluidic device, although agar pads and other microfluidic devices have also been used

[59–61]. The generation of these growth curves has typically been difficult because of the close

proximity of the growing cells, although recent efforts using standard approaches have shown

some success [11, 17]. By using our conv-net based approach and a linear assignment problem

Table 1. Comparison of segmentation performance among different segmentation algorithms and datasets. The Jaccard (JI) and Dice (DI) indices
were computed on a validation data set as previously described [53]. The Jaccard index for E. coliwas estimated from the segmentation error rate (0.5% in
this work and 2.6% in [17]) assuming each segmentation error was due to the incorrect joining of 2 bacteria. NA—Not available.

Cell type(s) Method Imaging type JI DI Dense Processing time
per image

Curation time
per image

Citation

Bacteria

Coliform
bacteria

Edge finding and thresholding Phase ~0.94 Yes 5 s ~10–30 s [15,14]

Coliform
bacteria

Conv-nets Phase ~0.95 Yes 120 s 1–2 s This work

Mammalian nuclei

Thresholding and level sets Fluorescence 0.88 Yes 2–3 s ~ 5–10 s [45]

Conv-nets and thresholding Fluorescence 0.89 0.94 Yes 10 s ~0–1 s This work

Mammalian cytoplasm

N1E115 Voronoi diagrams Fluorescence 0.75 No 40 s NA [46]

Neural stem
cells

Level sets Bright field 0.79 No NA NA [47]

NIH-3T3 Edge finding, thresholding, and
morphological operations

Phase 0.76–
0.92

No NA NA [21]

HeLa-S3 Ilastik (texture/edge filters and
random forest classifier)

Phase 0.56* 0.71* Yes 1s NA [18], This
work

HeLa-S3 Conv-nets DIC 0.77 Yes 1s NA [37]

U373 Conv-nets DIC 0.93 No 1s NA [37]

MCF10A Conv-nets and active contours Phase 0.77 0.86 Yes 75 s ~ 2–10 s This work

NIH-3T3 Conv-nets and active contours Phase 0.77 0.86 Yes 75 s ~ 2–10 s This work

HeLa-S3 Conv-nets and active contours Phase 0.71**-
0.84

0.83**-
0.92

Yes 75 s ~ 2–10 s This work

*: See the supplemental information and S17 Fig for more details.

**: For fully confluent cells. See the supplemental information and S16 Fig for more details.

doi:10.1371/journal.pcbi.1005177.t001
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Fig 3. Extracting dynamic measurements of live-cell imaging experiments using conv-nets. (a)
Single-cell growth curves for E. coli. Because conv-nets allow for the robust segmentation of bacterial cells,
we can construct single-cell growth curves frommovies of growing bacterial micro-colonies. A linear
assignment problem based method was used for lineage construction. (b) By computing the change in area
from frame to frame for each cell, we can construct a histogram of the instantaneous growth rate. (c) Using

Segmenting Single Cells with Deep Learning
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method for lineage construction,we can construct single-cell growth curves for E. coli–even

when they are growing in a micro-colony—and use them to compute the instantaneous growth

rate for each cell. These are shown in Fig 3a, 3b and S12 Fig. Because our approach can robustly

produce accurate segmentationmasks, it can be used to automate the analysis of thousands of

bacterial cells regardless of their proximity. Using the instantaneous growth rate, we can create

a spatial heat map of the micro-colony that is colored by the growth rate with single-cell resolu-

tion. This is shown in Fig 3c. We note that all of the panels in Fig 3 were generated without

manual correction.

A second application of our method is the quantification of localization-basedkinase

reporters. These reporters are a recent advance that enable the monitoring of kinase activities

inside individual mammalian cells [6]. These reporters consist of a kinase recruitment domain

tethered to a nuclear localization signal, nuclear export signal, and a fluorescent protein. Acti-

vation of the associated kinase leads to phosphorylation of the reporter and a nucleocytoplas-

mic translocation event. Because the reporter is fused to a fluorescent protein, this event results

in a change in fluorescence localization. Due to the complexity of segmentingmammalian

cytoplasms, we had originally taken a 5-pixel wide ring around each nucleus as a proxy for the

entire cytoplasm, as has been done in other studies [27–29]. With an improved ability to sam-

ple the cytoplasm pixels, we reasoned that our conv-net based approach would lead to more

accurate quantification of KTRs. To test this, we acquiredmovies of HeLa-S3 cells expressing

the JNK-KTR after they were stimulated with TNF-α and segmented them using our conv-net
approach. For this analysis, we segmented both the nuclei and the cytoplasm using conv-nets

(S4 Movie). A montage of cells from this data set is shown in Fig 4a.

To identify the most robust way to quantify the nuclear-to-cytoplasm ratio, we first visually

inspected our movies. This inspection revealed that the cytoplasmic fluorescence is not uni-

form—rather the fluorescence is highest close to the nucleus and is much lower at the periph-

ery (Fig 4a and 4b and S3–S7Movies). Furthermore, as evidenced by Fig 4a and 4b, the

fluorescence transfer from the nucleus is spatially restrictedwhen it enters the cytoplasm. The

HeLa-S3 cytoplasm can therefore be thought of as having two compartments, only one of

which receives fluorescence from the nucleus. To see how this experimental reality influences

the quantitation of the data, we varied the radius of the cytoring to see how its size influences

the extracted dynamics (Fig 4d and S10 Fig). We found that as we increased the radius, the

qualitative shape of each curvewas intact but there were important quantitative differences.

These differences are important when using models to infer the concentration of active kinase

inside a cell. The smallest cytoring almost exclusively samples the compartment in communi-

cation with the nucleus but also has the fewest number of pixels. The larger cytorings sample

this compartment more thoroughly but also incorporate pixels that are not in the correct com-

partment.We therefore expect the cytoring to give qualitatively correct but quantitatively inac-

curate results regardless of the radius. Our conv-net based approach improves on this method

because it better samples the cytoplasmic pixels (as seen in S11 Fig). To determine the average

fluorescence of the compartment that is in communication with the nucleus, we fit the pixel

intensity histograms of the cytoplasm of each cell to a 2-component Gaussian mixture model

as shown in Fig 4c. The resulting dynamics for this approach and comparison to the cytoring

method are shown in Fig 4d. We feel this method is superior because it properly incorporates

information from the entire cytoplasmwhereas the cytoring forces one to make a decision

the instantaneous growth rate and the segmentation masks, we can construct a spatial map of growth rates
with single-cell resolution. Such a map allows rapid identification of slowly dividing cells (such as
metabolically inactive cells).

doi:10.1371/journal.pcbi.1005177.g003
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between accuracy and sampling sparsity. We note that this method for quantifying KTRs may

not be necessary for all cell types, as NIH-3T3 cells did not appear to have a two-compartment

cytoplasm [6].

Conv-nets enable the identification of cell type in mammalian cell co-
cultures

The ability to quantify fluorescencemicroscopy data is a powerful application of deep learning

that will lead to more accurate quantification of live-cell imaging experiments. However, conv-

nets also have the ability to perform semantic segmentation—that is, to both segment individ-

ual cells and also predict their cell type [35, 62]. We explored how well conv-nets perform

semantic segmentation in this context by training a conv-net on a data set that contained

images of both NIH-3T3 and MCF10A cells, which exhibit distinct morphologies under phase

contrast. We modified the conv-net architecture (Table A in S1 Text) by increasing the number

Fig 4. Analysis of JNK-KTR dynamics in single cells. (a) A montage of HeLa-S3 cells expressing a JNK-KTR after stimulation with TNF-α. The scale
bar is 20 μm. (b) A line profile of the fluorescence of the cell highlighted in (a) which demonstrates that there is considerable spatial heterogeneity of the
fluorescence in the cytoplasm.Wemodel the cytoplasm as having two compartments, only one of which receives fluorescence from the nucleus during
translocation. (c) A fit of a two component Gaussian mixture model to the cytoplasmic fluorescence of a HeLa-S3 cell. This method allows us to
accurately estimate the fluorescence inside the cytoplasmic compartment that communicates with the nucleus. (d) Dynamics of the JNK-KTR after
stimulation with TNF-α after segmentation with our conv-net based approach and quantification with the two component Gaussian mixture model. Plotted
in comparison are dynamics obtained from using cytorings with radii of 5 pixels and 25 pixels.

doi:10.1371/journal.pcbi.1005177.g004
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of classes from 3 to 4 so that the conv-net could recognize the difference between the interiors

of the two cell types. To generate a prediction for each cell, the trained conv-net was first

applied to an image of a co-culture.We then used the sum of the NIH-3T3 and MCF10A nor-

malized score images to generate segmentationmasks as described above. We then computed

the cellular classification score for each class (NIH-3T3 or MCF10A), which is given by

cellular classification score ¼

X

i2fcell pixelsg
class score for pixel i

X

classes

X

i2fcell pixelsg
class score for pixel i

:

The results for semantic-segmentation are shown in Fig 5a and 5b.When compared with the

ground truth (provided by distinct nuclear markers for the two cell types), our trained conv-net

has an accuracy of 95% when it comes to a cellular level prediction of cell type. One image con-

taining 92 NIH-3T3 cells and 182 MCF10A cells was classified to determine the accuracy of cell

type classification. Similar results were obtained for additional images (see S9 Fig).

We were curious whether stronger cellular classification scores were less prone to classifica-

tion errors. To explore this, we constructed a histogram of the cellular classification scores of

the correct class for each cell (Fig 5c). We found that classification errors are clustered around

0.5, with only 3 cells with errors having a value less than 0.25. This observation leads us to con-

clude that the closer a cellular classification score is to 1, the more likely that the prediction is

correct.

Discussion

Advantages of conv-nets over standard computer vision techniques

Image segmentation is the core task required to convert the data from live-cell imaging experi-

ments into a quantitative, dynamic description of living systems with single-cell resolution.

Here, we have shown that deep learning can perform this task with accuracy sufficient for live-

cell experiments. The approach to single-cell segmentation we have outlined has four main

advantages. First, incorporating conv-nets into an image segmentation pipeline significantly

reduces the time required for manual supervision and correction. This improvement comes

about from the improved accuracy of the segmentationmasks. In the two case studies pre-

sented here, we were able to obtain our end result with no manual curation.We note that this

ability depends on data quality and likely will not hold for all experiments. To get a sense of the

actual time savings, we estimated the curation time required for our previous work and

searched the literature to obtain estimates of how long it takes to analyze a typical experiment

[4, 5, 9]. We found that, including parameter tuning, for nuclear segmentation we typically

spend 6–12 hours analyzing a typical data set (96 positions x 45 frames) using a watershed

based segmentation approach. Analyzing the segmentation results for bacterial cell division to

produce the results in [15] required approximately 40 hours. Similarly, manually segmenting

the cytoplasms of 3T3 cells in ~200 images required over 200 hours [26]. Even in the cases

where the computational cost is significant, conv-nets invariably lead to significant savings in

human time. Moreover, human time and computation time are not equivalent—a 20 hour task

may take a human nearly a week (given scheduling demands and ergonomic requirements)

while a computer can complete it within a day (or less if parallelization is used).

The second advantage is the low time and hardware requirements for training and testing

new conv-nets. We have found that for the training data we generate, it typically takes 2–4

hours to generate training data (human time) and 5–10 hours (computer time) to train the

conv-net architectures considered here. Both of these represent a fixed initial cost which apply
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Fig 5. Semantic segmentation of a co-culture with MCF10A and NIH-3T3 cells. A conv-net was trained
to both segment and recognize NIH-3T3 and MCF10A cells. The training data was created from separate
images of NIH-3T3 and MCF10A cells with each image having a nuclear marker (Hoechst 33342) as a
separate channel. (a) A ground truth image of a co-culture containing NIH-3T3 and MCF10A cells. The NIH-
3T3 cells express a mCerulean nuclear marker (blue) while the MCF10A cells express an iRFP nuclear
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to all subsequent experiments for a given cell type or types. In addition, because a capable GPU

is the key piece of hardware required for this work, it is relatively inexpensive (~500–1000 US

dollars) to provide existing workstations with the capacity to train and execute conv-nets.

Third is the ability to perform semantic segmentation to identify different cell types without

sacrificing an additional fluorescence channel. This ability enables the analysis of live-cell imag-

ing experiments involving co-cultures, monitoring differentiation, or possibly even tissues.

Fourth, and most importantly, is the generality of the approach. Using our framework, seg-

menting new cell types involves simply creating a new training data set and training a new

conv-net. To date we have been able to segment images from 5 different mammalian cell lines

with no changes in the conv-net architecture. While the architecture may need refinement,

deep learning will likely be applied to even more cell types and enable the analysis of a variety

of live-cell imaging experiments.

Design rules for new conv-nets

Moving forward, we foresee two possible approaches. In one approach, similar to the ImageNet

challenge, one large network would be trained to segment and classify the majority of cell lines

that are in use today [33, 35]. In another approach, which we consider to be more likely, a col-

lection of conv-nets would be designed for each specific segmentation task required for a live-

cell imaging experiment. This approach we term laboratory scale deep learning. By making the

trained conv-nets and the requisite training data publically available, laboratories performing

this type of work would be able to build on each other’s technical advances. In pursuit of this

aim, here we outline some of the design rules we’ve extracted from our successes (and failures)

in training conv-nets.

First, we found that image normalization was critically important for robustness, segmenta-

tion performance, and processing speed.We tried three different normalization schemes—nor-

malizing images by the median pixel value, by the maximum pixel value, or not at all. We

found that normalizing by the median pixel value was best with respect to robust performance

on images acquired with different illumination intensities. In the case of semantic segmenta-

tion, we found that without proper normalization, the conv-nets learned intensity differences

between the MCF10A and NIH-3T3 data sets instead of differences in cell morphology. This

led to poor performance when the conv-nets were applied to new images, as they classified all

the cells as the same cell-type based on the images illumination (see S13 Fig). Furthermore, the

normalization choice impacts whether or not a fully convolutional implementation of conv-

nets can be used when segmenting new images. Normalizing patches by their standard devia-

tion, for instance, or performing PCA based whitening would require new images to be pro-

cessed in a patch-by-patch manner. We note that in our experience, performance was optimal

when the illumination intensity was reasonably similar to or higher than the illumination used

to acquire the training data.

Second is the importance of data augmentation. One of our key results is that only a few

hundred cells worth of training data is required to produce a well performing conv-net. This is

in contrast to the thousands of images contained in the ImageNet and PASCAL databases.

Smaller training datasets were sufficient for out purposes because we made maximal use of the

marker (red). Hoechst 33342 (image not shown) was also used to generate an image of a nuclear marker. (b)
Simultaneous image segmentation and cell-type classification of the image in (a) using a trained conv-net.
(c) Classification accuracy for the trained conv-net’s cellular level cell type prediction. The cellular
classification score of the correct cell type for each cell is plotted as a histogram. The size of the cellular
classification score is strongly associated with making a correct prediction. A classification accuracy of 86%
was achieved for NIH-3T3 cells and 100% for MCF10A cells.

doi:10.1371/journal.pcbi.1005177.g005
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data available by using data augmentation through image rotation and reflection and by

enabling the conv-net to “see” the nuclear channel—information that is collected in every live-

cell imaging experiment done in our lab. Curiously, we found that using image shearing for

data augmentation did not significantly improve the segmentation performance (Table B in S1

Text). While additional data augmentation techniques may improve performance, it is clear

that the large numbers of images typically used to train conv-nets are not required for this pur-

pose. Nevertheless, we anticipate that the incorporation of additional training data will lead to

more accurate and robust conv-nets in the future.

Third, is the importance of hyper-parameters. The most important hyper-parameter in our

experiencewas the conv-net’s receptive field size, or the size of the image patches sampled

from the training image. We found that this was a key hyper-parameter that had to be tuned to

obtain a well-performing conv-net. Our experience leads us to believe that the optimal size is

roughly on the order of the diameter of a cell. Receptive fields that are too small led to conv-

nets that classified the background as edges while receptive fields that were too large took lon-

ger to train and are more prone to over-fitting. While we obtained good results given our

choice of hyper-parameters (for instance the regularization strength—see S15 Fig), we note

that optimization of the number of layers in a conv-net, the number of filters in each layer, the

filter sizes for each layer, or the conv-net architecture may also lead to further improvements

[35, 37, 63].

Fourth, we found that segmentation refinement was necessary to produce segmentation

masks that could be applied to real data. While conv-nets produce remarkably accurate pixel-

wise classification predictions, we found we still needed to refine these predictions to produce

binary segmentationmasks. In the end, the method we found that worked the best was using

the conv-net predictions to guide active contours. One advantage of this novel approach was

that we could seed this process using the segmentationmasks of the cell nuclei, in essence

using the cell nuclei to separate the masks of spatially proximate cells. While it is possible that

additional training data and hyper-parameter optimization may make this refinement step

unnecessary, this is likely an area for further improvement. For instance, conditional random

fields have shown success in refining conv-net predictions for semantic segmentation and may

prove to be of some use here [62]. Incorporating segmentation and tracking together in a uni-

fied frameworkmay also provide opportunities for performance improvement [17].

Fifth, we explored how much dropout, batch normalization, and multi-resolution fully con-

nected layers, improve the segmentation performance of conv-nets. Dropout is a regularization

technique in which filters are randomly turned off during training [41]. By training in this fash-

ion, the conv-net learns to not depend too heavily on any one filter. Batch normalization is a

solution to the covariate shift problem that works by using per batch statistics to convert the

output of each conv-net layer into one that has zero mean and unit variance [42]. Batch nor-

malization also functions as a regularizationmethod.Multi-resolution fully connected layers

are an advance geared towards improving semantic segmentation performance [34, 35, 37]. By

allowing hidden layers to see multiple spatial scales, these networks can boost their segmenta-

tion performance.We added these features to conv-nets while keeping most of their features

fixed, trained them on our HeLa-S3 training data, and then evaluated their performance (in

conjunction with active contours) on a validation data set. The classification error during train-

ing (on both training and validation data) is shown in S14 Fig and the results are shown in

Table B in S1 Text. We found that performance for most of these variations were similar. Curi-

ously, conv-nets with dropout and multi-resolution fully connected layers had worse perfor-

mance than an unmodified conv-net. Batch normalization in conjunction with multi-

resolution layers produced the best performance, but these conv-nets were prone to overfitting

(as judged by the difference between the training and validation classification error). The
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networks presented here use batch-normalization, which we opted for because of their regulari-

zation ability, their reduced training time, and a desire to avoid overfitting.

Conclusions

Deep learning has been a transformative technology for computer vision, and based on our

experiences outlined in this paper, we expect that it will be a powerful tool for analyzing images

from live-cell imaging experiments.We offer several thoughts in conclusion. First, we expect

that laboratory scale deep learning (as described above) will the development model moving

forward. Second, we expect that the availability of open source deep learning APIs, such as

Keras (as used in this work), Theano, Torch, Caffe, and TensorFlow, in addition to the myriad

of tutorials available online, will help make this technologymore accessible to the causal user.

Finally, we expect that in addition to being able to better quantify fluorescence levels, there are

other classes of live-cell imaging experiments where the localization of fluorescencemust be

quantified that will benefit from the approach outlined here [27, 64–66]. Given our experience

detailed in this work, we expect deep learning to have a transformative impact on the analysis

of live-cell imaging experiments.

Materials and Methods

Constructing training datasets

To construct manually annotated datasets for E. coli strain MG1655 and 5 different mamma-

lian cell lines (NIH-3T3, MCF10A, HeLa-S3, RAW 264.7, and bone marrow derivedmacro-

phages), we first acquired images to construct training datasets. For bacterial cells we acquired

phase images of the bacterialmicro-colonies while for mammalian cells, we acquired both fluo-

rescent images of labeled nuclei and phase images of the cytoplasm.We then used ImageJ to

annotate each training dataset and classify each pixel in a training image as either boundary,

cellular interior, or background. Details of this annotation procedure are contained in the sup-

plemental information. Empirically, we found that annotating one microscope image contain-

ing a total of ~300 bacteria, ~500 nuclei, or ~ 100 mammalian cells was sufficient to make a

training dataset that led to a well performing conv-net; the annotation typically required ~2–4

hours. A small patch (31x31 pixels for bacteria, and 61x61 pixels for mammalian cytoplasm

and nuclei) was sampled around each annotated pixel to create a collection of representative

images for each class. We found that this sampling was best done at run time to preserve GPU

memory. This collection of images was then randomly down-sampled so that each class had

equal representation in the collection.

One concern regarding the performance of trained conv-nets we had was their robustness

to fluctuations in illumination and microscope cameras. Sharable solutions to this segmenta-

tion problem require some amount of robustness to these changes, as different labs use differ-

ent microscopes and cameras to acquire data. Even within labs, image acquisition parameters

may not be identical between experiments. To account for this, we normalized our training

data sets prior to using them to train a conv-net. Each training image was first divided by the

median pixel value. The local average of this normalized image was computed by applying an

averaging filter (the same size as that of the neural network’s effective receptive field size—in

our case 31x31 for bacterial cells and 61x61 for mammalian nuclei and cytoplasms) and then

subtracted from the normalized image to create the final image that was sampled to train a

conv-net. After sampling our image, we then performed data augmentation by randomly rotat-

ing each patch by either 0, 90, 180, or 270 degrees and randomly reflecting them on the fly

prior to their use our training dataset. Our reasoning was that class labels should be invariant

to these transformations.
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After normalization and data augmentation, each training dataset consisted of ~200,000–

400,000 patches. The mammalian cytoplasm training datasets contained two channels—a

phase image and an image in which cell nuclei were labelled with Hoechst 33342 (NIH-3T3

and MCF10A) or H2B-iRFP (HeLa-S3).

Segmenting new images

To construct a segmentationmask for a new image, the trained conv-net is applied to the entire

image to produce pixel level classification predictions. This is done by using a fully convolu-

tional implementation of conv-nets that can be directly applied to the entire image [35, 36].

We also usedmodel parallelism (averaging the results of 5 trained networks) to improve our

segmentation accuracy.

While the classification predictions produced by conv-nets were remarkably accurate, we

found that they required further refinement to produce binary segmentationmasks. As

opposed to using the raw class scores for each pixel as the input for refinement, we instead use

the softmax normalized score eclass score
X

all classes

eclass score

, which we loosely interpret as the probability

deduced by the conv-net that the pixel in question belongs to that particular class. For bacterial

cells, we found that thresholding of the softmax normalized score for the cell interior class with

a value of 0.6 was sufficient to produce accurate masks. For nuclei, we found that thresholding

with a value of 0.5–0.75 in a similar fashion to bacteria worked well in most cases, with adaptive

thresholding of the softmax normalized cell interior score being used for images with very dim

nuclei. For mammalian cells, the conv-net prediction in combination with the nuclear marker

was used to guide an active contour algorithm to further refine the segmentation[52]. Training

error and segmentation results for E. coli, MCF10A, NIH-3T3, and HeLa-S3 cells are shown in

Fig 2, S1–S8 Figs and S4 and S7 Movies.

Supporting Information

S1 Text. Supplemental text.

(DOCX)

S1 Fig. Sample image, conv-net interior predictionmap, segmentationmask, and training/

validation error curves for E. coli.

(TIF)

S2 Fig. Sample image, conv-net interior predictionmap, segmentationmask, and training/

validation error curves for MCF10A cells.

(TIF)

S3 Fig. Sample image, conv-net interior predictionmap, segmentationmask, and training/

validation error curves for NIH-3T3 cells.

(TIF)

S4 Fig. Sample image, conv-net interior predictionmap, segmentationmask, and training/

validation error curves for HeLa-S3 cells.

(TIF)

S5 Fig. Sample image, conv-net interior predictionmap, segmentationmask, and training/

validation error curves for RAW 264.7 cells.

(TIF)
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S6 Fig. Sample image, conv-net interior predictionmap, segmentationmask, and training/

validation error curves for bonemarrow derivedmacrophages.

(TIF)

S7 Fig. Sample image, conv-net interior predictionmap, segmentationmask, and training/

validation error curves for H2B-iRFP labeled and DAPI stained nuclei.

(TIF)

S8 Fig. Sample image, conv-net interior predictionmap, segmentationmask, and training/

validation error curves for semantic segmentation of MCF10A cells and NIH-3T3 cells.

(TIF)

S9 Fig. Additional semantic segmentation of NIH-3T3 andMCF10A cells. 286 cells were

analyzed, including 93 3T3 cells and 192 MCF 10A cells. The classification accuracywas 89%

for NIH-3T3 cells and 98% for MCF10A cells.

(TIF)

S10 Fig. Sensitivity analysis of the influence of the cytoring size on the dynamics of the

JNK-KTR.While the qualitative shapes of the curves remain intact as the size of the cytoring

increases, there are important quantitative differences that emerge as the cytoring increases. In

the grey trace, the first peak is identified as being quantitatively identical to the other cells in

the plot if a 5 pixel cytoring is used, but becomes separated from the rest as the cytoring size is

increased. A similar quantitative change can be seen in the size of the second peak in the purple

trace, as it quantitatively becomesmore diminished as the cytoring size is increased.

(TIF)

S11 Fig. Areas of the different cytorings used in S10 Fig.

(TIF)

S12 Fig. Histogram of the instantaneous growth rate for a bacterialmicro-colony. This his-

togram is identical to the histogram showed in Fig 3, with the axes expanded to show the nega-

tive growth rates corresponding to cell division.

(TIF)

S13 Fig. Poorly performing conv-nets.This figure highlights the importance of image nor-

malization and receptive field size in training robust conv-nets. (a), (b), and (c). Mammalian-

net semantic was trained on an un-normalized images of NIH-3T3 and MCF10A cells. Instead

of learning differences in cell shape, the conv-net learned the brightness difference between the

two dataset sources, leading to poor performance on images of co-cultures. 100% of MCF10A

cells and 14% of 3T3 cells were classified correctly. (d) A conv-net with a 41x41 receptive field

(as opposed to the 61x61 receptive field of mammalian net) was trained using a HeLa cell data

set. Because of the smaller receptive field, the conv-net has difficulty distinguishing cell bound-

aries and interiors from background.

(TIF)

S14 Fig. Training and validation error for conv-nets to assess the performance improve-

ments provided by dropout, batch normalization, shearing for data augmentation, and

multi-resolution fully connected layers.Dropout was only used in fully connected layers. The

segmentation performance of each network as quantified by the Jaccard and Dice indices is

provided in Table B in S1 Text.

(TIF)
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S15 Fig. Regularization optimization. The L2 regularization parameter was varied from 0,

10−7, 10−6, and 10−5. Lower regularization was associated with more fluctuations in the classifi-

cation error on the validation data set.

(TIF)

S16 Fig. Segmentation accuracyvs. cell density for HeLa-S3 cells. 1250, 2500, 5000, 10000,

and 20000 cells were plated in the wells of a 96 well dish and imaged. The images were seg-

mented manually and with conv-nets to compute the Jaccard and Dice indices. Segmentation

performance remains stable for most plating densities, but decreases once cells are confluent.

(TIF)

S17 Fig. Comparison of segmentation performance of conv-nets and Ilastik on a HeLa cell

validation data set. (a) Phase image of HeLa cells. (b) Ground truth for the cell boundary. (c)

Conv-net soft-max score for edge and interior prediction. (d) Ilastik segmentation. (e) Conv-

net segmentation after active contour processing. (f) Ilastik segmentation after active contour

processing.

(TIF)

S1 Movie. Phase images of a growing E. colimicro colony.

(AVI)

S2 Movie. Bacteria-net output when used to process S1 Movie.

(AVI)

S3 Movie. Phase images of HeLa-S3 cells expressing the JNK-KTR.

(AVI)

S4 Movie. Segmentation of S3 Movie.

(AVI)

S5 Movie. Nuclear marker channel for S3 Movie.

(AVI)

S6 Movie. JNK-KTR channel for S3 Movie.

(AVI)

S7 Movie. Representativemovie of HeLa-S3 with overlaying nuclearmarker and segmenta-

tion boundaries.

(AVI)
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